
. .
REFERENCE MANUAL

Product and documentation by Aparajita Fishman

Copyright © 2001-2016 All rights reserved

Copyright and Trademarks

All trade names referenced in this document are the trademark or registered trademark

of their respective holder.

Active4D is copyright Aparajita Fishman and Victory-Heart Productions.

Active4D v6.3
4D and 4D Compiler are registered trademarks and 4D, 4D Server, and 4D Remote are

trademarks of 4D, Inc.

Windows is a trademark of Microsoft Corporation.

Macintosh and Mac OS X are trademarks of Apple Computer, Inc.

JavaScript and Java are trademarks of Sun Microsystems, Inc.

Acknowledgements

First of all, thanks to the makers of PHP for giving me the vision of a better way.

Thanks to the client who asked me to generate every single character of HTML in 4D

code, which inspired me to come up with a better way.

Thanks to Mike Erickson for his convincing me that Active4D was worth doing. He was

right.

Thanks to all of the users for their feedback and encouragement.

And thank you to David Adams for so kindly including a chapter about Active4D in “The

4D Web Companion” and for allowing me to include his HTTP chapter with these docs.

Active4D v6.3
Table of Contents

Table of Contents .3

Introduction. 25

What is Active4D? . 25

HTTP Web Server. 25

Server-Side . 26

HTML-Embedded . 26

Scripting Language . 26

Development Environment. 26

An Example . 27

What Can Active4D Do? . 27

Database and Protocol Support. 28

A Brief History of Active4D . 28

Installation . 29

Plugin . 29

Resource Files. 29

Active4D Shells. 30

Active4D Folder . 30

Web Folder . 31

Demo . 31

Key Files . 31

Key File Installation. 31

Key File Info . 32

Version Checking . 32

License Types . 33

Timeouts . 33

Trial License. 33

Deployment License . 33

OEM License . 34

Installation Options . 34

Starting a Database from Scratch . 34

Installing into a Non-Active4D Database . 34

Updating an Existing Active4D 4.x/v5 Database . 35

Installing the Predefined Session Handler . 35

Post-Installation Configuration . 36

Configuring for 4D’s Web Server . 37

Configuring for NTK . 38

Configuring 4D Remote as a Web Server . 39

Using the Pre- and Post-Execute Hooks . 39

Pre-Execute Hook . 39

Post-Execute Hook . 40
Table of Contents 3

Active4D v6.3
Configuration . 41

Config File Search Path. 41

Configuration Files . 42

The Default Directory. 42

Path Format . 43

The Standard Search Path and Path Lists . 44

Active4D.ini . 44

ExtensionMap.ini. 47

Realms.ini. 47

VirtualHosts.ini . 47

Security . 49

Source Code Security. 49

Web Server Security = Source Code Security . 49

Circumventing Active4D . 49

Potential Attacks . 50

Executing/Accessing Non-Web Files . 50

The “safe script dirs” Config Option . 50

Misusing Document Commands . 51

The “safe doc dirs” Config Option . 51

Spoofing Form Variables . 51

The “auto create vars” Config Option . 52

Uploading Huge Files . 52

HTTP Server . 53

What Is a Web Server? . 53

Active4D + Network Layer = Web Server . 53

HTTP Fundamentals. 54

Active4D HTTP Request Handling . 54

Executable vs. Non-executable Files . 54

Request Header Parsing . 55

POST/PUT and File Upload Handling . 56

Executable Request Handling. 57

Non-Executable Request Handling. 58

Configuration . 59

Active4D.ini . 59

Cors.ini . 59

ExtensionMap.ini. 59

User Authentication. 59

Realms.ini. 60

Virtual Hosting . 61

VirtualHosts.ini . 61

A Virtual Host Example . 63

HTTP Error Handling . 63

Customizing the Error Handling . 64

Invoking Active4D . 65

Types of Execution . 65

Request Execution . 65

A4D Execute <type> request Parameters . 65

A4D Execute <type> request . 66
4 Table of Contents

Active4D v6.3
A4D Execute BLOB request . 69

A4D Execute 4D request. 70

A4D Execute stream request. 70

ReceiveCallback. 71

 . Direct Execution72

Uses for Direct Execution . 72

A4D Execute file. 72

A4D Execute text . 73

A4D Execute BLOB . 73

Interpreter . 75

Flow of Execution . 75

Embedding Source Code . 75

Input Parsing . 75

Language Syntax. 77

English Only . 77

Source Code Structure . 77

Case Sensitivity . 78

Expression-based . 78

Comments . 79

Identifiers . 80

Custom Named Constants . 81

Data Types . 81

Compiler Declarations. 81

Process/Interprocess Variables. 82

Array Support . 82

Pointer Support . 83

Extended Boolean Expressions . 83

Literals. 83

String Literals . 84

String Interpolation . 84

Heredoc Strings . 87

Date Literals . 87

Time Literals . 88

User-defined Constants . 88

Typing of Values . 88

Operators . 88

Unary/Assignment Operators. 88

Super Assign . 89

In and Not In Operators . 90

Regular Expression Operators . 90

String Format Operators. 91

Picture Operators . 91

Pointer Dereference Operator . 91

+ Operator . 91

Character Reference Operator [[]] . 92

Indexing Operator {}. 92

Boolean Operator | . 93

 . Control Structures93

for each/end for each . 94

break . 94

return. 94
Table of Contents 5

Active4D v6.3
continue . 94

exit . 94

Examples . 95

Working with Paths . 96

URL-Style (Posix) Paths . 96

Absolute vs. Relative Paths . 96

Path Utilities . 96

Path Limits . 97

Including Other Files . 97

Uses of Included Files . 97

Including Only Once . 98

Calling 4D Methods . 98

Parameter Passing . 98

Indirect Method Calls (aka Poor Man's method pointers). 99

Collections . 99

Collection Handles . 100

Local vs. Global Collections . 100

Using Collections . 100

Referencing Collection Values . 101

Embedded Collections . 101

Element Referencing . 102

Iterating Over a Collection. 102

HTTP Data Access . 102

Request Data . 103

_query and _form Collections . 103

Testing Form Buttons . 104

Response Data . 104

Working with Character Sets . 104

Platform Character Set . 105

Output Character Set. 106

Output Encoding. 106

HTTP Request Decoding. 107

Informing the Browser of Your Output Character Set . 107

Working with Files . 107

Error Handling . 107

Script Timeout . 108

Methods . 109

Defining Methods . 109

Method Declaration . 109

Method Name . 109

Method Parameter Declaration . 110

Method Parameters . 110

Parameter Type . 110

Scope. 111

Referencing “Global” Local Variables . 112

Pass by Reference . 112

Default Parameters. 113

Returning Values . 114
6 Table of Contents

Active4D v6.3
Libraries . 117

Library Search Path . 117

Library Definition . 118

Importing Libraries . 118

Import Configuration. 119

Import Errors. 119

Automatic Re-Import . 120

Library Namespace. 120

Name Resolution. 120

Library scope . 121

The “global” library. 121

Private methods . 122

Library-private collections . 122

Library Initialization/Deinitialization . 123

Storing collections in library-private data . 124

Creating a Poor Man’s Class . 124

Limitations. 126

Event Handlers. 127

Event Handler Methods . 127

On Application Start. 127

On Request . 128

On Authenticate . 129

On Session Start. 130

On Execute Start . 131

On Execute End . 131

On Session End . 131

On Application End . 132

Modifying the Active4D Library . 132

Command Reference . 133

4D Commands. 133

Using a Default Table. 133

Active4D Commands . 136

Command Syntax . 140

Unicode and Charsets . 140

Arrays . 141

{} (appending index). 142

{-<index>} (from end index) . 142

add element . 143

append to array . 143

ARRAY <type> . 144

clear array . 145

COPY ARRAY . 145

Count in array. 146

fill array . 146

insert into array . 147

is array. 148

join array . 148

multisort arrays . 149

multisort named arrays . 150
Table of Contents 7

Active4D v6.3
resize array. 150

SELECTION/SELECTION RANGE TO ARRAY. 150

set array . 151

BLOBS . 152

Collections . 153

collection . 154

new collection . 154

new local collection . 155

new global collection . 155

collection to blob . 156

blob to collection . 156

save collection . 157

load collection . 157

copy collection. 158

deep copy collection . 158

merge collections . 159

clear collection. 160

deep clear collection . 160

get collection . 161

get collection array. 161

get collection array size . 162

get collection item . 163

get collection item count . 163

get collection keys . 164

set collection. 164

set collection array . 165

is a collection . 166

collection has . 166

count collection items. 167

delete collection item . 167

Cryptography . 168

base64 decode. 169

base64 encode. 170

blowfish decrypt . 171

blowfish encrypt . 172

md5 sum . 174

Database . 175

Trigger Errors . 175

Field name. 176

get field numbers . 176

get field pointer . 177

QUERY . 177

QUERY BY FORMULA . 178

QUERY SELECTION . 178

QUERY SELECTION BY FORMULA. 179

SET QUERY DESTINATION. 179

Table name . 179

Date and Time. 181

UTC Commands. 181
8 Table of Contents

Active4D v6.3
Date . 182

day of year . 182

get utc delta . 183

local datetime to utc . 183

local time to utc . 184

utc to local datetime . 184

utc to local time. 184

week of year . 185

Debugging . 186

current library name . 187

current line number . 187

current method name . 187

get call chain. 188

library list . 188

write to console . 189

Error Handling . 190

get error page. 191

get error status. 191

get http error page. 192

get log level. 192

in error . 192

log message . 193

set error page . 193

set http error page . 194

set log level . 194

File Uploads . 195

How File Upload Works. 195

Referencing File Uploads . 195

The Importance of Filename Extensions. 196

Upload Auto-Deletion . 196

copy upload . 196

count uploads . 197

get upload content type. 197

get upload encoding . 197

get upload extension. 198

get upload remote filename . 198

get upload size. 199

save upload to field . 199

upload to blob . 200

Form Variables . 201

When Form Variables Are Query Params (and vice versa) . 201

Posting JSON Data . 201

Posting Raw Data . 201

Multiple-choice Form Fields . 201

_form . 202

form variables. 202

form variables has. 202

get form variable. 203

get form variable choices . 203

get form variable count . 204
Table of Contents 9

Active4D v6.3
get form variables . 205

count form variables . 205

Globals . 206

Locking and Unlocking the Globals . 206

globals . 208

globals has. 208

get global. 208

get global array . 209

get global array size . 210

get global item. 210

get global keys . 211

set global . 211

set global array. 212

count globals . 212

delete global. 213

lock globals . 213

unlock globals . 213

Iterators . 214

Using for each . 214

Using Iterators . 214

Iterator Validity . 215

for each/end for each . 216

more items . 216

next item . 216

get item key . 217

get item value . 217

get item type . 217

get item array . 218

is an iterator . 218

JSON . 219

new json . 220

add to json. 220

add datetime to json . 222

add function to json. 223

add rowset to json . 224

add selection to json . 226

start json array . 230

end json array. 231

start json object . 231

end json object . 232

json to text. 233

write json . 233

write jsonp. 234

json encode. 234

parse json. 236

Language . 238

call 4d method . 239

call method . 239

choose. 240

define . 242
10 Table of Contents

Active4D v6.3
EXECUTE. 244

execute in 4d . 244

for each/end for each . 245

Get pointer . 247

get throw code. 248

get throw message. 248

global . 248

import . 249

include . 250

include into . 250

longint to time . 251

method exists . 252

nil pointer . 252

redirect . 253

require. 253

RESOLVE POINTER. 254

sleep . 254

throw . 255

time to longint . 255

Math . 256

max of . 257

min of . 257

random between . 257

ObjectTools . 258

clear object . 259

collection to object. 259

object to collection. 259

Pictures . 260

Using the image.a4d Script . 260

image.a4d (script file) . 261

Loading from the 4D picture library . 261

Loading from the database via query . 262

Loading from the database via record number . 262

Loading from a file . 262

Loading from an Active4D method call . 262

Loading from a 4D method call . 263

Examples . 263

write gif. 264

write jpeg. 265

write jpg . 266

write png . 266

Queries . 267

QUERY/QUERY SELECTION. 268

ORDER BY. 268

ORDER BY FORMULA . 269

Query Params . 270

Query Params Items . 270

Duplicate Query Parameters . 270

_query . 271
Table of Contents 11

Active4D v6.3
query params . 271

query params has . 271

get query param . 272

get query param choices . 272

get query param count . 273

get query params . 274

count query params . 275

build query string . 275

Regular Expressions. 277

Pattern Syntax . 277

Using Regular Expressions . 277

regex callback replace . 278

regex find all in array . 279

regex find in array . 280

regex match . 281

regex match all . 282

regex quote pattern . 283

regex replace . 284

regex split . 287

Request Cookies . 289

request cookies . 290

get request cookie . 290

get request cookies . 291

count request cookies . 291

Request Info. 292

request info . 293

get request info . 293

get request infos . 293

count request infos. 294

Request Value . 295

get request value . 296

Resources . 297

Get indexed string . 298

STRING LIST TO ARRAY . 299

Response Buffer . 300

buffer size . 301

response buffer size . 301

clear buffer . 301

clear response buffer . 301

get response buffer . 302

set response buffer. 302

save output . 303

end save output. 304

set output charset. 304

get output charset . 305

set output encoding . 305

get output encoding . 306

write. 307

write blob. 307
12 Table of Contents

Active4D v6.3
writebr. 309

writeln . 309

writep . 310

write raw . 310

= . 311

Response Cookies . 312

Cookie Fields. 312

response cookies. 313

get response cookie . 313

get response cookies . 314

set response cookie . 314

set response cookie domain . 315

get response cookie domain. 316

set response cookie expires. 316

get response cookie expires . 316

set response cookie http only. 317

get response cookie http only . 317

set response cookie path . 317

get response cookie path. 318

set response cookie secure . 318

get response cookie secure . 318

count response cookies . 319

delete response cookie . 319

abandon response cookie . 319

Response Headers. 320

response headers . 321

get response header . 321

get response headers . 321

set response header . 322

count response headers . 322

delete response header . 323

Response Properties . 324

get cache control . 325

set cache control . 325

get expires . 325

set expires . 326

get expires date . 326

set expires date . 326

get content type . 327

set content type. 327

get content charset . 327

set content charset . 328

get response status . 328

set response status . 328

Script Environment . 329

_request . 330

full requested url . 330

current platform . 330

get license info. 331

get time remaining. 332
Table of Contents 13

Active4D v6.3
get version. 332

configuration . 333

parameter mode . 333

request query . 334

set platform charset . 334

get platform charset . 335

set script timeout . 335

get script timeout . 336

set current script timeout. 336

get current script timeout . 336

Selecting Records . 337

Loading Related Records . 337

Configuring Related Record Auto-loading. 337

Compatibility with Active4D 2.0.x. 338

Examples . 338

auto relate . 340

ALL RECORDS, FIRST/LAST/NEXT/PREVIOUS RECORD . 340

get auto relations . 341

GOTO RECORD . 341

GOTO SELECTED RECORD . 342

Sessions . 343

Session Lifetime. 343

Session ID. 344

Session Events . 344

When Active4D Sends Session Cookies. 345

Cookieless Sessions . 345

Memory Caching of Sessions . 346

Session Timeout and Memory Usage. 346

Monitoring Memory Usage . 346

Session Configuration . 347

Session Handlers . 348

session . 350

session to blob . 350

blob to session . 351

get session. 351

get session array . 352

get session array size . 352

get session item. 353

get session keys . 353

set session . 354

set session array. 355

session has. 355

count session items . 356

delete session item. 356

abandon session . 357

session id . 357

session internal id . 357

session local . 358

session query . 358

hide session field. 359

set session timeout. 359
14 Table of Contents

Active4D v6.3
get session timeout . 360

get session stats. 360

Strings . 361

URL Encoding/Decoding . 361

String Commands and Unicode. 361

% (formatting operator) . 363

%% (formatting operator) . 364

capitalize . 365

cell . 366

compare strings. 367

concat . 368

Delete string . 368

enclose . 369

first not of. 370

first of . 371

format string . 371

identical strings . 372

Insert string . 372

interpolate string . 373

last not of . 373

last of . 374

left trim . 374

html encode . 375

mac to html . 375

mac to utf8 . 376

param text . 376

Position. 378

right trim . 379

slice string . 380

split string . 381

String . 382

Substring . 383

trim. 383

url decode . 384

url decode path . 384

url decode query . 384

url encode . 385

url encode path . 385

url encode query . 385

utf8 to mac . 386

System Documents. 387

Document Paths . 387

Document Command Enhancements . 387

Affected Commands . 387

Error Codes . 388

Working With Large Files . 388

Append document . 389

Create document . 389

current file . 390

current path . 390

default directory . 391
Table of Contents 15

Active4D v6.3
DELETE FOLDER . 391

directory exists . 392

directory of . 392

directory separator . 392

extension of . 393

file exists. 393

filename of. 393

get root. 394

join paths . 394

MOVE DOCUMENT . 395

native to url path. 395

Open document . 396

RECEIVE PACKET . 396

requested url . 397

resolve path . 397

SEND PACKET . 398

SET DOCUMENT POSITION. 398

split path . 398

url to native path. 399

Timestamps . 400

Timestamp Format . 400

Timestamp Time . 400

Timestamp Normalization . 400

Using Timestamps with Optimistic Locking . 401

timestamp . 403

add to timestamp . 404

timestamp difference . 404

timestamp string. 405

timestamp date . 405

timestamp time . 406

get timestamp datetime. 406

timestamp year . 407

timestamp month. 407

timestamp day . 407

timestamp hour. 408

timestamp minute . 408

timestamp second . 409

timestamp millisecond . 409

User Authentication. 410

auth password . 411

auth type . 411

auth user . 411

authenticate . 412

current realm . 412

Variables . 413

defined . 414

get local . 414

local variables. 415

set local. 415

type descriptor. 416
16 Table of Contents

Active4D v6.3
undefined . 416

variable name. 417

Plugin Commands. 418

A4D Abandon session . 419

A4D Base64 decode . 419

A4D Base64 encode . 419

A4D Blowfish decrypt . 420

A4D Blowfish encrypt . 420

A4D FLUSH LIBRARY. 420

A4D Get IP address . 421

A4D Get MAC address . 422

A4D Get root. 422

A4D GET SESSION DATA . 422

A4D GET SESSION STATS . 423

A4D GET LICENSE INFO . 424

A4D Get MAC address . 424

A4D Get time remaining. 424

A4D Get version. 425

A4D Import library . 425

A4D LOG MESSAGE. 425

A4D MD5 . 426

A4D Native to URL path . 426

A4D RESTART SERVER . 426

A4D Set HTTP body callback . 427

A4D SET ROOT . 427

A4D STRIP 4D TAGS . 428

A4D URL decode path . 428

A4D URL decode query . 428

A4D URL encode path . 429

A4D URL encode query . 429

A4D URL to native path. 429

Standard Libraries . 431

Using the Standard Libraries . 431

a4d.console . 432

clear . 433

dump array . 433

dump collection . 434

dump form variables . 435

dump license info . 435

dump query params. 435

dump request info . 436

dump session . 436

a4d.debug . 437

dump array . 438

dump collection . 439

dump configuration. 440

dump form variables . 440

dump license info . 440

dump locals. 441
Table of Contents 17

Active4D v6.3
dump query params. 441

dump request. 442

dump request info . 442

dump selection . 442

dump session . 443

dump session stats . 444

a4d.json . 445

new . 446

add . 446

addArray. 449

addDateTime . 450

addFunction . 451

addRowSet . 452

addSelection. 455

startArray . 458

endArray. 459

startObject. 459

endObject . 460

toJSON . 461

write. 462

writep . 462

encode . 463

encodeArray . 463

encodeBoolean . 464

encodeCollection . 464

encodeDate. 466

encodeString . 466

parse . 467

convertJSONDates . 468

a4d.lists . 470

append . 471

arrayToList . 471

changeDelims . 472

contains . 472

containsNoCase. 473

deleteAt . 473

find . 473

findNoCase . 474

first . 474

getAt . 474

insertAt . 475

last . 475

len. 476

listToArray . 476

prepend . 476

qualify . 477

rest . 477

setAt. 478

sort . 478

valueCount . 479

valueCountNoCase. 479
18 Table of Contents

Active4D v6.3
valueList . 479

a4d.utils . 481

applyToSelection . 482

articleFor . 482

blobToCollection. 483

blobToSession . 483

camelCaseText . 484

chopText . 484

collectionToBlob . 485

cud . 486

deleteSelection . 491

filterCollection . 492

formatUSPhone . 492

getMailMethod . 493

getPictureDescriptor . 493

getPointerReferent. 494

getSMTPAuthorization . 494

getSMTPAuthPassword . 495

getSMTPAuthUser . 495

getSMTPHost . 495

nextID . 496

ordinalOf . 496

parseConfig. 497

reverseArray . 499

selectionRangeToCollection . 499

selectionToCollection . 499

sendMail . 501

sessionToBlob . 503

setMailMethod. 503

setSMTPAuthorization. 504

setSMTPHost. 504

truncateText . 504

unlockAndLoad . 505

validPrice . 506

yearMonthDay . 507

a4d.web . 508

br. 509

buildOptionsFromArrays . 509

buildOptionsFromLists . 510

buildOptionsFromOptionArray . 511

buildOptionsFromOptionList . 512

buildOptionsFromRowSet . 513

buildOptionsFromSelection . 514

checkSession . 515

checkboxState . 515

collectionItemsToQuery . 516

collectionToQuery . 517

embedCollection. 517

embedCollectionItems . 519

embedFormVariableList . 519

embedFormVariables . 519
Table of Contents 19

Active4D v6.3
embedQueryParams . 520

embedVariables. 520

emptyTag. 521

formVariableListToQuery . 521

getEmptyFields . 522

getUniqueID . 522

getVariablesIterator . 522

hideField . 523

hideUniqueField . 523

saveFormToSession . 523

validateTextFields . 524

validEmailAddress. 524

warnInvalidField . 525

writeBold . 525

Batch . 526

Batch Attributes. 526

Creating a Batch . 526

How Batches Are Calculated . 527

Generating Batch Links . 528

Iterating Through Rows . 531

dumpDefaults . 532

getDefaults . 532

getStarts . 533

makeFuseboxLinks . 533

makeLinks . 534

new . 537

newFromArray . 538

newFromRowSet. 538

newFromSelection . 539

next . 540

previous . 540

setDefaults. 541

Breadcrumbs . 542

Using Breadcrumbs . 542

Customizing Breadcrumbs Appearance . 544

add . 545

dumpLib. 545

fuseboxNew . 546

new . 546

setDivId. 547

setSeparator . 547

write. 547

fusebox . 548

An Overview of Fusebox. 548

Why Should I Use Fusebox?. 548

How Do I Learn Fusebox?. 549

Active4D’s Fusebox Implementation. 549

Configuring Fusebox . 550

core . 551

getURLFactory . 551
20 Table of Contents

Active4D v6.3
handleError . 551

handleErrorInline . 552

invalidAction. 553

isFuseboxRequest . 553

makeURL . 554

postHandleError . 554

sendFuseaction . 555

setURLFactory . 555

fusebox.head. 557

How To Use This Library . 557

addCSS . 558

addDumpStyles . 559

addJavascript . 560

addJS . 560

addMetaTag . 562

getTitle . 562

setTitle . 563

write. 563

RowSet . 564

Enter the RowSet. 564

Using RowSets . 566

Subsetting Source Rows . 568

RowSet Cursors . 568

Persistent RowSets . 568

Which RowSet to Use. 570

afterLast . 571

beforeFirst . 571

clearPersistent . 571

columnCount . 572

currentRow . 572

dumpPersistent . 572

dump. 573

findColumn . 573

findRow . 573

first . 574

getColumn. 574

getData. 575

getEnd. 575

getPersistentList . 575

getRow . 576

getStart . 576

getTimeout . 576

gotoRow. 577

isAfterLast . 577

isBeforeFirst. 578

isFirst . 578

isLast . 578

last . 579

maxRows . 579

move . 579

newFromArrays . 580
Table of Contents 21

Active4D v6.3
newFromCachedSelection. 581

newFromData. 582

newFromFile . 583

newFromSelection . 584

next . 589

persistent . 589

previous . 589

rowCount . 590

setColumnArray. 590

setColumnData . 591

setRelateOne . 591

setTimeout . 592

sort . 592

sourceRowCount. 593

timedOut . 593

SessionHandler . 594

nextId . 595

read . 595

write. 596

delete . 596

purge. 597

Debugging . 599

The Basics . 599

Using write . 599

Tracing execution . 599

Standard Library Methods . 600

a4d.console and a4d.debug . 600

The Active4D Log . 601

Changing the Log Level . 602

The Session Editor. 603

Using the Session Editor . 603

The Session Monitor . 604

Displaying the Session Monitor . 604

Using the Session Monitor . 605

The Active4D Debugging Console . 606

Using the Debugging Console . 606

Filtering Console Messages . 607

Tuning Console Refresh . 608

Error Handling . 609

The Default Error Message . 609

Using a Custom Error Page . 610

The “error page” Option . 610

The “set error page” Command . 610

Error Page Variables . 611

Custom Error Handling in Fusebox. 612

The Active4D Log . 613

Log Levels . 613
22 Table of Contents

Active4D v6.3
Index of Commands . 615

ISO Language Codes . 629

Named Constants. 631

Grouped by Function. 631

. 633

Alphabetical . 633
Table of Contents 23

Active4D v6.3
24 Table of Contents

. .
CHAPTER 1

Introduction

Welcome to Active4D! You have chosen the ultimate environment for building world-

class web applications with 4D.

What is Active4D?
A dynamic web scripting environment has four layers: a TCP communications layer, an

HTTP server layer, a scripting layer, and a database layer. The different layers can be

pictured like this:

The HTTP server builds on top of the network layer, and the scripting layer builds on top

of the HTTP server. The database is in a separate, independent layer.

Active4D is both an HTTP web server and a server-side HTML-embedded scripting language

and development environment.

That’s a mouthful. Let’s break down the sentence and look at what it means.

HTTP Web Server

An HTTP (HyperText Transfer Protocol) web server is a piece of software that receives

HTTP requests, processes those requests and sends an appropriate response to the

origin. In essence, this is what a web server does.

4D’s built-in web server handles TCP communications and handles most of the HTTP

protocol.

NTK (Network Toolkit) in just what it says — not an HTTP server, but a toolkit that allows

you to write an HTTP server. Both come with sample databases which implement a web

server well for most purposes.

Network communications

HTTP Server

Scripting

DB
Chapter 1 Introduction 25

Active4D v6.3
Active4D implements an HTTP server in a plugin. As an HTTP server, it offers:

3 Ease of setup: Active4D is ready to run out of the box. There is no complicated setup

needed.

3 Speed: As a plugin, Active4D always runs at native compiled speed, even in an

interpreted database. This can mean huge gains in productivity during development.

3 Features: Active4D adds a wealth of advanced features like Virtual Hosting that offer

you some of the benefits of dedicated web servers like WebStar.

Server-Side

Scripting languages like JavaScript download their source code to the client browser and

execute it there. Active4D, on the other hand, is executed on the server and the source

code is removed before the page is sent to the client.

HTML-Embedded

With Active4D, dynamic HTML generation is directly embedded inside the HTML page.

4D’s web tag system, while providing some of the benefits of embedded scripting, still

requires you to write many, many 4D methods to handle simple tasks like queries and

ordering. In Active4D this is handled directly within the web page. In fact, with Active4D

all of your application code can (and in most cases should) exist entirely outside of 4D

itself.

Scripting Language

To generate dynamic HTML you must have a programming language. Active4D is a full

4D interpreter in a plugin. To program in Active4D you don’t need to learn a new syntax

or specialized tag language. In many cases you can literally copy 4D code from a method

and paste it into a web page to be executed by Active4D.

Active4D supports all 4D data types except for 2D arrays. It implements over 170 of the

most important 4D commands, as well as almost 300 new commands which provide

unmatched power — and ease — to your web development.

Active4D also adds many often-requested extensions to the language, such as the break

and return keywords, pass-by-reference, sophisticated string formatting, and associative

arrays.

Development Environment

Active4D comes with a plethora of built-in debugging tools, both on the client side and

on the 4D side. In conjunction with all of the other features Active4D provides, there

simply is no more powerful or more productive web development environment for 4D,

period. Nothing else comes close.
26 Chapter 1 Introduction

Active4D v6.3
An Example
Here’s a simple example of what an Active4D page looks like:

Note that the code is fully embedded in the page, and that except for the writebr

command, which writes an expression to the HTML page, the embedded code is 4D

code.

During execution, Active4D passes HTML through to the response, executes everything

inside the <% %> tags, and spits out the following:

The source code has been replaced with the output of the Active4D code. You can find

out more about programming with Active4D in Chapter 7, “Interpreter.”

What Can Active4D Do?
Active4D can do anything that 4D can do in the context of a web page, plus quite a few

tricks that would be time-consuming if not impossible to implement in 4D.

If Active4D’s commands don’t fit the bill, you can write methods and libraries of methods

completely within Active4D, using plain text files. And if you need to use a command or

plugin that is not in Active4D’s language, you can either execute it within Active4D using

the execute in 4d command, or you can call any 4D method, passing parameters of any

type and receiving a result of any type.

Primarily, however, Active4D is designed to act as a conduit between the database and

the web page. As such, it excels at the following essential tasks:

3 Collecting information from forms and queries for easy access within your web

application

<html>
 <body>
 Here are 5 good reasons to use Active4D:

 <%
 for ($i; 1; 5)
 writebr("It rocks!")
 end for
 %>
 </body>
</html>

<html>
 <body>
Here are 5 good reasons to use Active4D:

It rocks!

It rocks!

It rocks!

It rocks!

It rocks!

 </body>
</html>
Chapter 1 Introduction 27

Active4D v6.3
3 Managing user sessions

3 Querying and manipulating data without having to write specialized 4D methods

3 Handling file uploads

3 Formatting text for output to HTML

3 Generating JSON data for use with Javascript client libraries

3 Handling character set issues

Database and Protocol Support

Active4D comes with built-in support for 4D’s built-in database engine. You could,

without much work, write wrapper methods for the various connectivity plugins that

would allow you to work with other databases such as MySQL.

In addition, you could also easily write method wrappers around the 4D Internet

Commands to allow you to access other internet protocols like SMTP.

A Brief History of Active4D
Many years ago I had the occasion to use another dynamic embedded scripting

language: PHP. I was amazed at the power it provided, and more importantly I realized

the advantages of the embedded scripting model.

A little later I was hired to work on a vertical market, web-based application that used 4D.

I was asked to add a new module to the existing application. To my amazement, this

application generated every single character of HTML programmatically in 4D methods.

This was before 4D offered its web tag system.

Having been exposed to embedded scripting, I quickly saw that this was a

fundamentally flawed approach, and I said to myself, “There has to be a better way.” So I

set about creating one.

I never intended to create Active4D — it just sort of happened. A few months after I

began with a simple 4D-based parser that replaced variable and field names, I had a full

working 4D interpreter in a plugin.

A few features and a few months later, Active4D 1.0 was released. That was November of

2000. Since then I have had a chance to use Active4D heavily in web projects, and

decided it was time to fill in all of the holes in its feature set.

I systematically went down the list of every important feature in ASP (Microsoft’s Active

Server Pages) and PHP, and implemented each and every one. And wherever possible I

added a few features that they don’t have.

The result is what you see here: Active4D v5, the ultimate 4D web environment.
28 Chapter 1 Introduction

. .
CHAPTER 2

Installation

Installation of Active4D is a fairly simple matter and should take no more than a few

minutes.

First you must of course download the latest version from:

http://www.aparajitaworld.com/downloads/active4d/latest.zip

There are four elements to Active4D:

3 Plugin: There is a single plugin for all platforms.

3 Shell: You must choose the appropriate shell for the environment in which you are

running Active4D. The shell acts as a conduit between the network communications

layer and Active4D.

3 Documentation: Your best friend. :-)

3 Demo: This 4D v13 database and web site demonstrates many of the key techniques

you will use with Active4D.

Plugin
The Active4D plugin bundle contains code for Mac OS X (Intel) and Windows 32/64-bit.

This allows you to run on any platform. For example, you can use Windows 64-bit Server

and both Mac OS X and Windows 32-bit remote clients with a single plugin.

Resource Files

Within the Active4D plugin bundle are resource files used by Active4D. These resource

files are located in Active4D.bundle/Contents/Resources. The resource files are:

3 Active4D_54l.dat: Contains resources specific to Active4D.

3 icudt54l.dat: Contains resources used by ICU, a code library used by Active4D. This is

a very large file because it contains Unicode and internationalization data for every

country and language in the world.

The default location for these files is within the plugin bundle. They may also be placed

in the <shared 4D folder>/com.aparajita/icu folder. The shared 4D folder is the parent of

the folder which is returned by Get 4D folder(Licenses folder) within 4D. For the

location of this folder, please refer to the 4D documentation for the Get 4D folder

command.

If you decided to use the shared “icu” folder, both resource files must be placed there.
Chapter 2 Installation 29

Active4D v6.3
Active4D Shells

The archive contains two 4D database folders which contain Active4D shells — the code

to integrate Active4D with either 4D’s web server or NTK. In addition, the shells contain

the forms and methods which implement the server-side debugging features of

Active4D.

Within each database folder, in addition to the standard 4D files and folders, you will also

see:

3 An “Active4D” folder with the Active4D standard libraries and configuration files. For

more information see “Active4D Folder” on page 30.

3 A “web” folder with Active4D utility scripts. For more information see “Web Folder” on

page 31.

Active4D Folder

This folder contains the Active4D standard libraries and config files which are used by

Active4D.

3 a4d.console.a4l: A library which provides methods for dumping various debugging

information to the debug console.

3 a4d.debug.a4l: A library which provides methods for dumping various debugging

information to a web page.

3 a4d.json.a4l: A library which provides a full suite of methods for JSON (JavaScript

Object Notation) data for use with Javascript client libraries.

3 a4d.lists.a4l: A library which provides a full suite of methods for working with

delimited lists.

3 a4d.utils.a4l: A library which provides various non-web-related utilities.

3 a4d.web.a4l: A library which provides various web-related utilities, mostly for

working with forms.

3 Active4D.a4l: A special library that contains global event handlers for your

application. For more information on event handlers, see Chapter 10, “Event Handlers.”

3 Active4D.ini: A config file which sets most of the options in Active4D.

3 Batch.a4l: A library which provides methods for splitting large query results into

batches of rows and creating links to those batches.

3 Breadcrumbs.a4l: A library which provides methods for creating a “trail” of

“breadcrumbs” — links to other pages — to aid the user in navigating through your

site.

3 ExtensionMap.ini: A config file which maps filename extensions to Macintosh file

types and MIME types.

3 fusebox.a4l: A library which implements the Fusebox 3 core.

3 fusebox.conf.a4l: A library in which you can configure fusebox.

3 Realms.ini: A config file which maps portions of a URL to security realms.
30 Chapter 2 Installation

Active4D v6.3
3 RowSet.a4l: A library which provides an implementation independent

representation of rows of data.

3 VirtualHosts.ini: A config file which provides the routing table for virtual hosts. For

more information on virtual hosts, see “Virtual Hosting” on page 61.

For more information on the standard libraries, see Chapter 12, “Standard Libraries.” For

more information on config files, see Chapter 3, “Configuration.”

Web Folder

This folder contains files that you may use in your site:

3 image.a4d: This file is an all-purpose script for dynamically loading images from the

database or from disk and optionally creating thumbnails from them. For more

information, see “image.a4d (script file)” on page 261.

3 sed.a4d: This file is a reusable script for examining and editing sessions. For more

information, see “The Session Editor” on page 603.

Demo
The demo is a 4D v13 database and web site that illustrates many key Active4D

techniques. To run the demo do this:

1 Open the demo database. You can safely open and convert it in later versions of 4D.

2 Open a browser and enter “http://localhost:8080” or “http://127.0.0.1:8080”.

3 Explore the demo and look at the underlying code.

Key Files
Active4D runs in one of several modes, depending on the license currently in force. The

license is determined by a key file (or lack thereof), which contains information about you

and your license.

Key File Installation

A key file must have a name which begins with “Active4D.” and ends with “.key” (the dot

in the two parts may be the same character). Active4D will look for a key file in several

places, in the following order:

1 The <user 4D>/com.aparajita/Active4D folder. The user 4D folder is the folder which

is returned by Get 4D folder(Active 4D Folder) within 4D. For the location of this

folder, please refer to the 4D documentation for the Get 4D folder command.

2 The <4D shared licenses>/com.aparajita/Active4D folder. The 4D shared licenses

folder is the folder which is returned by Get 4D folder(Licenses Folder) within 4D.

For the location of this folder, please refer to the 4D documentation for the Get 4D

folder command.

Warning: You should always keep a backup of your key file.
Chapter 2 Installation 31

Active4D v6.3
3 The Active4D.bundle/Contents/Resources folder.

If you have a key file in more than one place the first one found will take precedence.

Key File Info
Key files contain the following information in encrypted format:

3 The name and company of the key file purchaser

3 The license type

3 The platform for which the key is licensed

3 The IP address for which the key is licensed (only used with deployment licenses)

3 The expiration date of the key’s license (keys never expire, only their licenses do)

3 An encoded serial number

You can access this information both through a 4D plugin call (A4D GET LICENSE INFO)

and through the Active4D command get license info. Even easier, you can use the

A4D_Prefs method in 4D to display a dialog with the license info, or use the

a4d.debug.dump license info method to display license info in a web page or the

a4d.console.dump license info method to display license info in the Active4D console.

Version Checking

Encoded in the serial number is the major/minor version of Active4D for which the key is

licensed. If you attempt to use an otherwise valid key file with a version of 4D newer than

the version encoded in the key file, the license will be temporarily downgraded.

Warning: If you are running 4D Server as a service, the key file must be placed in the

4D licenses/com.aparajita/Active4D folder (location #1 above).

Note: To place the key file in the Active4D.bundle/Contents/Resources folder on Mac

OS X, right-click on the Active4D.bundle plugin and select “Show Package Contents”.

Then navigate into the Resources folder.

Note: Version checking does not apply to bug fix releases; i.e. versions 6.3 and 6.3.1

are considered the same version, whereas 6.1 is considered newer.
32 Chapter 2 Installation

Active4D v6.3
License Types
Each license has certain limitations of which you should be aware. The license types

Active4D supports are:

Timeouts

The trial license has a timeout period. When 4D has run continuously for the timeout

period, Active4D becomes disabled. Thereafter any attempts to execute Active4D will

return the text “Active4D has exceeded its time limit.” At that point 4D must be restarted

to reset the timeout and enable Active4D.

Trial License

If Active4D cannot find a key file, or if the key file is incorrect in some way, Active4D

operates in trial mode.

Deployment License

If Active4D finds a key file whose license type is Deployment, Active4D checks the IP

address of the host machine against the IP address in the key file. If an exact match is

found, Active4D operates in deployment mode with no timeout, unless the version

check fails, in which case Active4D reverts to trial mode.

If the host machine has more than one IP address, Active4D will check all of the host’s IP

addresses for a match. On Mac OS X, only interfaces whose names begin with “en”

(ethernet interfaces) will be checked.

If an IP address match cannot be made, Active4D reverts to expired mode, which times

out after one week of continuous use. Until you get a new key file, you must restart 4D

once a week.

Ideally you should obtain a new key file in advance if you know your application will be

moved to a server with a different IP address. However, if you unable to secure a new key

file before switching, this scheme allows you to operate Active4D for a full week after

switching. During this time you should be able to obtain a new key file. Once you have a

new key file, you must restart 4D to have Active4D run in Deployment mode once more.

If you are running Active4D on 4D Server, checking the license status from a 4D Remote

will indicate the license is running in expired mode, since the IP address of the 4D

Remote cannot match the Server IP address.

License Limits

Trial Times out after 8 hours of continuous use

Deployment Tied to a single IP address, never times out on that address, times

out after one week on another address

OEM No time or IP address limitation, requires special 4D code which

ties it to a 4D structure
Chapter 2 Installation 33

Active4D v6.3
To check the license status of a Server-based key file, you must use the

a4d.debug.dump license info method, the a4d.console.dump license info method, or

the get license info command on a page served by Active4D running on Server.

OEM License

For information on OEM licensing, please contact sales@aparajitaworld.com.

Installation Options
There are several installation scenarios: starting a database from scratch, installing into a

non-Active4D database, and updating an existing Active4D 4.x database.

Starting a Database from Scratch

The Active4D shell databases are perfect for use when you are starting a database from

scratch, as they are ready to run. You just need to build your database on top of the shell

appropriate to network layer you plan to use (4D/NTK).

Installing into a Non-Active4D Database

The Active4D environment relies on a small set of 4D methods, lists, forms and styles, all

of which have the prefix “A4D_” to prevent name conflicts with existing code (I hope).

To install Active4D into an existing database, follow these steps:

1 Open the shell database corresponding to the network layer you will be using

(4D/NTK).

2 Open the Explorer and click “Home” on the left side of the Explorer window.

3 Open the target database in a second copy of 4D.

4 Open the Explorer in the target database and click “Home” on the left side of the

Explorer window.

5 Arrange the Explorer windows in the shell and target databases so the contents lists

are visible in both.

6 From the shell database, drag the “Active4D” folder from the Explorer window to the

contents list of the Explorer window in the target database.

7 Switch to the target database. You may see a warning dialog asking you if you want

to continue. Click OK.

8 A “Moving Dialag” dialog will appear. Click Next, then click OK.

9 Quit the copy of 4D running the shell database.

10 Copy the Active4D plugin bundle into a directory which is accessible to the target

database. Please consult the 4D documentation for information on where plugins

may be placed.

11 Open the shell database folder. On Mac OS X, you must right-click on the database

and select “Show Package Contents”.

12 Open the target database folder.
34 Chapter 2 Installation

Active4D v6.3
13 Copy the “Active4D” and “web” folders from the shell database folder to the target

database folder.

14 Open the target database in 4D.

15 In your startup sequence (On Startup, On Server Startup, or a method called by them),

add a call to the method A4D_Startup.

16 In your shutdown sequence (On Exit, On Server Shutdown, or a method called by

them), add a call to the method A4D_Shutdown.

17 If you want to access the Active4D preferences dialog, console, or session monitor,

you will need to add menu items that call A4D_Prefs, A4D_Console or

A4D_SessionMonitor respectively.

18 If you plan on using 4D Remote as a web server, follow the instructions in

“Configuring 4D Remote as a Web Server” on page 39.

19 Depending on the network layer you are using (4D/NTK), there may be additional

configuration to perform. See the relevant section below for instructions on what to

do.

20 Restart 4D to activate your changes.

Updating an Existing Active4D 4.x/v5 Database

To update an existing Active4D 4.x/v5 database to Active4D v6, follow these steps:

1 Make a backup copy of your structure.

2 If you have made any changes to the Active4D shell, you will need to make note of

the changes you made so they can be integrated into the new shell.

3 Follow the steps above for installing into a non-Active4D database.

4 If are upgrading from 4.x and you made changes in the old A4D_DebugInitHook

method, note that the second parameter, $ioDialogTable, is no longer used, and

must be removed.

5 If you are using 4D’s web server to handle network communications, follow Step 1 of

“Configuring for 4D’s Web Server” on page 37.

Installing the Predefined Session Handler

A custom session handler allows you to store sessions in the database. If you would like

to do so, you may use the predefined session handler in the “SessionHandler” folder of

the plugin distribution archive. You have a choice of using 4D methods or a library.

Before using either one, you must create two tables:

a4d_session_id

Field name Type Attributes

id Long Integer Automatic index, Autoincrement

next Long Integer
Chapter 2 Installation 35

Active4D v6.3
a4d_sessions

After creating the supporting tables, to use 4D methods as the session handler, do the

following:

1 Import the methods in the “SessionHandler/Methods” folder that begin with

“sessionHandler”. Name the methods according to the filename (without the

extension).

2 Add the declarations in “SessionHandler/Methods/Compiler_Methods.txt” to your

Compiler_Methods method (or whatever method you use for method compiler

declarations).

3 Add the following line to your Active4D.ini configuration file:

To use a library as the session handler, do the following:

1 Move “SessionHandler.a4l” to the “Active4D” folder of your database, or to one of the

directories specfied in the “lib dirs” configuration option in Active4D.ini.

2 Add the following line to your Active4D.ini configuration file:

For more information on session handlers, see “Session Handlers” on page 348.

Post-Installation Configuration
Active4D uses a special housekeeping process that takes care various internal tasks,

including running special code when a web session expires. By default this process is

given a stack size of 128K, which should be sufficient. If you need to change the stack

size, do the following:

1 Open the List Editor.

2 Click on the list “A4D_Config”.

3 Change the number in the item that says “HousekeeperStack=128” to the amount in

kilobytes that you would like to reserve for the housekeeper’s stack.

4 Close the List Editor and restart 4D.

Depending on the network layer you are using (4D/NTK), there may be some extra

configuration necessary if you are installing Active4D for the first time.

Field name Type Attributes

id Long Integer Automatic index

data BLOB

expires Real Automatic index

session handler = sessionHandler

session handler = *sessionHandler
36 Chapter 2 Installation

Active4D v6.3
Configuring for 4D’s Web Server

If you are using the 4D web server to handle network communications, there are a few

steps you must take:

1 Set the On Web Connection database method to the following code:

2 Create a directory called “web_static” in the database folder if you are web serving

with 4D Server or Standalone, or in the folder <shared 4D

folder>/com.aparajita/Active4D if you are web serving with 4D Remote. The shared

4D folder is the directory within which the 4D licenses folder is found. You can use

this directory for static content that you want to be served directly by 4D’s web

server.

3 Install the 4D Internet Commands plugin bundle in one of the plugins folders 4D

searches for plugins.

4 Open your database and then open the Database Settings dialog. Consult the tables

below and set each of the Web options according to the values in the tables.

5 Click OK to accept your changes, and then restart 4D.

C_TEXT($1;$2;$3;$4;$5;$6)
A4D_OnWebConnection($1;$2;$3;$4;$5;$6)

Table 1: Configuration Preference Pane

Option Value

Launch Web Server at Startup [unchecked]

TCP Port [as necessary]

IP Address [as necessary]

Enable SSL [as necessary]

HTTPS Port Number 443

Default HTML Root web_static

Default Home Page [empty]

Non-contextual Mode [selected]

Table 2: Advanced/Options (I) Preference Pane

Option Value

Use the 4D Web cache [checked]

Pages Cache Size [as desired]

Inactive Process Timeout [as desired]

Web Passwords No passwords
Chapter 2 Installation 37

Active4D v6.3
Configuring for NTK

If you wish to use NTK as the network communications layer for Active4D, do the

following:

1 Open your database and then open the 4D Preferences dialog.

2 Select the Web/Configuration preference pane.

3 Uncheck “Publish Database at Startup/Launch Web Server at Startup”.

4 Click OK to save the changes.

NTK’s behavior as a web server can be configured using the 4D list “A4D_NTKConfig”,

which contains the following items:

By changing the numbers in the various items, you can change how Active4D’s shell sets

up NTK.

If you are using NTK and would like to use SSL streams, you must follow these steps:

1 Open the method A4D_InitSSLHook.

2 Set $outCertPath, $outCertKeyPath, and $outCertPassword to the values for your SSL

certificate, SSL private key, and SSL password.

3 Close the method and restart 4D to have your changes take effect.

Table 3: Options/Options (II) Preference Pane

Option Value

Send Extended Characters Directly [checked]

Standard Set [as desired, but must match Active4D character

set settings]

Use Keep-Alive Connections [as desired]

Number of requests by connection [as desired]

Timeout (seconds) [as desired]

Item Description

IP= Defines the IP addresses on which NTK will listen. Leaving this

empty will listen on any IP address. Specifying an address

such as “192.168.1.13” will cause NTK to listen only on that

address.

Port=8080 Defines the default port on which NTK will listen for HTTP

requests.

SSLPort=443 Defines the default port on which NTK will listen for HTTPS

(SSL) requests.

NumThreads=13 Number of HTTP listeners to preallocate.

ThreadStack=128 Stack size for HTTP listener processes in kilobytes.
38 Chapter 2 Installation

Active4D v6.3
Configuring 4D Remote as a Web Server

Ordinarily Active4D becomes inactive on 4D Remote, since it assumes it is serving web

pages from 4D Server. If you are using 4D Remote as a web server, you must explicitly tell

Active4D that you are doing so.

To enable Active4D’s web serving on 4D Remote, do the following:

1 Install the Active4D folder (containing the standard libraries and configuration files)

onto the 4D Remote machine. The location of the Active4D folder on a 4D Remote

machine must be in the standard search path as described in “Config File Search

Path” on page 41.

2 Open the method A4D_InitHook.

3 Uncomment the line $ioClientIsWebServer->:=True. If no such line exists, add it to the

method. Depending on your setup, you may need to set the value based on some

set of conditions, as you may not want all 4D Remotes to be web servers.

4 Close the method.

5 If 4D passwords are active, open the 4D Preferences dialog. Select the

Web/Advanced preference pane. When 4D passwords are active, 4D Remote will

only give database access to the user selected in the Generic Web User drop-down

list. It is up to you to select the proper user, then click OK to save your changes. It is

also up to you to ensure that the 4D Remote acting as a web server will be logged in

as the generic web user.

6 Restart 4D.

Using the Pre- and Post-Execute Hooks
For some developers it is necessary to examine and perhaps modify a request before and

after Active4D. The Active4D shells provide hooks to allow the developer to do so

without changing the core shell methods.

Pre-Execute Hook

The pre-execute hook allows you to inspect an incoming request. Within this hook you

are given access to the raw request and are free to do whatever you want with it. If you

decide to handle the requset yourself, you can prevent Active4D from handling the

request by returning False from the hook. If you return True Active4D will handle the

request normally.

Actually, there are two pre-execute hooks. The hook you will use depends on the

network layer you are using.

If you are using 4D’s web server as the network layer, you will use the hook method

called A4D_PreOnWebConnectionHook. This method receives a copy of the requested

Note: If your aim is to inspect and possibly change the URL, a better way to do this is

through the On Request event handler. For more information, see “On Request” on

page 128.
Chapter 2 Installation 39

Active4D v6.3
URL, the request itself, and the remote address. Because the hook receives a copy of the

request, any changes you make to your copy of the request will be ignored by Active4D.

If you are using NTK as the network layer, you will use the hook method called

A4D_PreStreamExecuteHook. This method receives a stream reference which you can use

to read and modify the request. Since Active4D uses the same stream reference, any

changes you make to the request will be used by Active4D.

Post-Execute Hook

The A4D_PostExecuteHook method allows you to inspect and modify the response

headers and response body returned by Active4D after it has executed, but before the

response is sent. This method receives a pointer to the response header names and

values (two parallel text arrays) and a pointer to the response body BLOB.

Within this hook you may make any changes you wish to the response headers or the

response body, and those changes will be reflected in the response sent to the client.

If you change the response length, the Content-Length header must be changed

accordingly. There is already code in the A4D_PostExecuteHook to do this, but it must be

activated. If you do change the length of the response, do the following:

1 Locate the If (False) statement towards the bottom of the method.

2 Change False to True.

Note: By default, the call to A4D_PreOnWebConnectionHook is commented out to

prevent unnecessary copying of the request. If you plan to use this hook, you must

uncomment its call in On Web Connection.

Note: If you want Active4D to execute a request, you must be sure to put any data

you read (or a modified version thereof) back into the stream so that Active4D will

receive the entire request.
40 Chapter 2 Installation

. .
CHAPTER 3

Configuration

Active4D ships preconfigured to meet most needs, but you can configure virtually every

aspect of Active4D to fit your specific needs.

Before discussing the various configuration (or “config”) files, you must know where to

find them.

Config File Search Path
Active4D looks for each config file using the following search path:

3 <Database folder>/Active4D (Standalone/Server)

3 <User home>/Library/Application Support/4D/com.aparajita/Active4D/conf

(Mac OS X)

3 <Disk>:\Users\<user>\AppData\Roaming\4D\com.aparajita\Active4D\conf

(Windows 7 or Vista)

3 <Disk>:\Documents and Settings\<user>\Application Data\4D\com.aparajita\conf

(Windows XP)

3 /Library/Application Support/4D/com.aparajita/Active4D/conf

(Mac OS X)

3 <Disk>:\ProgramData\4D\com.aparajita\Active4D\conf

(Windows 7 or Vista)

3 <Disk>:\Documents and Settings\All Users\Application

Data\4D\com.aparajita\Active4D\conf

(Windows XP)

3 Active4D.bundle/Contents/Resources/conf

This arrangement allows you to have multiple versions of config files, with those earlier

in the search path overriding those later in the search path.

Note: Active4D will follow aliases and symbol links on Mac OS X and shortcuts on

Windows.
Chapter 3 Configuration 41

Active4D v6.3
So, for example, you could establish a baseline set of configuration options which you

keep in the shared 4D folder, then override that configuration for a particular database

by putting a separate config file in <Database folder>/Active4D.

Configuration Files
Active4D has four config files: Active4D.ini, ExtensionMap.ini, Realms.ini and

VirtualHosts.ini. These are plain text files which may be created and edited on any

platform, as Active4D will accept Mac, Windows and Unix line endings.

Default versions of these files which should suit most needs are shipped with Active4D.

Each file is heavily commented, so if this documentation is not handy you can always

read the comments. It is recommended that you keep a copy of the default config files

somewhere safe in case you need to go back to a baseline configuration.

Active4D periodically checks to see if the config files have been modified. The interval

between checks is set with the “refresh interval” option in Active4D.ini. If a config file has

been modified, it is reloaded automatically, so there is no need to quit and restart 4D to

have the changes take effect.

The Default Directory

Some of the config files rely on the concept of the default directory. The default directory

is the directory from which relative paths are resolved.

Under 4D Standalone or Server, the default directory is the current database directory

(the one with the structure file). Under 4D Remote, the default directory defaults to:

3 /Library/Application Support/4D/com.aparajita/Active4D (Mac OS X)

3 <System Disk>:\ProgramData\4D\com.aparajita\Active4D (Windows 7 or Vista)

3 <System Disk>:\Documents and Settings\All Users\Application

Data\4D\com.aparajita\Active4D (Windows XP)

If 4D does not have sufficient permissions to create the Licenses folder at the above path,

or if you are running under 4D Volume Desktop Client and there is no Licenses folder in

the merged application, the default directory is:

3 <User home>/Library/Application Support/4D/com.aparajita/Active4D (Mac OS X)

3 <System Disk>:\Users\Current user\AppData\Roaming\4D (Windows 7 or Vista)

3 <System Disk>:\Documents and Settings\Current user\Application Data\4D

Warning: If 4D Remote is being used as a web server, you must install the config files

on the 4D Remote machine.

Note: The config files are loaded on startup and their locations are cached, so you

may not move them without restarting the server.
42 Chapter 3 Configuration

Active4D v6.3
To find out which path is used for the default directory, look in the Active4D log for a line

like this:

Path Format

All paths specified in config files must be in URL format (also known as Posix format),

which has the following attributes:

3 The directory separator is ‘/’

3 A full path begins with a leading ‘/’, a relative path does not

3 A directory path may or may not be terminated with a trailing ‘/’

3 A file path must not be terminated with a trailing ‘/’

3 The path may not contain the native directory separators ‘:’ and ‘\’

3 The path may begin with a special directory token, discussed below

3 The path may contain directory movement (../)

3 Any element of a path may be an alias or symbolic link in Mac OS X, or a shortcut in

Windows

There are four tokens you may use at the beginning of a path to represent special

directories. The tokens are:

The tokens include the ‘<‘ and ‘>’, and are replaced with the directories they represent,

without a trailing ‘/’. This allows you to create paths that are portable across machines

and 4D directories.

For example, you may want to include files from a folder called “includes” outside of the

web root, perhaps at the same level as the web root folder. To do so you would specify

this path:

To help you understand how URL paths map to the Mac or Windows paths used by 4D,

here are a few samples of full paths in 4D format and URL format, where “Dev” is the

name of the boot volume on Mac OS X:

Sep 22 15:33:13 Active4D: [info] interpreter: default directory:
/Users/web/Library/Application Support/4D/com.aparajita/Active4D

Token Directory

<default> The default directory, as defined in “The Default Directory” on

page 42

<web> The web root directory

<4d volume> The name of the volume on which the 4D application resides

<boot volume> The name of the system boot volume

<web>/../includes
Chapter 3 Configuration 43

Active4D v6.3
The Standard Search Path and Path Lists

Several config options allow you to specify a semicolon-delimited list of full paths to

search in addition to the standard search path. If such a list is provided, it is searched

after <Database directory>/Active4D.

For example, to add two directories to the search path, you might use something like

this:

Active4D.ini

The config file Active4D.ini controls most of the behavior of Active4D and must be in an

Active4D folder in the standard search path. There are several dozen options you can set

in this file. Each option is in the form:

<option> = <value>

Case is not significant either for keys or values, and you can have any amount of white

space surrounding the “=”. You may also use line comments and block comments just as

you would in 4D and Active4D.

Native Full Path Platform URL Path

Dev:site:web: Mac /site/web

Dev:site:web:index.a4d Mac /site/web/index.a4d

Images:02:0213.jpg Mac /Volumes/Images/02/0213.jpg

C:\Dev\site\web\ Win /C/Dev/site/web

C:\Dev\site\web\index.a4d Win /C/Dev/site/web/index.a4d

D:\02\0213.jpg Win /D/02/0213.jpg

Native Relative Path Platform URL Path

:site:web Mac site/web

site\web\ Win site/web

Note: On Mac OS X, full paths on the boot volume may begin either with

“/Volumes/<volume name>/” or just “/”, whereas full paths on non-boot volumes

must begin with “/Volumes/<volume name>/”. The first time Active4D converts a

Posix path to a 4D path, the boot volume name is looked up and then cached. If you

wish to rename your boot volume while 4D is running, you must restart 4D to ensure

path conversions are correct.

<default>/libs;<boot>/Library/Application Support/4D/libs
44 Chapter 3 Configuration

Active4D v6.3
The options in Active4D.ini are listed below. A detailed discussion of the options can be

found in the Active4D.ini file itself.

Table 1: Error Handling Options

Option Description

error page The root-relative URL path to a file to execute when an

error occurs

http error page The root-relative URL path to a file to execute when an

HTTP error occurs

log level A sum of the bit flags defining which type of events to log

Table 2: HTTP Server Options

Option Description

allowed methods A list of allowed HTTP request methods

cache control The default cache control for executable files

default page Name of default page when directory URL is requested

doctype Indicates the doctype of the site (“html” or “xhtml”)

executable extensions File extensions which Active4D will consider executable

expires The number of minutes before a page should expire

fusebox page Page through which Fusebox requests go

max request size The maximum size in kilobytes (K) of a request, including

the headers

parameter mode Which collections to use for form variables and query string

params

parse json request Whether to automatically parse JSON requests

receive timeout Maximum wait time when receiving from a TCP stream

root Root web directory

serve nonexecutables Whether Active4D should serve non-script files

Table 3: Interpreter Options

Option Description

auto relate one Whether to load related records in auto-related one tables

auto relate many Whether to load related records in auto-related many

tables

output charset The character set to convert to when writing text to the

response buffer

output encoding The encoding to perform on text written to the response

buffer
Chapter 3 Configuration 45

Active4D v6.3
platform charset The character set from which source files are converted to

Unicode

script timeout The minimum script timeout in seconds

Table 4: Library Options

Option Description

auto refresh libs Whether to automatically refresh libraries

lib dirs Extra search paths for libraries

lib extension The extension for Active4D libraries

refresh interval How often to check libraries and config files for

modification

Table 5: Security Options

Option Description

auto create vars Whether to create local variables from form variables and

query params

safe doc dirs Directories allowed for document commands outside of

root

safe script dirs Script directories outside of root

Table 6: Session Options

Option Description

session cookie domain The domain of the session cookie

session cookie name The name of the cookie to store with the session ID

session cookie path The path of the session cookie

session cookie secure If true, the session cookie is marked secure and is only sent

in secure requests

session handler The base name of 4D methods or the name of an Active4D

library if prefixed with “*”

session purge interval The minimum interval in seconds between attempts to

purge expired sessions

session timeout The length of time in minutes that a session can live

without any user interaction

Table 3: Interpreter Options

Option Description
46 Chapter 3 Configuration

Active4D v6.3
ExtensionMap.ini

This config file maps filename extensions to MIME types. It is used primarily by

Active4D’s HTTP server. For more information on this file, see “ExtensionMap.ini” on

page 59.

Realms.ini

This config file specifies the mapping between realm names and portions of a URL that

identify those realms. It is used primarily by Active4D’s HTTP server. For more

information on this file, see “User Authentication” on page 59.

VirtualHosts.ini

This config file provides a routing table for virtual hosting, which allows you to create

multiple independent web sites on the same machine. For more information on this file,

see “VirtualHosts.ini” on page 61.

session var name The name of the local variable to automatically set to the

current session ID

use session cookies Whether Active4D should store session IDs in cookies

use sessions A global switch for session management

Table 6: Session Options

Option Description
Chapter 3 Configuration 47

Active4D v6.3
48 Chapter 3 Configuration

. .
CHAPTER 4

Security

Security is something you should worry about with any web site. When a web site has

direct access to a mission-critical database, security is a mission-critical issue. Active4D

provides several mechanisms to ensure your site is as secure as possible.

Source Code Security
When you build a web site with Active4D, all or part of your source code is on the web

server in plain text form.

This does not mean your source code is not secure.

In determining the potential security risk, you must keep in mind these two important

facts:

3 A web site is only as secure as its web server.

3 Active4D removes the source code before serving the page.

Web Server Security = Source Code Security

If an attacker compromises the security of your web server, your source code is at risk —

but then, so is everything else on the web server, including the database.

If the attacker is bent on being destructive, there are far easier and more effective ways

to wreak havoc than to change the embedded source code in a web page. And it is

highly unlikely that the hackers of the world know the 4D language.

Circumventing Active4D

Active4D always strips out source code before sending a page to the client. But what if

the page is served directly without passing through Active4D?

It is up to you to ensure that every request is passed to Active4D.

If you are using 4D’s built-in web server as the network layer, there is a potential risk.

Active4D is only invoked through the On Web Connection mechanism. On Web

Connection is only invoked when the user requests a URL that does not exist. URLs that

reference existing files are served directly by 4D without invoking On Web Connection.

Warning: If 4D’s web server has it’s default HTML root set either to nothing or to your

real web root, there is nothing to prevent a casual user from reading your source

code.
Chapter 4 Security 49

Active4D v6.3
For example, let’s suppose the user is given this URL:

www.myserver.com/4DCGI/mypages/mypage.a4d

Let us further suppose that this page exists within a directory called “web” within the

database directory, and the 4D web server’s default HTML root is set in the Database

Properties dialog to “web”. If the user then enters the same URL without “/4DCGI”, like

this:

www.myserver.com/mypages/mypage.a4d

4D will directly serve that page, complete with embedded source code, without going

through On Web Connection. On the other hand, if 4D’s default HTML root is set to

nothing, the user could still access the source with this URL:

www.myserver.com/web/mypages/mypage.a4d

It is critical that you create an empty “decoy” directory in your database directory and set

4D’s default HTML root to that folder, then set Active4D’s root directory to something

else. By doing this, you ensure that all URLs without “/4DCGI” will be to non-existent files,

thus forcing 4D to route the request through On Web Connection and ultimately to

Active4D.

Potential Attacks
Even if a miscreant does not succeed in hacking into your web server, there are still many

opportunities for mischief. For an excellent essay on the security issues arising from a

web-based scripting language, I recommend reading the following:

http://www.securereality.com.au/studyinscarlet.txt

If you do read this essay, please note that Active4D addresses almost every potential

attack outlined there.

Executing/Accessing Non-Web Files

One potential source of attack is to allow access to files outside of the web site itself.

Ordinarily, Active4D requires that any requested file be within the web root directory or a

subdirectory thereof. This includes files that are executed with the include or require

commands.

If an attempt is made to execute a file in an unauthorized directory, Active4D aborts

execution and returns the status code 403 Forbidden along with a message indicating the

error.

The “safe script dirs” Config Option

If you want to execute or include script files in a directory outside of the root directory,

you can provide a list of allowable script directories with the “safe script dirs” option in

Active4D.ini.
50 Chapter 4 Security

Active4D v6.3
If an attempt is made to execute a file outside of the root directory, this path list is

checked. If the file lies within one of the specified directories, the execution is allowed to

proceed. Otherwise the behavior is as specified above for unauthorized directories.

By default the “safe script dirs” path list is empty.

Misusing Document Commands

Let us suppose that you have a script that deletes a file, and that the path to the file is

kept in the session. An attacker could potentially force the session to contain a path to a

critical system file outside of the web root directory.

To prevent this kind of attack, the path passed to all document commands (, DELETE

DOCUMENT, etc.) is checked to ensure that the path is within the web root directory or a

subdirectory thereof.

If an attempt is made to use a document command on an unauthorized directory,

Active4D does the following:

3 Aborts execution of that command, but continues executing the script

3 Sets OK to zero

3 Sets the variable A4D_Error to -45 (File is locked)

As a result of this behavior, you should at least check the OK variable when using any

document commands.

The “safe doc dirs” Config Option

If you want to use document commands on files outside of the root directory, you must

add the directory path to the “safe doc dirs” path list in Active4D.ini. For information on

Active4D.ini, see Chapter 3, “Configuration.”

If a document command is given a path outside the root directory, this path list is

checked. If the path lies within one of the specified directories, the command is allowed

to proceed. Otherwise it behaves as specified above for unauthorized directories.

By default the “safe doc dirs” path list is empty.

Spoofing Form Variables

Suppose you have a form which posts some critical piece of information in a hidden form

variable called “f_id”. In the form processing script, if the “auto create vars” option is on,

you would access the local variable called $f_id to get the hidden value, then use this ID

to perform some critical operation.

An attacker could execute the form processing script, passing in a query string with a

parameter “f_id” and some bogus value. Because Active4D ordinarily creates local

variables from both query parameters and form variables, your script would have no way

of knowing that the local variable $f_id did not come from a hidden form variable.

Depending on what you do with $f_id, this could present a potential security breach.
Chapter 4 Security 51

Active4D v6.3
The “auto create vars” Config Option

To prevent variable spoofing attacks, by default the “auto create vars” option in

Active4D.ini is turned off. If you have specifically turned this option on, it is

recommended that you turn it off and directly access form variables through the _form

collection. For more information, see “Form Variables” on page 201.

Uploading Huge Files

If you have a web page which provides file upload, an attacker could attempt to upload a

huge file. Most web servers buffer the request, thus it is possible to compromise the

stability of the web server by forcing it to run out of memory.

Active4D provides an option called “max request size” in Active4D.ini, which limits the

total size of the request Active4D will accept. By setting this option at something

reasonable for your particular application (the default is 64KB), you can prevent the

attack outlined above.

If a request is received which is larger than <max request size> bytes, Active4D aborts

execution and returns the status code 413 Request Entity Too Large, along with an error

message indicating that fact.
52 Chapter 4 Security

. .
CHAPTER 5

HTTP Server

You may remember from the introduction the diagram of the various layers that make up

a web scripting system. That diagram is reproduced here.

Both the HTTP server layer and scripting layer are handled fully by Active4D.

What Is a Web Server?
You may be wondering how Active4D differs from 4D’s built-in web server or from

dedicated web servers like apache.

Traditionally a web server handles the following tasks:

3 Network communications between the host and the client

3 Parsing of HTTP requests and obeying the rules of the HTTP protocol based on the

contents of those requests

3 Finding the resource requested and returning it in a response with the appropriate

HTTP response headers

3 Providing a means of specifying realms of the web site that require user authentication

3 Error handling

3 Virtual host routing

Active4D + Network Layer = Web Server

Active4D relies on the host to provide network communications. Other than that,

Active4D handles all of the task listed above, right out of the box, with no programming

Network communications

HTTP Server

Scripting

DB
Chapter 5 HTTP Server 53

Active4D v6.3
required. And because Active4D is the web server, you have full access to every aspect of

both the HTTP request and the HTTP response from within Active4D.

Believe me, implementing a web server with all of those features using other tools is not

a trivial exercise!

The Active4D Shell comes preconfigured to use 4D’s web server. If you already are using

NTK and wish to use it with Active4D, it can be used as the network layer as well.

HTTP Fundamentals
To understand the functioning of a web server, it really pays to understand how HTTP

requests work. David Adams has been kind enough to allow me to include Chapter 47 of

his most excellent book, The 4D Web Companion. Before going on, I recommend taking

the time to read through this excellent introduction to HTTP, which is included in the

Active4D documentation distribution as a separate PDF document, “HTTP

Fundamentals.pdf.”

Active4D HTTP Request Handling
Now that you know a little bit about HTTP requests, we can look at how Active4D

handles an HTTP request. Before a request can be handled, a TCP/IP connection must

have established between the host and a remote client.

Note that the descriptions below will refer to collections, which are special data

structures used throughout Active4D. It is enough for now to know that a collection is an

associative array of key and values. For more information on collections, see “Collections”

on page 99.

At any step of the request handling, if Active4D detects either corrupt data or data that

does not conform to the HTTP specification, the status 400 (Bad Request) is returned

immediately.

Executable vs. Non-executable Files

When Active4D is asked to serve a file, it first checks the file’s extension against the list of

executable extensions specified in Active4D.ini.

There are several reasons for determining if a file is considered executable or not:

3 Efficiency: It is inefficient to initialize and run the Active4D interpreter for a file that

has no executable code.

3 Stability: If Active4D is asked to parse a file that is not textual, such as a GIF file, it is

possible that it could be fooled into executing nonsense, which would lead to an error

condition.

Note: You don’t need to pay attention to his coverage of 4D web commands and

tags, as you will have no need for them with Active4D.
54 Chapter 5 HTTP Server

Active4D v6.3
3 Convenience: Active4D can be configured to serve non-executable files (including

binary files) and does all the work that an HTTP server should do, such as generating

proper headers, so you don’t have to worry about it.

Request Header Parsing

The first step in handling a request is to retrieve and parse the request header.

1 The network layer invokes Active4D, passing in some basic context information like

the host and remote IP address of the current connection.

2 Two response headers are created: “X-VERSION: HTTP/1.1” and “X-STATUS: 200 OK”.

The response status is initialized to 200 (OK).

3 If Active4D has been asked to retrieve the request via a TCP/IP stream, it retrieves the

request headers using a receive callback method. Otherwise it is given the entire

request. If the request size is greater than the size set in the “max request size”

option in Active4D.ini, a status of 413 (Request Entity Too Large) is returned

immediately.

4 The request method is parsed. If the method is missing or malformed, a status of 400

(Bad Request) is returned. Otherwise the request method is saved in the request

info collection.

5 If the request method is not supported by Active4D at all, a status of 501 (Not

Implemented) is returned. Otherwise it is checked against the list of allowed

methods as specified by the “allowed methods” option in Active4D.ini. If the request

method is not in the allowed methods list, a status of 405 (Method Not Allowed) is

returned.

6 The requested URL and HTTP version are parsed and saved.

7 The request headers are parsed. Each header and its associated value is put into the

“request info” collection.

8 If a “Cookie” header is present, the cookies are parsed out and their names and

values are put into the “request cookies” collection.

9 If an “Authentication” header is present and the authentication type is “Basic”, the

authentication username and password are decoded and saved.

10 If an “X-Requested-With” header is present with the value “XMLHttpRequest”, the

“*ajax” item in the request info collection is set to true, the content charset is set to

“UTF-8”, and the output charset is set to A4D Charset UTF8.

11 If the request method is “POST” or “PUT” and the “Content-Length” header indicates

a request size larger than the “max request size” option in Active4D.ini, a status of

413 (Request Entity Too Large) is returned immediately. If you are using A4D

Note: If you are using 4D’s web server with Active4D, it is more efficient to put non-

executable files in the web_static directory so that 4D can serve them directly.

Note: Every major browser and Javascript toolkit tested automatically sets this

header, you should never have to worry about setting it yourself.
Chapter 5 HTTP Server 55

Active4D v6.3
Execute Stream Request, the receive callback is called to read the rest of the

response before returning the 413 response.

12 If the request is a CORS request (it has an “Origin” header), the full URL including

protocol and host is assembled and matched against the entries in Cors.ini. If any

entries match, the appropriate CORS response headers are set.

13 If the URL contains a query string, the query string parameters are parsed and put

either into the query params or form variables collection, depending on the

“parameter mode” option in Active4D.ini.

14 If an On Request event handler is defined it is called, and if a status < 200 or > 206 is

returned, that status is returned immediately. For more information on the On

Request event handler, see “On Request” on page 128.

15 If the filename of the requested URL has an extension and the request method is not

“OPTIONS”, the extension is checked against the “executable extensions” option in

Active4D.ini. If it matches an extension there, it is considered executable. Otherwise

it is considered non-executable.

If the file is considered executable, what occurs next depends on the network layer used

in conjunction with Active4D.

POST/PUT and File Upload Handling

When Active4D is used in conjunction with 4D’s web server, a callback method is used to

call GET HTTP BODY, which retrieves the request body. When using NTK, the shell passes

the NTK stream reference to Active4D, which it then uses to retrieve the request data as

needed via a callback method.

1 Active4D uses a receive callback method to receive the entire request body.

2 Active4D determines what type of post was made, based on the Content-Type

header: regular form (www-form-urlencoded), multipart form (multipart/form-data),

JSON (application/json), or raw upload (all other content types).

3 If the post is a regular or multipart form, the form variable data in the request body is

parsed, and the names and values are put either into the form variables or query

params collection, depending on the “parameter mode” option in Active4D.ini. If the

request is an Ajax request, the form variables are automatically converted from UTF-

8.

4 If a multipart form contains uploaded files, they are saved temporarily to disk.

5 If the post is JSON and the “parse json request” option is true, the posted data is

parsed (in the same way as the parse json command) and the result is placed into

into the form variables or query params collection (depending on the “parameter

mode” option in Active4D.ini) under the name “_json_”. If the “parse json request”

configuration option is false, the post is treated as raw data.

6 If any other type of post was made, the raw data in the post is placed into the form

variables or query params collection (depending on the “parameter mode” option in

Active4D.ini) as a BLOB under the name “_data_”.
56 Chapter 5 HTTP Server

Active4D v6.3
Executable Request Handling

If an executable request has been received and the header and body successfully parsed,

Active4D proceeds to the next step.

1 Context information such as host and remote IP address is put into the “request info”

collection.

2 The cache-control, expires, and content charset settings are initialized from the

configured values in Active4D.ini. The content type is set to “text/html”.

3 If virtual hosts have been defined, Active4D sets the root directory, virtual host name

and default page from the virtual host routing table specified in VirtualHosts.ini. For

more information on virtual hosts, see “Virtual Hosting” on page 61.

4 If the URL is prefixed with “/4DCGI”, the prefix is removed from the URL.

5 If the remaining URL is absolute (begins with ‘/’), the current root directory path is

inserted at the beginning of the URL. This forms a full path to the requested

resource.

6 If the URL ends with ‘/’, it is assumed to be a directory. If the URL was mapped by

VirtualHost.ini, the default page specified there is appended to the directory. If the

URL was not mapped, the next default page in the list of default pages is appended.

7 The full path is converted from URL to native format and any aliases in the path are

resolved to their targets. The resolved target path replaces the unresolved path.

8 The full path is checked to make sure it is either in the root directory or in one of the

directories specified in the “safe script dirs” option in Active4D.ini. If it is not, a status

of 403 (Forbidden) is returned immediately.

9 The full path is checked to see if it is a valid directory path. If so, a trailing ‘/’ is added

and a redirect is issued to that URL.

10 If the full path is invalid and the request was not mapped by VirtualHosts.ini and

there are more default page names to try, the server goes back to step 6. Otherwise

404 (Not Found) is returned immediately.

11 The current realm (if any) is set from the realm map in Realms.ini. For more

information on realms, see “User Authentication” on page 59.

12 If the full path is valid, the file is opened and the interpreter is invoked to execute the

file. For information on what happens during execution, see Chapter 7, “Interpreter.”

13 If a graphic has been written to the response buffer and the response buffer is

empty, something went wrong during the graphic conversion process and the

response status is set to 404 (Not Found).

14 If the status is >=400 (an error), skip to Step 21.

15 If cache-control has been set, a “Cache-Control” header is added to the response

headers. Since older browsers do not obey the “Cache-Control” header, if the cache-

control setting is “no-cache”, a “Pragma” response header with the value “no-cache”

is added, and the expires time is set to now.

16 If a content type has been set, a “Content-Type” response header is added.

17 If a charset has been set, it is appended to the “Content-Type” response header.

18 If an expires date has been set, an “Expires” response header is added.

19 The headers in the “response header” collection are added.
Chapter 5 HTTP Server 57

Active4D v6.3
20 The cookies in the “response cookies” collection are added as “Set-Cookie” response

headers.

21 The “X-STATUS” response header is set to the response status.

22 If the request method is “HEAD”, the response buffer is cleared. In this case, or if the

response status is less than 400 (no error), skip to Step 25.

23 If the status is >=400 (an error), Active4D attempts to find a file in the root directory

with the name <status>.html, where <status> is the numeric status. Thus with a 404

(Not Found) status, Active4D would look for a file called “404.html”.

24 If such a file is found, it is placed in the response buffer, and a “Last-Modified”

response header is added. If such a file is not found and the HTTP spec says that an

error message should be returned for the current status, an appropriate error

message is placed in the response buffer.

25 A “Content-Length” response header is added which contains the size of the

response buffer.

26 A “Content-Type” response header is added with the MIME type of the response.

27 Control is returned to 4D. The shell code sends the response headers and then the

contents of the response buffer. If 4D 2003 is the network layer and the “Content-

Type” response header is “text/html”, 4D tags are stripped from the response.

Non-Executable Request Handling

By default, Active4D will serve static content if given a path to a non-executable file. If

you would like to serve static content yourself, you can do so by changing the “serve

nonexecutables” option to “false” or “no” in Active4D.ini, in which case Active4D does

not serve the file, but provides you with the full native path and modification date/time

of the requested file.

When it is determined that a request for a non-executable (static) file has been made,

Active4D does the following.

1 If the requested file is not found, a status of 404 (Not Found) is returned immediately.

2 If the requested file is found and the “serve nonexecutables” option is “false” or “no”,

Active4D returns the full native path of the file, the file’s modification date and the

modification time. For more information, see “outHeaderNames/outHeaderValues”

on page 66.

3 If the requested file is found and the “serve nonexecutables” option is “true” or “yes”,

the file’s extension is checked. If it has an extension and the extension was specified

in ExtensionMap.ini, the content type of the file is set accordingly.

4 If no content type could be determined, the status is set to 404 (Not Found) and the

file will not be served for security reasons.

5 A “Content-Length” response header is added which contains the size of the

response buffer.

6 A “Content-Type” response header is added with the MIME type of the response, as

specified in ExtensionMap.ini.

7 If the “nonexecutable expires” option is empty or is greater than zero, a “Cache-

Control” header is added with “max-age” set to the value of the “nonexecutable

expires” option.
58 Chapter 5 HTTP Server

Active4D v6.3
8 Control is returned to 4D. The shell code sends the response headers and then the

contents of the response buffer.

Configuration
The Active4D web server is configured through the several config files: Active4D.ini,

Cors.ini, ExtensionMap.ini, Realms.ini and VirtualHosts.ini.

Active4D.ini

There are several config options in Active4D.ini that determine the basic behavior of the

web server. For information on the format of config options, see Chapter 3,

“Configuration.” For a detailed description of each option, see the comments in the

Active4D.ini file itself.

Cors.ini

Cross-Origin Resource Sharing (CORS) is a standard developed to allow servers to allow

cross-domain requests via XMLHttpRequests (Ajax). Ordinarily XMLHttpRequest will not

allow a request to another domain. CORS allows this if the server allows it.

A good introduction for CORS can be found here:

https://developer.mozilla.org/En/HTTP_access_control

Active4D implements full CORS support in its HTTP server. Details on how to configure

CORS support can be found in the Cors.ini file.

ExtensionMap.ini

When a web server sends a file to the client browser, it must inform the browser of the

file’s type. Similarly, when a client uploads a file to the web server, the web server

receives the file’s type. This type is sent and received as a MIME type. MIME types are

standardized and can identify a file’s type independently of its filename extension.

ExtensionMap.ini is a config file that allows Active4D’s web server to map filename

extensions to MIME types. For example, let us say that Active4D receives a request for the

file “logo.png”. It looks into its extension map and finds an entry which says that the

corresponding MIME type is “image/png”.

Details on the format of the extension map entries can be found in the ExtensionMap.ini

file.

User Authentication
Active4D provides full support for protecting portions of your web site against intruders

by using the basic HTTP authentication protocol. Currently authentication only works

with executable files.

For example, you may have an admin section of your web site that only administrators

should have access to. Another section of your web site is only for accounting users. By
Chapter 5 HTTP Server 59

Active4D v6.3
defining realms — sections of the web site defined by a hostname or substring of a

requested file’s path — you can automatically be notified when a user’s credentials need

to be authenticated.

The user authentication mechanism requires three elements that work together:

3 Entries in Realms.ini

3 On Authenticate event handler

3 Use of the authenticate command

For information on the On Authenticate event handler, see “On Authenticate” on

page 129. For information on the authenticate command, see “User Authentication” on

page 410.

Realms.ini

This config file specifies the mapping between realm names and substrings of a path

that identify those realms.

Each entry in Realms.ini has two fields in this format:

Realm<tab>Match string

The realm is a logical name for the section of the web site you wish to protect. It need not

have any relation to an actual directory name. Realm names should not have any

extended characters or spaces. If there are extended characters they are ignored. Spaces

are converted to underscores.

You use the realm name internally to determine what section of the web site is being

accessed. The browser caches user credentials for each realm, so subsequent authorized

accesses in the same realm do not result in repeated requests for credentials.

If the match string begins with “?”, it is matched against the query string portion of the

requested URL. If any portion of the query string matches, the corresponding realm is

set.

If the match string does not begin with “?”, it is matched against the host name and the

fully resolved path of the requested URL. If any portion of the host name or path matches

the match string, the corresponding realm is made the current realm.

Matching is case-insensitive, but the entire match string must be found within the query

string, host name or path.

Note: The basic HTTP authentication protocol has a number of security problems if it

is not used over a secure SSL connection. In addition, each browser handles user

authentication differently. Therefore it is recommended that you use your own form-

based authentication if you need maximum control over the process.

Note: The realm is matched to the path which results after virtual host mapping,

after the default page is added to a directory request and after any aliases have been

resolved.
60 Chapter 5 HTTP Server

Active4D v6.3
Because the match string could be anywhere in the path, you must ensure that your web

directory names and match strings are selected such that the match strings do not

inadvertently match the wrong directory.

In addition, because the realm entries are scanned in order, realms cannot be nested. For

example, you may not put the directory admin in the “admin” realm and the subdirectory

admin/accounting in the “accounting” realm. Only one of them will ever be selected.

If a realm is matched and the On Authenticate event handler has been defined, it is called

before execution begins to allow you to authenticate the user.

If the match string is not found, there is no current realm and the authentication

mechanism is not invoked.

Let’s look at some example Realm.ini entries.

The first entry would place the entire host www.myserver.com in the realm

“www.myserver.com”. That means any request made on that server would have to be

authenticated for that realm.

The second entry places the directory admin in the “admin” realm. Note the use of the

leading and trailing slashes to ensure only a directory is matched in the path. Don’t worry

if the user enters www.myserver.com/admin, because Active4D redirects that to

www.myserver.com/admin/ which will match correctly.

Virtual Hosting
If you create a large database in 4D, most likely it has more than one module. Often these

modules are restricted to a certain set of users.

When bringing a database to the web, you will want to carry the same structure to your

web site. You could accomplish this by directing the different classes of users to separate

subdirectories within the root directory. But wouldn’t it be nice to have completely

separate web sites for each one?

Virtual hosts allow you to host more than one web site on a single machine and a single

instance of 4D. Each virtual host can be mapped to a different web root and/or different

default page.

VirtualHosts.ini

This config file specifies a routing table which determines where Active4D should route

HTTP requests. The criteria is uses to determine the routing are:

3 hostname: This would be used if the client enters a domain name in the URL, such as

www.active4d.net.

3 IP address: This would be used if the client enters a direct IP address in the URL, such

as 192.168.1.7.

`Realm Match string
secure-server www.myserver.com
admin /admin/
Chapter 5 HTTP Server 61

Active4D v6.3
3 language: This would be used if you have partitioned a single domain/IP address into

separate sites based on the preferred language the client has specified in the browser.

The language is specified as an ISO language code. A complete list of codes can be

found in “ISO Language Codes” on page 629.

Since this is a routing table, you must specify the target of the routing. The complete

format for a virtual host entry consists of a line with five tab-delimited fields:

IP Address[:port]<tab>Hostname[:port]<tab>Language<tab>Root|Host<tab>Default

There may be any number of tabs between fields. Line and block comments may be used

between entries as well.

The target of a given routing is specified by two fields:

3 Root|Host: The Root|Host field may contain two values separated by “|” (vertical bar).

If this field does not contain “|”, the entire contents of the field is used to specify the

web root. If the field contains “|”, the portion to the left of the “|” specifies the web root,

and the portion to the right of the “|” specifies the virtual host name.

The web root portion should be a URL-style (Unix) path. If it is relative (not beginning

with “/”) it is relative to the default directory (see “The Default Directory” on page 42).

You may use any of the path tokens (such as <4d volume>) that are valid for the root

option in Active4D.ini, or you may use “*” (without quotes) to use the value of the

“root” option in Active4D.ini.

The virtual host name portion can be any text (including spaces). The specified name is

available through the “*virtual host” item in the request info collection. This is useful,

for example, if you are using common templates for each virtual host but skinning

them individually. You can use the virtual host name as a means of building a path to

images and stylesheets for each virtual host.

3 Default: This field specifies the filename of the page that should be used as the

default page (when a directory is requested) for the given virtual host. Using “*”

(without quotes) will use the value of the “default page” option in Active4D.ini.

You may use a value of * in the IP Address, Hostname and Language fields to ignore that

field when matching.

The entries are searched in order, so they should progress from most specific to the least

specific. Hostname matching is case-insensitive and Language matching is case-

sensitive. Both the IP Address and Hostname fields accept standard 4D wildcard

characters to allow partial matches. Otherwise the entire field must match. An invalid or

missing value will result in that entry being ignored.

The Hostname field must include the port if the host is on a port other than 80.

The final entry in the table should be terminated with a line ending.

If a match is made with the IP Address, Hostname, and Language fields, the Root|Host and

Default fields are used to set the web root, virtual host, and default page.
62 Chapter 5 HTTP Server

Active4D v6.3
A Virtual Host Example

To understand how virtual host routing works, let’s look at some examples for a site that

has an English and French version. We are using multihoming to have multiple IP

addresses on the same machine. In addition, we will define three hosts, mac.home.com,

mac.admin.com and mac.home.fr. The first two are on IP address 192.168.1.7, and the

third is on 192.168.1.27.

The first entry routes all requests where the user’s browser is configured with French as

the preferred language. The directory “web_fr” is made the root directory for those

requests, the virtual host name is set to “fr”, and a URL to a directory will redirect to the

default file “defaut.a4d” in that directory.

The second entry will route all requests to mac.home.com. The root directory and default

file will be set to whatever they are configured to be in Active4D.ini. The virtual host

name will be “main”.

The third entry will route all requests to the virtual host mac.admin.com. The root

directory will be set to “admin”, the virtual host name will be “admin”, and the default file

will be set to whatever it is configured to be in Active4D.ini.

The fourth entry will route all other requests to the IP address 192.168.1.7 in the same

way the second entry does. For completeness, you should always have an entry for both

the hostname and IP address to catch all possible requests.

The fifth and sixth entries route all requests to the host mac.home.fr or the IP address

192.168.1.27. The directory “web_fr” is made the root directory for those requests, the

virtual host name will be “fr”, and a URL to a directory will redirect to the default file

“defaut.a4d” in that directory.

The final entries route requests to the domain “foo.com” or to the subnet 192.168.2 to

the web root “web_foo”. The virtual host name will be empty.

HTTP Error Handling
If an http error occurs during the processing of a request, before any scripts are executed,

Active4D returns the status code indicating the error that occurred and a default error

message where indicated by the HTTP specification. In addition, Active4D adds two

response headers:

3 X-Error-Status: This header contains the HTTP error status code.

3 X-Error-URL: This header contains the full requested URL that caused the error.

//IP address Hostname Lang. Root Default
* * fr web_fr|fr defaut.a4d
* mac.home.com * *|main *
* mac.admin.com * admin|admin *
192.168.1.7 * * *|main *
* mac.home.fr * web_fr|fr defaut.a4d
192.168.1.27 * * web_fr|fr defaut.a4d
* @.foo.com * web_foo *
192.168.2.@ * * web_foo *
Chapter 5 HTTP Server 63

Active4D v6.3
Customizing the Error Handling

You can override the default HTTP error message in several ways:

3 http error page: If you set the “http error page” option in Active4D.ini, Active4D will

attempt to execute that page if it is executable or load it statically if not. If you have not

specified anything in the “http error page” option, or you have and the page cannot be

found or an error occurs during its execution, Active4D moves on to the next option.

3 <status>.<ext>: The next option is to attempt to find a file called <status>.<ext> in

the current web root directory, where <status> is the HTTP status code (such as 404)

and <ext> is the first executable extension configured with the “executable

extensions” option in Active4D.ini, or “.a4d” if none have been configured. If no such

file exists, or if it exists and an error occurs during its execution, Active4D moves on to

the next option.

3 <status>.html: The next option is to attempt to find a static HTML file called

<status>.html in the current web root directory, where <status> is the HTTP status

code. If found, it is served statically. If it is not found, Active4D returns the default (but

very friendly) error message.

For example, to show a custom error page for a 404 (Not Found) error, simply create an

Active4D page and name it “404.a4d”, then place it in the root directory. When a 404

error occurs, Active4D will execute your custom page.

Within the context of an http error handler, the response status is 200 (OK). If your error

handler does not change the response status, the original HTTP error status that

triggered the error handler will be returned to the browser along with any output you

generate.

Note: If you use an executable HTTP error page to handle 401 Unauthorized, which is

the error status returned by the authenticate command, make sure the execution of

the error page does not trigger another call of authenticate.
64 Chapter 5 HTTP Server

. .
CHAPTER 6

Invoking Active4D

If you are just starting to use Active4D, the Active4D shell provides everything you need

to get up and running without the need to understand the details of the plugin API. If

you are using the shell as is, you may safely skip this chapter.

If on the other hand you are integrating Active4D with your existing web server code,

you will need to understand the plugin API.

Types of Execution
There are two different ways of executing scripts in Active4D: request execution and direct

execution.

Request execution requires that you pass a valid HTTP request to Active4D. The request

body contains the embedded script.

Direct execution requires only that you pass the embedded script to Active4D, although

you may optionally pass a query string as well.

Request Execution
Once the host web server receives HTTP request, you pass the request to Active4D

through one of the A4D Execute <type> request commands. They are:

A4D Execute BLOB request

A4D Execute 4D request

A4D Execute stream request

A4D Execute <type> request Parameters

The request execution commands all take similar parameters.
Chapter 6 Invoking Active4D 65

Active4D v6.3
Discussion

The array parameters must be text arrays, otherwise an error is generated.

The inRequestInfo array provides Active4D with context information not available in the

HTTP request itself. It has a very specific format as follows:

Examples of how to initialize this array are contained in the shell database methods On

Web Connection and A4D_HTTPD_RequestHandler (NTK shell).

The <inRequest> portion of the parameter list changes depending on the command

used. The parameters before the common parameters listed above are summarized in

the following pages.

After handling a request, Active4D returns everything necessary to create a proper HTTP

response in the last four parameters. The actual contents of those parameters depends

on whether or not the request executed successfully and what happened during

execution.

outHeaderNames/outHeaderValues

If Active4D is given a request to an executable file, these parallel arrays receive the HTTP

response headers. The headers returned for an executable file are as follows:

In addition to these headers, you can set response headers within Active4D with the set

response header command.

If Active4D is given a request to an non-executable file and is configured to serve non-

executables, the following headers are returned:

A4D Execute <type> request
version 2

modified version 3.0

A4D Execute <type> request(<inRequest>; inRequestInfo; outHeaderNames;
outHeaderValues; outResponse) Longint

Parameter Type Description

<inRequest> Varies  Request or means to retrieve it

inRequestInfo Array Text  See below

outHeaderNames Array Text  Response header field names

outHeaderValues Array Text  Response header field values

outResponse BLOB  Response body

Result Longint  HTTP status code

Element 4DK# Name Description

1 A4D Request Remote Addr IP address of client (browser)

2 A4D Request Host Addr IP address of server on which request was

made

3 A4D Request Host Port Port on which request was made

4 A4D Request Secure “1” if SSL request, “0” if not
66 Chapter 6 Invoking Active4D

Active4D v6.3
If Active4D is given a request to an non-executable file and is not configured to serve

non-executables, outResponse is empty and the following headers are returned:

Given this information, the host web server can easily serve the file. For example, using

4D’s web server you could call DOCUMENT TO BLOB followed by SEND HTML BLOB.

Using NTK you could call TCP Send File.

Name Notes

X-VERSION Always “HTTP/1.1”, always first element

X-STATUS Always second element. See “Result” on page 68 for possible

values.

Content-Type The MIME type of the file

Content-Length The size of the response body (outResponse)

Cache-Control See RFC 2616 section 14.9

Pragma Automatically added with the value “no-cache” if Cache-Control

is “no-cache”.

Expires Unless explicitly set within Active4D, is set to the current time to

prevent response caching

Location If a redirect is performed

Set-Cookie If a session is created and session cookies are enabled, or if a

cookie is set within Active4D

WWW-Authenticate If the authenticate command is used

Name Notes

X-VERSION Same as above

X-STATUS Same as above

Content-Type Same as above

Content-Length The size of the file, which is in outResponse

Last-Modified The file’s last modified datetime in HTTP format

Name Notes

Path Full native path to the file

ModDate Modification date of file in MM DD YYYY Forced format

ModTime Modification time of file in HH MM SS format
Chapter 6 Invoking Active4D 67

Active4D v6.3
The modification date/time are returned to allow the host web server to implement a

caching mechanism.

outResponse

This parameter will always contain the response body. The actual contents depends on

the context:

Result

The status code returned by Active4D will be one of the following:

Context Contents

Executable file, successful

execution

The result of the execution

Executable file, error occurred Variable, see Chapter 7, “Interpreter,” for more info

Non-executable file, no

If-Modified-Since header

passed in

The requested file (if it can be found)

Non-executable file,

If-Modified-Since header

passed in

If the file can be found and it has not been modified

since the time passed in, the response body will be

empty. Otherwise the response body will contain the

requested file.

Code Name Description

200 OK All is well

301 Moved Permanently A permanent redirect has been performed in

response to a request from an HTTP 1.1 client

302 Found A redirect has been performed in response to a

request from an HTTP 1.0 client

303 See Other A redirect has been performed in response to a

request from an HTTP 1.1 client

304 Not Modified A non-executable file is being served and the

client passed an If-Modified-Since header and

the file has not been modified since that time

400 Bad Request The request is malformed in some way

401 Unauthorized You used the authenticate command

403 Forbidden Either Active4D has timed out or an attempt was

made to execute a script outside of the safe

script directories

404 Not Found The requested resource could not be found

408 Request Timeout One of the callbacks returned an error during

execution of A4D Execute stream request

413 Request Entity Too Large The request size limit has been exceeded

500 Internal Server Error An unrecoverable error has occurred during

execution
68 Chapter 6 Invoking Active4D

Active4D v6.3
Active4D takes care of creating the proper response headers and response body for each

status code.

Discussion

This command expects the entire request (including uploaded files) to be in the

inRequest parameter. It could be used with NTK if you retrieve the entire request into a

BLOB first.

If 4D is running in Unicode mode, the contents of inRequest are assumed to be stored in

the format UTF8 Text without length.

-1 A4D Not Executable A non-executable file was requested and the

“server non-executables” option is off

-2 A4D License Timed Out The continuous execution time period for the

current license has expired

A4D Execute BLOB request version 2

A4D Execute BLOB request(inRequest; inRequestInfo; outHeaderNames;
outHeaderValues; outResponse) Longint

Parameter Type Description

inRequest Text  Complete (usually) HTTP request

<standard params>

Result Longint  HTTP status code

Note: If you are using NTK, I recommend using A4D Execute stream request instead of

this command, as it performs a two-stage retrieval and relieves you of having to

retrieve the request.

Code Name Description
Chapter 6 Invoking Active4D 69

Active4D v6.3
Discussion

This command is designed for use with 4D built-in web server. It expects the header of

the request to be in the inRequest parameter. For posted forms, the body of the request is

retrieved through the A4D_GetHttpBodyCallback method.

If you want to change the callback method, call A4D Set HTTP body callback.

Discussion

This command is designed for use with an NTK-based web server. It does all the work of

receiving the request from the TCIP/IP stream referenced by inStreamRef. It does so in

two stages, first retrieving and parsing the request header, then retrieving the body if

necessary.

A4D Execute stream request returns request info in the two parallel arrays

outReqInfoNames and outReqInfoValues. The content of those arrays is as follows:

A4D Execute 4D request
version 2

modified v4.5

A4D Execute 4D request(inRequest; inRequestInfo; outHeaderNames; outHeaderValues;
outResponse) Longint

Parameter Type Description

inRequest Text  HTTP request

<standard params>

Result Longint  HTTP status code

A4D Execute stream request version 2

A4D Execute stream request(inStreamRef; inRequestInfo; outHeaderNames;
outHeaderValues; outResponse, outReqInfoNames; outReqInfoValues) Longint

Parameter Type Description

inStreamRef Longint  TCP/IP stream reference

<standard params>

outReqInfoNames Array Text  Receives request header names

outReqInfoValues Array Text  Receives request header values

Result Longint  HTTP status code

Name Value

*request method The method used in the request (“GET”, “POST”, etc.)

*http version “1.0” or “1.1”
70 Chapter 6 Invoking Active4D

Active4D v6.3
The first three elements are a parsed version of the first line of the HTTP request. From

the fourth element on are the HTTP headers of the request, URL-decoded and converted

to Unicode.

These arrays are provided to allow you to do custom post-processing of a request

without having to parse it yourself.

If you have no need for this information, you can simply not pass outReqInfoNames and

outReqInfoValues.

Setting the Stream Callbacks

Before using this command you must call:

A4D Set stream callbacks(inReceiveMethod)

The parameter is a string which contains the name of the callback method used by

Active4D to retrieve the request from the TCP/IP stream.

The signatures of the callbacks are as follows:

Discussion

All of the parameters are passed in according to the rules of the NTK command TCP

Receive Blob. Basically, you shouldn’t have to worry about how this method works, since

a receive callback method is provided for you in the shell.

If the receive fails for some reason, the callback must place a single longint with the value

zero in the result BLOB.

*url The requested URL without query string

<HTTP header> <HTTP header value>

Note: If Active4D is unable to read the request header, outReqInfoNames and

outReqInfoValues will be empty.

Note: The callback method must be in the host database, not in a component.

ReceiveCallback version 2

ReceiveCallback(inStreamRef; inStopString; inMaxLen; inTimeout) BLOB

inStreamRef Longint  TCP/IP stream reference

inStopString String  Receiving stops at this

inMaxLen Longint  Maximum bytes to receive

inTimeout Longint  Maximum ticks to wait

Result BLOB  Received data

Name Value
Chapter 6 Invoking Active4D 71

Active4D v6.3
Direct Execution
In addition to executing HTTP requests, there are also a set of commands that allow you

to directly execute a file or to execute a block of text:

A4D Execute file

A4D Execute text

A4D Execute BLOB

With these commands you do not have access to most of the HTTP context information

like cookies, form variables, etc., since there is no HTTP request to parse.You can,

however, pass in a query string.

Uses for Direct Execution

Direct execution is useful in cases where you are not responding to an HTTP request. In

fact, you could easily use Active4D as a general-purpose scripting engine by executing

files or blocks of text that are nothing but Active4D code. You need only enclose the

scripts in the <% %> tags.

Discussion

This command executes the file given by inPath as embedded Active4D code, just as if

the file were being served as a web page.

If inPath begins with ‘/’, it is considered an absolute path. If inPath does not begin with ‘/’,

it is considered relative to the default directory. For information on the default directory,

see “The Default Directory” on page 42.

For more information on the format of inRequestInfo, see the discussion of inRequestInfo

in “A4D Execute <type> request” on page 66.

A4D Execute file
version 2

modified version 3.0

A4D Execute file(inPath; inQuery; inRequestInfo; outHeaderNames; outHeaderValues;
outResponse) Longint

Parameter Type Description

inPath Text  URL-style path to file

inQuery Text  Query string

inRequestInfo Array Text  Execution context

outHeaderNames Array Text  Response header field names

outHeaderValues Array Text  Response header field values

outResponse BLOB  Response body

Result Longint  HTTP status code
72 Chapter 6 Invoking Active4D

Active4D v6.3
Discussion

This command executes the text given by inText as embedded Active4D code, just as if

the text were being served from a web page.

For more information on the format of inRequestInfo, see the discussion of inRequestInfo

in “A4D Execute <type> request” on page 66.

Discussion

This command executes the text given by inText as embedded Active4D code, just as if

the text were being served from a web page. It as assumed that the text is stored in the

BLOB with the format UTF8 Text without length.

For more information on the format of inRequestInfo, see the discussion of inRequestInfo

in “A4D Execute <type> request” on page 66.

A4D Execute text
version 2

modified version 3.0

A4D Execute text(inText; inQuery; inRequestInfo; outHeaderNames; outHeaderValues;
outResponse) Longint

Parameter Type Description

inText Text  Text to execute

inQuery Text  Query string

inRequestInfo Array Text  Execution context

outHeaderNames Array Text  Response header field names

outHeaderValues Array Text  Response header field values

outResponse BLOB  Response body

Result Longint  HTTP status code

A4D Execute BLOB version 3.0

A4D Execute BLOB(inText; inQuery; inRequestInfo; outHeaderNames; outHeaderValues;
outResponse) Longint

Parameter Type Description

inText BLOB  Text to execute

inQuery Text  Query string

inRequestInfo Array Text  Execution context

outHeaderNames Array Text  Response header field names

outHeaderValues Array Text  Response header field values

outResponse BLOB  Response body

Result Longint  HTTP status code
Chapter 6 Invoking Active4D 73

Active4D v6.3
74 Chapter 6 Invoking Active4D

. .
CHAPTER 7

Interpreter

Much of the power of Active4D lies in its language. Unlike 4D’s semi-dynamic HTML tags,

which are a transmogrified subset of the 4D language, Active4D’s language is a superset

of 4D’s language. In other words, with Active4D you just write 4D code. In fact, in some

cases you can write and test code in 4D and then paste it into a text editor to use with

Active4D.

Active4D’s interpreter is actually quite a bit stricter than 4D’s, in that syntax errors and

nonsensical constructions that 4D blithely ignores (but the compiler catches, of course)

are considered errors and abort execution.

Active4D extends 4D’s language in some important ways. In addition to defining new

operators, you can also define methods and libraries of methods. These are covered in

Chapter 8, “Methods.”

Flow of Execution
The Active4D interpreter is essentially a text processor. It parses text input (which might

be a file or a block of text) and writes to a response buffer. The text input may have any

mixture of HTML and embedded Active4D source code. When execution begins, the

response buffer is empty.

Embedding Source Code

Active4D source is separated from HTML by one the processing tag pair <% %>.

Like 4D, Active4D is line-based; the end of a line or the end of a code block marks the end

of a statement. However, you may have as much whitespace as you like between the

Active4D tags and the actual source.

Input Parsing

Let’s look at an extremely simple example which will illustrate how Active4D parses and

executes a script. Suppose we execute a file which has the following contents:

<html>
I was here at <% write(current time) %>
on <% write(current date) %>
</html>
Chapter 7 Interpreter 75

Active4D v6.3
Active4D begins execution by scanning for a source code begin tag. As it scans, the text

is appended to the response buffer. When the first “<%” in the above example is reached,

the response buffer contains:

Once a source code tag is found, Active4D skips past the tag and goes into execution

mode. In execution mode, Active4D continues to parses the text, but instead of passing

the text through to the response buffer, it resolves the text into executable tokens and

then executes the tokens.

It would be pretty useless if you could not write dynamically generated text to the

response buffer within your source code, so Active4D provides a write command to do

just that. The write command takes a value of any type, converts it to text, and appends

the result to the response buffer.

In the example above, the write command is the first token. The write command

handler is given control, which proceeds to evaluate the parenthesized expression

following the command. In this case the expression is the 4D command Current time,

which is converted to text as if passed to the String command. The text is appended to

the response buffer, and the interpreter then continues parsing.

The next token is “%>”, which is a source code end tag. Active4D skips to the end of the

tag and switches back to scan mode. At this point the response buffer contains:

The interpreter scans up to the next source code begin tag, appending to the response

buffer. At the start of the next source code block, the response buffer contains:

The interpreter then executes the second source code block as it did the first, after which

the response buffer contains:

The interpreter scans to the end of the file and returns control to the caller. At that point

the response buffer contains:

If the interpreter was invoked by Active4D’s web server, the web server generates the

HTTP headers necessary to describe the response to the client. Finally, control returns to

<html>
I was here at

<html>
I was here at 19:27:13

<html>
I was here at 19:27:13 on

<html>
I was here at 19:27:13 on 10/19/2001

<html>
I was here at 19:27:13 on 10/19/2001
</html>
76 Chapter 7 Interpreter

Active4D v6.3
4D, and the shell sends the generated headers and response body to the client browser,

which displays the text:

I was here at 19:27:13 on 10/19/2009

The client cannot see the source code because it is stripped out before being sent back

from the server.

Language Syntax
For the most part Active4D’s language (henceforward just “Active4D”) has the same

syntax as 4D’s language. However, there are a few important differences and

enhancements.

English Only

When you write code in 4D’s method editor, 4D looks up the command names and

named constants in localized resources within the 4D application. For example, in

English you might type “query” to do a database search, but in French the command

name is “chercher”.

After looking up a command or named constant, 4D stores a universal token to represent

it. If you open the same method in different language versions of 4D, the tokens are

displayed in the localized language.

Because Active4D code is written in raw text, it exists on disk in the form it was written.

Hence no localization can be done, so all Active4D code must use the English 4D

commands and named constants.

Source Code Structure

Because Active4D source code is plain text, you are free to use whatever indentation

style and use of whitespace you wish — the 4D method editor is not there to do it for

you. Typically you will want to use tabs in your text editor to perform indentation of

control structures. For example:

Since you can use whitespace in your code, it is highly recommended that you take

advantage of the opportunity and get used to doing so.

<% write("hello") %>
<%
write("hello") `This is exactly equivalent to the previous block
%>

<%
 if ($sort_ascending = "1") // Note the space around the =
 order by([customers]; [customers]lastname; >)
 else
 order by([customers]; [customers]lastname; <)
 end if
%>
Chapter 7 Interpreter 77

Active4D v6.3
You can have any number of Active4D code blocks within an HTML page. In addition, it is

not necessary to complete control structures within the block in which they are declared.

This powerful feature allows constructs like this:

Using this feature with If/Else/End if, you can conditionally show entire tables, form

items, etc.

Case Sensitivity

Like 4D, Active4D is not case sensitive, so you can just as easily write “first record” as

“FIRST RECORD”. But whereas the 4D method editor would change “first record” to “FIRST

RECORD” when it parsed the line, in Active4D it will remain “first record” because you will

be using an external text editor.

Case-insensitivity extends to table and field names, method names, and variable names.

Expression-based

One difference between 4D’s language and Active4D is that Active4D is expression-

based, like most computer languages. In other words, everything is an expression,

including an assignment. So the assignment:

actually evaluates to the value of $i after the assignment, namely 10. This allows you to

do convenient tricks like this:

<% for ($i; 1; 3) `I'm starting the loop here... %>
 Active4D rocks!

<% end for %>

`Here is the output
Active4D rocks!
Active4D rocks!
Active4D rocks!

Note: Just because your source is embedded inside your web pages in text form

does not make it inherently insecure. To understand why, please see Chapter 4,

“Security.”

$i := 10

first record([contacts])

while (($name := [contacts]lastname) = "a@")
 writebr($name)
 next record([contacts])
end while
78 Chapter 7 Interpreter

Active4D v6.3
Comments

Active4D supports regular 4D comments (indicated by `), either on a separate line or at

the end of the line, with no limit on their length. You may also use the characters “//” as a

synonym for ` to indicate a 4D-style single-line comment. This style of commenting is

common to C++, Java, and Javascript. Personally I prefer these comments to 4D-style

comments, not only because I’m a longtime C++ programmer, but also because they are

much more visible than tiny little backticks.

In addition to line comments, Active4D supports block comments. Unlike line comments,

block comments may be embedded within a line or may span multiple lines.

Block comments begin with the character sequence “/*” and end with the character

sequence “*/”. For those of you who know other languages, this is the standard syntax for

block comments in C/C++, Java, CSS, etc.

Active4D also supports line continuation comments. Line continuation comments are

indicated by “\\” and are the same as normal comments, except that they logically join

the line on which they occur with the following line, allowing you to break a single line of

code into multiple lines.
Chapter 7 Interpreter 79

Active4D v6.3
Here are some commenting examples:

Identifiers
Identifiers in Active4D follow the same stated rules as in 4D in terms of length and valid

characters, with the following exceptions:

3 The general rules for valid characters are the same, but the specific rules for valid

Unicode characters can be found here:

http://java.sun.com/j2se/1.3/docs/api/java/lang/Character.html#isJavaIdentifierStart(char).

3 The maximum length for local variables, Active4D method names and library names is

255 characters.

3 For backwards compatibility, table names may begin with a digit.

Active4D maintains its own local variables which are indicated by a leading dollar sign, as

in 4D. You can also access existing 4D process and interprocess variables (using “<>”, not

the Macintosh diamond character), as well as any fields in the database. Last but not

/*
 This is a multi-line comment that will be rather lengthy.
 By using block comments I can format it easily and it is
 easier to read.
*/

`A plain old 4D-style single-line comment.
`It's kind of hard to see the stupid backtick.

// A C++-style single-line comment, much more visible
writebr("hello") // Also can be used at the end of a line

/*--
 MyLibraryMethod($inFoo; $inBar) -> Text

 $inFoo Longint A foo
 $inBar Longint A bar
 RESULT Text A foobar
--*/

writebr("Block comments can even be " + /* wow! */ "embedded!")

/*
writebr("Using block comments...")
writebr("is a quick and easy way...")
writebr("to comment out a block of code")
*/

// Using line continuation comments
for ($i; \\ Can have comment text
 $start; \\ Useful for splitting up long parameter lists
 $end \\
)
 writebr($i)
end for
80 Chapter 7 Interpreter

Active4D v6.3
least, all 4D 2004 and v11 named constants are available. If a 4D 2004 named constant

was renamed in v11, both the old and new names are available.

Custom Named Constants

Active4D no longer has access to custom named constants you have defined. However,

you can easily convert your custom constants to an Active4D library that will give you

access to them. Please see the document “convert_constants.pdf” for more information.

Data Types
Active4D can operate on all 4D data types except for 2D arrays. Data types may be

implicitly converted according to the same rules 4D uses, or explicitly converted using

commands such as String and Num.

Compiler Declarations

All compiler declarations are supported, and may be used for local, process, and

interprocess variables. For more information on declaring process and interprocess

variables, see “Process/Interprocess Variables” below.

Active4D extends the 4D compiler declaration syntax by allowing you to use any valid

scalar (non-array) expression, including dereferenced pointers and collection items. The

collection item need not exist, in which case it will be created.

By predeclaring local variables with compiler declarations, you can achieve better type

safety in your code.

For example:

Active4D imitates 4D’s interpreted behavior exactly in regards to variables that have

been declared in compiler declarations. Once a variable has had its type fixed by a

compiler declaration there are two ways it can be changed:

3 With another compiler declaration. If the new type is not assignment-compatible with

the old type, the variable will be set to a null value. Otherwise a type conversion is

done.

3 By passing it as a parameter to a command that sets the parameter value inline, such

as GET PICTURE PROPERTIES.

c_longint($long)
$long := 7
$long := 13.27

/*
Without the compiler declaration, $long would become
a real = 13.27. Because it was declared a longint, its value
is now 13.
*/

$long := "foobar" `generates an incompatible argument error
Chapter 7 Interpreter 81

Active4D v6.3
Process/Interprocess Variables

You may use compiler declarations to create process or interprocess variables on the fly,

even in a compiled database. However, if your database is compiled, you may not change

the type (or string width) of an existing process or interprocess variable.

In addition to using compiler declarations, process and interprocess variables can be

created on the fly through assignment, just as local variables are. For example, this works

fine, even in a compiled database:

Of course, you should have a compelling reason to use process or interprocess variables

instead of local variables. Basically, there are two main reasons for using process or

interprocess variables in Active4D:

3 You need to pass an array to a 4D method.

3 You are using the execute in 4d command to execute 4D code, and the code needs to

receive or return values.

If 4D is running in Unicode mode, there are no restrictions on process/interprocess

variable usage. If 4D is running in compatibility mode, the following rules apply:

3 Text variables/arrays are read write, whether they are declared in 4D or in Active4D.

3 String variables/arrays appear to Active4D as text variables/arrays.

3 If you declare a process/interprocess string variable/array in 4D, it is read only within

Active4D.

3 If you declare a process/interprocess string variable/array in Active4D, it is read write

within both Active4D and 4D.

Array Support

All array types except 2D arrays are fully supported in Active4D. This includes picture and

pointer arrays. You may declare and use arrays in Active4D just as you would in 4D. In

most cases you should use local arrays, unless there is a compelling need to use process

or interprocess arrays.

Warning: Although you may create and reference process/interprocess variables

within Active4D, you may not pass a pointer to those variables to 4D in a compiled

database.

foobar := 7
get field properties(->[foo]bar; fieldType)

Note: Active4D’s array support is dramatically expanded beyond that provided by

4D. You should take the time to carefully read the command section “Arrays” on

page 141.
82 Chapter 7 Interpreter

Active4D v6.3
Pointer Support

Active4D supports pointers to process and interprocess variables, tables, and fields. You

may create and dereference pointers to any of these entities within Active4D.

Unlike 4D, you may not create a pointer to a local variable. However, Active4D allows you

to pass local variables by reference to its own methods, which is effectively the same as

using a pointer (but easier). For information on pass by reference, see Chapter 8,

“Methods.”

Extended Boolean Expressions

Active4D supports an extended form of boolean expressions that allows for a much

more concise coding style. In Active4D, any data type can be treated as a boolean

expression according to the following rules:

This allows you to write code like this:

Literals

Active4D recognizes string, number date and time literals in all the standard formats,

including scientific notation.

Data type Boolean value

String/Text True if Length() # 0

Longint/Real True if # 0

Date True if # !00/00/00!

Time True if # ?00:00:00?

BLOB True if BLOB size() # 0

Picture True if Picture size() # 0

Pointer True if Not(Nil())

Array True if Size of array() # 0

if ($text)
 write($text)
else
 write("Text is empty")
end if

array longint($longs; *; 7; 27)
write(choose($longs; "Have values"; "Empty array"))

Note: Extended boolean expressions can only be used with commands and

keywords that take a boolean expression, not the logical operators & and |.

Note: Time literals must use '?' as the delimiter.
Chapter 7 Interpreter 83

Active4D v6.3
String Literals

Like 4D, all strings literals support backslash-prefixed embedded control characters:

If you have not yet gotten used to using backslashed characters, you should definitely

get used to using them instead of the equivalent Char(X) expression.

Here is an example of using backslashes in a literal, with the equivalent Char(X) code.

You decide which is easier to write and read.

However, there is a better way to embed double-quotes in a string literal. Active4D also

supports string literals surrounded by single quotes, within which double-quotes are

just another character. So the example above becomes:

String Interpolation

How many times have you had to write a line of code like this:

We are used to writing code like this, so it may seem normal. But the problem is that all of

the + operators obscure the actual format of the string you are trying to write. Wouldn’t

it be nice if you could do something like this:

Backslash combination Resolves to

\n Char(Line feed)

\r Char(Carriage return)

\t Char(Tab)

\" Char(Double quote)

\' Char(Quote)

\\ \

write("This is line 1.\r\"It's cool!\", you say.")

Output:
This is line 1.
"It's cool!", you say.

// Pre-4D 2003 code to do the same
"This is line 1."+Char(13)+Char(34)+"It's cool!"+Char(34) \\
+", you say."

write('This is line 1.\r"It's cool!", you say.')

writeln("Name: " + [contacts]name + " (" + $formattedPhone + ")"

writeln('Name: [contacts]name ($formattedPhone)')
84 Chapter 7 Interpreter

Active4D v6.3
Now it is very clear what the final string will look like. The good news is that you can do

exactly what is shown above by using single quotes instead of double quotes to delimit

the string.

There is an additional property of single-quote delimited strings that adds a very

powerful feature. This features is called string interpolation. Basically, what string

interpolation means is that the string is parsed for embedded values and those values

are replaced within the string. The types of embedded values recognized are:

3 Variable references: Local variable names, followed by one or more array or

collection indexes, may be directly embedded within a string.

3 Built-in collections: References to values in the _form, _query, _request, globals and

session collections.

3 Field references: Full [table]field references. If the field name contains spaces, it must

be treated as an expression.

3 Arbitrary expressions: Arbitrary executable expressions.

To understand the power of this feature, we need to see some examples. First, here is a

simple embedding of a variable within an interpolated string:

If we want to reference a form variable or query parameter, use this style:

To reference a field, use this style:

Note: Interpolated strings may not contain nested indexes, such as:

 session{$keys{$i}}

$name := "Mr. Phelps"
$msg := 'Good evening $name. Your mission...'
// $msg contains "Good evening Mr. Phelps. Your mission..."

write('$name is a swell guy.')
// output: "Mr. Phelps is a swell guy."

write('Thank you for registering, _form{"f_name"}.')
write('The id to edit is _query{"id"}.')

write('Thank you, [Contacts]Firstname!')
Chapter 7 Interpreter 85

Active4D v6.3
Okay, that was simple enough. What if we have an array? No problem:

Note in the example above that we referenced a longint. All types that can be converted

to text are automatically converted. If you try to embed a variable expression that is not

convertible to text, it will generate an error.

What if we want to embed a collection reference? Again, no problem:

Basically, you can embed any valid variable reference, with an optional character

reference at the end.

What happens if the variable or field name or _form/_query/_request reference is

followed or preceded by valid identifier characters? How do we distinguish between the

embedded reference and the surrounding text? In a case like this you have to enclose

the expression in backticks (`), like this:

<%
array string(80; $names; 0)
array longint($ages; 0)
// set arrays somehow
%>

<table>
 <tr>
 <td>Name</td><td>Age</td>
 </tr>
<%
for ($i; 1; size of array($names))
 writeln('<tr>\n<td>$names{$i}</td><td>$ages{$i}</td>\n</tr>')
end for
%>
</table>

$info := new collection("name"; "Dave"; "age"; 27)
array string(31; $info{"children"}; 0)
set array($info{"children"}; "Jody"; "Buffy")

writebr('Name: $info{"name"}, age: $info{"age"}')

for ($i; 1; size of array($info{"children"})
 writebr('Child: $info{"children"}{$i}')
end for

write('First letter of name is "$info{"name"}[[1]]"')

$verb := "sleep"
write('Are you $verbing?') // error: unknown variable $verbing
write('Are you `$verb`ing?') // outputs "Are you sleeping?"
86 Chapter 7 Interpreter

Active4D v6.3
In actual fact, anything enclosed in ` ` is evaluated as an Active4D expression, as if you

were assigning the result of the expression to a variable. This allows you to embed

arbitrary expressions, like this:

You can use anything in the expression, including method calls, but the expression must

return a result or an error will be generated.

If you need to use one of the reserved characters within an interpolated string, simply

prefix it with a backslash to prevent it from being interpolated, like this:

Heredoc Strings

Active4D also allows you to define strings literals that span multiple lines. Such string

literals are known as heredoc strings. A regular heredoc string begins and end with the

character sequence """ (three double quotes). An interpolated heredoc string begins and

ends with the character sequence '''(three single quotes), and is interpolated as

described above for interpolated strings.

As with interpolated strings, the big advantage of heredoc strings is clarity: in your code

you can see multi-line strings as they will appear in the final output.

Here is an example:

Heredoc allows you to do complex multiline formatting in a very natural style, with all of

the power of interpolated strings if you so desire.

Date Literals

Date literal parsing is more rigid than in 4D. Dates must contain three parts consisting of

digits, separated by a forward slash, space, dot or dash.

write('It is `current time` on `string(current date; long)`.')

$amount := 100
write('You owe me \$$amount.')
// output is "You owe me $100."

$cell := '''
[Contacts]Firstname [Contacts]Lastname

[Contacts]Address

[Contacts]City, [Contacts]State [Contacts]Zip
'''
writeln($cell)

// output will be something like this:
Homer Simpson

123 Main St.

Springfield, MO 12345

Chapter 7 Interpreter 87

Active4D v6.3
Time Literals

Time literals may use spaces as separators in addition to colons, and each part of the

time (hours/minutes/seconds) may contain a single digit.

User-defined Constants

In addition to supporting 4D named constants, Active4D allows you to define named

constants at runtime using the define command. For more information on the define

command, see “define” on page 242.

Typing of Values

Typing of local variables in Active4D follows the same rules as 4D. If a local variable has

not been declared with a compiler directive, it is variant: its type changes on the fly

according to the type of value assigned to it. Once it has been declared within a compiler

declaration, it follows the rules outlined in “Compiler Declarations” above.

On the other hand, 4D variables and fields are always considered invariant. You cannot

assign a value to them that would change their type.

For all variables and fields, Active4D will generate an error and abort execution if a

referenced variable or field is undefined.

Operators
Active4D implements all of 4D’s operators (with the exception of some picture

operators), including array indexing and character references.

Active4D operators have the same restrictions on the data types they will accept as 4D

does. Active4D will abort with an error if an attempt is made to divide or modulo by zero.

Unary/Assignment Operators

Active4D adds many unary and assignment operators (borrowed from other languages)

which make writing code faster and easier to read. Here are the new operators:

++ prefix and postfix increment

-- prefix and postfix decrement

::= super assign

+= add and assign

-= subtract and assign

*= multiply and assign

%= modulo divide and assign

/= divide and assign

\= integer divide and assign

^= exponentiate and assign
88 Chapter 7 Interpreter

Active4D v6.3
Here are some examples of their usage:

Any expression:

is equivalent to:

Any of these operators will work with array elements. So, for example, you can increment

the fifth element of an array by using the ++ operator:

Super Assign

Active4D adds a new operator called “super assign”, represented by “::=”. Super assign is

like the normal := operator but can only be used to assign to variables or collection

items, and completely replaces the original variable’s value with a copy of the value to

the right of the operator. This allows you to copy arrays by assigning to a variable

directly.

For example,

is equivalent to:

|= bitwise inclusive OR and assign

&= bitwise AND and assign

<<= bitwise shift left and assign

>>= bitwise shift right and assign

$i := 3 // I think $i=3 now
$j := ++$i // increments $i before the assignment, $j=4
$k := $i++ // increments $i after the assignment, $k=4, $i=5
$i *= 3 // multiplies $i by 3 and assigns, $i=15
$i += 3 // adds 3 to $i and assigns, $i=18
$i >>= 1 // bit shifts $i one bit and assigns, $i=9

<assignable> <op>= <value>

<assignable> := <assignable> <op> <value>

$myArray{5}++
++$myArray{5}

array text($array; *; "one"; "two")
$copy ::= $array

array text($array; *; "one"; "two")
copy array($array; $copy)
Chapter 7 Interpreter 89

Active4D v6.3
The advantage of using super assign is that it allows you to write generic code that

copies values without special-casing for arrays.

In and Not In Operators

Active4D adds two comparison operators that make looking for a value in a sequence

much easier and consistent across all sequence types, where a sequence can be a

collection, an array, or a string.

In general, every time you say to yourself, “Is this value (not) in that sequence,” you can

use the ~ and !~ operators. The examples below demonstrate how to do in matching

using the ~ operator and the equivalent code using PO4D (Plain Old 4D):

Regular Expression Operators

Active4D also adds two comparison operators (borrowed from Perl) that make regular

expression matching an integral part of the language:

Using these operators is exactly equivalent to using the regex match command:

For more information on regular expression matching, see “regex match” on page 281.

~ in

!~ not in, opposite of ~

if ($name ~ $contactNames) // using ~
if (find in array($contactNames; $name) > 0) // PO4D

if ($sub ~ $text) // using ~
if (position($sub; $text) > 0) // PO4D

if ("b_cancel" ~ $attributes) // using ~
if (collection has($attributes; "b_cancel")) // PO4D

=~ regular expression match

#~ regular expression non-match, opposite of =~

// this...
if ($name =~ "/(Dave|John|Bill)/")

// ...is the same as this
if (regex match("/(Dave|John|Bill)/"; $name))

// and this...
if (not($name =~ "/(Dave|John|Bill)/"))

// ...is the same as this
if ($name #~ "/(Dave|John|Bill)/")
90 Chapter 7 Interpreter

Active4D v6.3
String Format Operators

As was discussed above, Active4D adds string interpolation as a simple way to embed

placeholder values and expressions within a string which are replaced at runtime.

Active4D offers two other powerful alternatives for interpolating strings, using two

special string formatting operators: %% and %.

The %% operator takes a format string on the left. The format string specifies the number

and type of the format arguments that are to the right of the %% operator. If there is

more than one format argument, they must be enclosed in parentheses and separated

by semicolons. At runtime the format arguments are converted and inserted into the

format string according to the syntax of the format string.

For more information, see “%% (formatting operator)” on page 364.

The % operator has three meanings in Active4D:

3 If it is used as a comparator within a database query, it means to perform a keyword

search, just as it does in 4D.

3 If it is preceded by a number, it means modulo division, just as it does in 4D.

3 If it is preceded by a text expression, it follows the same syntax as the %% operator.

For more information, see “% (formatting operator)” on page 363.

Picture Operators

Active4D supports horizontal and vertical concatenation for pictures. Thus the operators

that may be use with pictures are:

Pointer Dereference Operator

The pointer dereference operator (->) works as usual when applied to a pointer. When

applied to a collection reference, it allows you to treat the collection as a kind of object

and call methods for that object. For more information, see “Creating a Poor Man’s Class”

on page 124.

+ Operator

The + operator has been enhanced in Active4D to auto-convert arguments to text if the

argument one of the arguments is text.

For example:

+ horizontally concatenate

/ vertically concatenate

+= horizontally concatenate and assign

/= vertically concatenate and assign

$s := "I was here at " + current time + " on " + current date
Chapter 7 Interpreter 91

Active4D v6.3
Notice there is no need to explicitly convert Current date and Current time to strings.

The argument to the left of the + will also be converted to text if the argument to the

right is. For example, this will work:

The following value types will be auto-converted:

Character Reference Operator [[]]

The character reference operator has been enhanced in Active4D to allow you to specify

a negative number. In that case the number represents the Nth character from the end of

the text. So $text[[-1]] will return the last character of $text, $text[[-2]] will return the

second to last character, and so on.

For example:

Indexing Operator {}

Active4D extends the syntax of array indexing in two convenient ways.

First, there is a super easy way to add elements to an array. If you use an empty index

with an array, a new element is appended to the array and the index is set to the newly

appended element.

This allows you to add items to an array in a very simple way, like this:

$s := current date + ", " + current time + ": I was here"

Type Format

Longint 4D default

Real 4D default

Date 4D default

Time 4D default

Boolean “True” or “False”

Pointer ->[table]

->[table]field

->variable

$text := "Active4D"
$c := $text[[-1]] // $c = "D"
$c := $text[[-2]] // $c = "4"

array longint($longs; 0)
$longs{} := 7 // same as append to array($longs; 7)
$longs{} := 13 // same as append to array($longs; 13)

// $longs now contains 2 elements, 7 and 13
92 Chapter 7 Interpreter

Active4D v6.3
This syntax works anywhere you can use an array element, not just as the target of an

assignment. For example, you can do things like this:

The second extension to the array indexing syntax is the addition of negative indexes. By

using a negative index, you index array elements from the end of the array, with -1 being

the last element and -Size of array being the first element.

For example, to reference the last element of an array, you can simply do this:

Boolean Operator |

The boolean | operator may be used with text. If the operand on the left is empty, the

expression resolves to the operand on the right, else to the operand on the left. This is

useful for avoiding the common idiom:

The above code can now be replaced with the much clearer and more concise:

Control Structures
All of 4D’s control structures and flow of control keywords are supported, with four

notable additions: for each/end for each, break, return, exit and continue. If you are

familiar with other languages that use these keywords, they work exactly as they do in

those languages. If are aren’t familiar with those languages, here’s how they work.

array longint($types; 0)
$table := table(->[vendors])

for ($field; 1; count fields($table))
 get field properties($table; $field; $types{})
end for

// $types is now filled with the [vendors] field types

$myArray{-1} := 7

// old way, which one is easier?
$myArray{size of array($myArray)} := 7

if ($attributes{"nm"} = "")
 $foo := "Some default value"
else
 $foo := $attributes{"nm"}
end if

// using choose
$foo := choose($attributes{"nm"} # ""; $attributes{"nm"}; \\
 "Some default value")

$foo := $attributes{"nm"} | "Some default text"
Chapter 7 Interpreter 93

Active4D v6.3
for each/end for each

This looping control structure is the easiest way to iterate over a sequence of values,

which includes collections, strings, arrays, and selections. For more information, see “for

each/end for each” on page 245.

break

If you are within any kind of loop (For, for each, While, Repeat), the break keyword

(used on a line by itself) will transfer execution to the first line of code after the end of

the loop. The loop variable used by a For loop will not be changed. If you use break

outside of a loop it will generate an error.

return

This keyword (used on a line by itself) transfers execution to the first line of code after

the current code block. If you are within an Active4D method, execution will continue at

the first line of code after the line that called the method. If you are within an included

file, execution continues after the include statement that included that file.

return can also take a parenthesized expression to return as the result of the method.

continue

If you are within any kind of loop (For, for each, While, Repeat), the continue keyword

(used on a line by itself) will transfer execution directly to the top of the loop.

3 The loop variable in a For loop will be incremented according to the For clause.

3 The next item will be fetched in a for each loop.

If you use continue outside of a loop it will generate an error.

exit

This keyword, used on a line by itself, immediately aborts all execution without

generating an error. This is primarily useful for debugging, when you want to dump the

internal state before a certain point and then stop. This keyword is also useful if you have

detected an error condition from which you cannot recover and you want to

immediately stop execution.
94 Chapter 7 Interpreter

Active4D v6.3
Examples

Here are some examples of how to use the new keywords:

// Using break to terminate an infinite loop
$i := 0

while(true) // You could never do this in 4D!
 if (++$i > 10)
 // The closest loop, in this case the while loop,
 // will be exited
 break
 end if

 write($i) // This will NOT be executed once break is executed
end while

// Here's the Active4D way of breaking out of a for loop

for ($i; 1; size of array($names))
 if ($names{$i} = "g@")
 break
 end if

 // This will not get executed after break is executed
 writebr($names{$i})
end for

// Here's the 4D way

for ($i; 1; size of array($names))
 if ($names{$i} = "g@")
 $i := size of array($names)+1
 else
 writebr($names{$i})
 end if
end for

// Using continue in a for loop

for ($i; 1; size of array($names))
 if ($names{$i} = "s@")
 continue // Immediately goes to next iteration of loop
 end if

 writebr($names{$i})
 // Do lots of other stuff here.
 // The effect of continue above is to skip this
end for
Chapter 7 Interpreter 95

Active4D v6.3
Working with Paths
In the course of programming a web site with Active4D, you will often need to specify file

path. If you have done any work with paths in 4D, you know what a pain it can be,

especially when dealing with multiple platforms.

URL-Style (Posix) Paths

All commands that take a path in Active4D — including Active4D’s implementation of

standard commands like — can take a URL-style (Posix) path, which uses ‘/’ as the

directory separator. This allows you to program in a platform-neutral way, without

having to worry about the native directory separator.

Absolute vs. Relative Paths

A path can be absolute or relative. What that means depends on the command using the

path. Standard 4D document commands and Active4D’s own commands treat paths

differently.

3 4D document commands: As with 4D, in Active4D absolute paths are relative to the

computer, allowing you to access any volume mounted on the host machine

(including network volumes). Remember, however, that by default Active4D restricts

document command access to the web root directory. You must use the “safe doc dirs”

option in Active4D.ini to gain access to directories outside the web root directory. For

more information, see “The “safe doc dirs” Config Option” on page 51.

As with 4D, relative paths are relative to the default directory (see “The Default

Directory” on page 42).

3 Active4D commands: Active4D commands are designed for use within the context

of a web page. Thus their “world,” so to speak, is limited to the web root directory.

Absolute paths used with Active4D commands are relative to the web root directory.

Thus if the root directory is:

/Users/tom/db/web

the path

/accounting/default.a4d

is actually the path

/Users/tom/db/web/accounting/default.a4d

Relative paths used with Active4D commands are relative to the directory of the

currently executing file.

Path Utilities

Active4D provides a many utility commands for working with paths. For example, if you

need to use a 4D document command on a file within the web root directory, the get

root command returns the full path to the current root. In addition, there are commands

to extract the filename from a path, the extension from a filename, and the directory
96 Chapter 7 Interpreter

Active4D v6.3
from a path. If you need to join path segments together, you can (and should) use the

join paths command.

For more on these commands, see “System Documents” on page 387.

Path Limits

The host operating system imposes a maximum length on paths and components of a

path.

On Mac OS X the maximum length of a single component of a path (file or folder name)

is 255 bytes. The maximum length of a path is 1024 bytes. Note that these limits are in

bytes, not Unicode characters, and that paths are encoded in UTF-8. Non-ASCII

characters in a path will take 2-4 bytes each, reducing the maximum number of Unicode

characters accordingly.

On Windows the maximum length of a single component of a path (file or folder name) is

255 Unicode characters. The maximum length of a path is 260 Unicode characters.

You must ensure that your path lengths are within these limits, or Active4D will not be

able to find your files.

Including Other Files
One of the most powerful features of Active4D is its ability to include other files during

execution. To include a file, you use the include command, passing a relative or absolute

URL-style path. Since include is an Active4D command, absolute paths are relative to the

root, and relative paths are relative to the currently executing file.

If found, the included file is interpreted as if it were part of the source file. The scope of

the included file is whatever the scope was where the include command appeared.

This means that any local variables declared before the include are available in the scope

of the include file’s code, and any local variables declared in the include file are available

to the source file when the include file is finished executing.

Included files may in turn include other files, ad infinitum (or until stack space or memory

runs out). Before including a file, Active4D checks to see if the include is a circular

reference and aborts execution if it is.

Uses of Included Files

There are many uses of included files. Some common ones are:

3 Factoring out common page elements, such as headers and footers. When the

included file is modified, all pages that include it automatically update.

3 Separating functional sections of a page into separate files. This allows you to create a

page design that consists of an overall framework, within which you “plug in” various

Note: You may also use the include into command, which allows you to include a

file and place the output into a variable.
Chapter 7 Interpreter 97

Active4D v6.3
pieces. By using includes, you can edit the pieces separately without affecting the

overall design. This technique is analogous to splitting a large method into several

smaller methods.

3 Conditionally building a page. You may put an include statement within an

If/Else/End if or Case/End case construct to conditionally include various files. This

allows you to use the same page to display different output based on one or more

criteria.

3 Using include into to build an HTML page to send via email.

Including Only Once

You can also include files using the require command. The require command works like

include, but it guarantees that any given file will only be executed once via require

within a single execution of the interpreter.

The require command is primarily useful for creating files of global constants, variables

and methods that only need to be loaded once per Active4D session. All files that

reference these globals can require the globals file and you don't have to worry about

the overhead of executing the file or the problem of defining named constants twice,

which is an error.

Calling 4D Methods
Although you can call 4D methods within Active4D, this ties you to the database

structure, which is exactly what Active4D is designed to avoid. If possible, you should

define and use methods within Active4D. For more information on defining methods in

Active4D, see Chapter 8, “Methods.”

Nonetheless, should you need to, you can call any 4D method within Active4D using the

exact same syntax you would within 4D.

Parameter Passing

When calling a 4D method from Active4D, you pass parameters just as you would within

4D. Strings are converted to Text and Longints are converted to Reals before being

passed. You may return any type of value from the method.

Active4D has no way of matching parameters passed to a 4D method with the actual

parameters declared in that method. It is up to you to make absolutely sure that the

number and type of parameters declared in the 4D method are compatible with what

you pass to it. If the 4D method expects some parameters to be optional, you may of

course not pass those.

Warning: If you are passing textual parameters to a 4D method from Active4D, the

parameter in 4D must be declared C_TEXT. If you are passing numeric parameters,

they must be declared C_REAL. Otherwise a runtime error may occur in a compiled

database.
98 Chapter 7 Interpreter

Active4D v6.3
In an interpreted database, if the method parameters are not assignment-compatible,

4D will initialize the parameter to a null value. In a compiled database, however, if the

parameter types do not match exactly, a runtime error will be generated, which will

effectively bring your application to a halt in a very unfriendly way. You do not want this

to happen.

Indirect Method Calls (aka Poor Man's method pointers)

In addition to calling 4D methods as you would within 4D, by directly referencing the

method name, you can also indirectly call a method by name using the call 4d method

command.

The syntax of this command is as follows:

The method name may be any valid expression that returns text. This powerful feature

allows you to dynamically determine which of several methods you call, as long as their

parameter lists are compatible. This is (sort of) the equivalent of a method pointer in

other programming languages.

As with ordinary method calls, the method called by call 4d method may return a value.

If the 4D method returns a value, you may ignore it if you have no use for it. You need not

assign it to a dummy variable as you would in 4D. On the other hand, if the 4D method

returns no value, attempting to use the result of such a method will result in an error.

Collections
Active4D adds a new data type to the language: collections. A collection is a group of

key/value pairs which are stored in memory. The keys are strings (with a maximum length

of 2GB) and the values may be any 4D data type, including arrays. The key/value pair is

also referred to as an item.

In classic programming terms, a collection is also known as an associative array, a

dictionary, a symbol table or a map. In 4D terms, you can conceptually think of a

collection as two parallel arrays, with keys being in one array and the values in the other.

Of course, you can’t do this in 4D because 4D arrays can only contain a single type, and a

collection value may be of any type.

Active4D provides a full suite of commands for creating your own collections. In

addition, Active4D uses collections to store HTTP headers, query parameters, form

variables, cookies, global variables, and sessions.

For more information on the collection commands, see “Collections” on page 153.

call 4d method(inMethodName {;inParam1 {;inParamN}})

Note: In previous versions of Active4D, collection keys were kept in alphabetical

order, although officially no order was guaranteed. In v6 the keys are kept in no

predictable order, so if you have code that relies on alphabetical keys, you will have to

get the collection keys, sort them, and then use the sorted keys to access the

collection items.
Chapter 7 Interpreter 99

Active4D v6.3
Collection Handles

Collections are referred to by a Longint handle, much like an ObjectTools object handle

or a 4D hierarchical list handle.

Active4D maintains an internal list of user-created collections. All collection commands

that take a collection handle check the handle against this list and generate an error if

the handle is not valid. Thus you are prevented from crashing the server by passing in a

bogus handle.

Local vs. Global Collections

Collections can be either local or global. A local collection is automatically deleted when

a script finishes executing. A global collection remains in memory throughout the life of

the server, or until it is specifically deleted.

Local collections are like local variables — you use them for temporary storage within a

single script. You should always use a local variable to store a local collection handle.

Any time you want a collection to outlive the current script execution, you must use a

global collection.

Using Collections

Collections come in two basic varieties: read-only and read-write. You can perform the

following operations with read-only collections:

3 Get a collection value given a key. If the value is an array, you may retrieve an element

of the array directly. Key matching is case-insensitive.

3 Get all keys into a 4D array.

3 Get all values into a 4D array if it is known they are all of the same type.

3 Get the count of key/value pairs in the collection.

Read-write collections add the following operations:

3 Set a collection value given a key. If the value is an array, you may set an element of the

array directly.

3 Delete a collection item given a key. If the key contains a wildcard, all matching items

are deleted.

In addition to these basic operations, some of the specialized collections defined by

Active4D provide other operations as well. These operations are covered in the relevant

command reference sections.

Note: Once you create a global collection, it is your responsibility to delete it when it

is no longer needed.
100 Chapter 7 Interpreter

Active4D v6.3
Referencing Collection Values

Active4D extends the syntax of the {} indexing operators to allow indexing a collection

by keys. The syntax of this way of indexing is as follows:

where collection is either a collection handle or collection iterator, and key is a text

expression. If an item in the collection exists with the given key, the result of this

expression is the item’s value, and it may be treated in all respects as a variable of that

type. If no item exists in the collection with the given key, the result of the expression is

an empty string.

Because the result of the expression is treated as the value it resolves to, you can use

collections as a natural part of the language. For example:

Embedded Collections

You can embed collections in collections (by storing their handles) to any depth and

reference their items by adding more indexes, like this:

You may safely embed global collections within a local collection, because the global

collections will outlive the local collection in which they are embedded. On the other

hand, you must embed only global collections within other global collections to ensure

the embedded collection is valid throughout the lifetime of the containing collection.

collectionRef{key}

// Set a counter in our session
session{"counter"} := 0

// Now increment the counter
++session{"counter"}

// Store a form variable in the session
session{"username"} := _form{"f_username"}

// Embed an array in a collection
$c := new collection
array text($c{"people"}; *; "Tom", "Dick", "Harry")

for ($i; 1; size of array($c{"people"}))
 writebr('Hi $c{"people"}{$i}')
end for

$c{"people"}{} := "Louise"

$foo := $c{"level1"}{"level2"}{"level3"}{"the_key"}
Chapter 7 Interpreter 101

Active4D v6.3
Element Referencing

If when referencing a collection array element, you use the form:

If the item is in fact an array, you may use any value from 0..size of array for the index. If

the item is scalar (not an array), you may still use the index form above, but the index

must evaluate to 1.

This form allows you to reference a collection item with the same syntax whether or not

it is an array. This feature is mainly designed for use with multiple-choice form lists,

which may result in a scalar value (if only item is selected) or an array value (if multiple

items are selected).

Iterating Over a Collection

Very often you may need to iterate over every item in a collection. There are two ways to

do so in Active4D.

The first (and easiest) way to iterate over a collection is to use the for each/end for each

loop control structure. For more information on for each, see “Iterators” on page 214.

The second way to iterate over a collection is through an iterator. Every collection

provides a command which returns an iterator for the collection. You use this iterator to

traverse the items in the collection.

In addition, some collections allow you to get an iterator for a specific item given the

item’s key. If no item with the given key exists, you are given an empty iterator. An empty

iterator is a special iterator that has the following properties:

3 The iterator itself (a Longint) is zero

3 is an iterator will return False

3 get item key will return an empty string

3 get item value will return an empty string

3 get item type will return Is Undefined (5)

You can identify an empty iterator either by testing equal to zero, by calling

is an iterator, by testing for an empty key, or by testing the item type.

For more information on iterators, see “Iterators” on page 214.

HTTP Data Access
When Active4D is used as the web server, the interpreter has full access to both the HTTP

request and the response data. This data is critical when developing high-powered web

sites. The commands necessary to access this information are covered in Chapter 11,

“Command Reference.”

collectionRef{key}{index}
102 Chapter 7 Interpreter

Active4D v6.3
Request Data

As was discussed in Chapter 5, “HTTP Server,” an HTTP request consists of several headers

and an optional body, in addition to the requested URL itself.

The data encapsulated in an HTTP request includes:

3 Query string parameters

3 Form variables

3 Cookies

3 HTTP headers

3 Uploaded files

In addition, information about the host environment is passed in to Active4D.

It is important to note that all of this data is encoded is some way or another. Without

Active4D, to extract any meaningful information you would have to:

1 Understand the detailed HTTP specification and format for each type of data.

2 Write the code to parse and extract the data, making sure to follow the rules you

learned in Step 1.

3 URL-decode the data which, according to the HTTP specification, should be URL-

encoded.

4 Convert the URL-decoded data to Unicode.

5 Figure out where and how to store the data in a meaningful way.

6 Write many methods to access that data in a simple way.

If you have never gone through this process, here’s a little tip: the time it takes to do Step

1 alone will cost you more than the price of Active4D!

Fortunately Active4D does all of the above for you. You never have to deal with the

particulars of the HTTP specification, which allows you to focus on the problem at hand

— building a great web site.

_query and _form Collections

The primary way in which you “pass” parameters from one page to another in a web site

is through form variables and query string parameters. Active4D places those

parameters in easy-to-access collections.

For example, if the user posts a form which contains a field called “f_name” and you want

to access the contents of that field, you can simply use:

Likewise, to access a query string parameter called “recnum”, you could use:

_form{"f_name"}

_query{"recnum"}
Chapter 7 Interpreter 103

Active4D v6.3
Testing Form Buttons

If a non-image submit button is clicked on a form, the browser posts the button’s form

name and value. Buttons which appear on a form but are not clicked are not included in

the posted form data.

Frequently you need to test a posted form to see which button was clicked. For example,

your form may have “Search”, “Previous” and “Next” buttons. Because non-existent

collection items are returned as empty strings, you can quickly test for which button was

clicked by checking for empty strings. For example, your code would look something like

this:

Response Data

You control the response body indirectly with the write command and its peers. In

addition, Active4D gives you dedicated commands for setting the response headers.

The data encapsulated in an HTTP response includes:

3 Cache control

3 Character set

3 Content type

3 Cookies

3 Expires date

3 Other headers

Some HTTP response headers are simple in their format. Others require a specific format

which you must follow. As with the request headers, without Active4D you would have

to know the HTTP specification for each format. For those headers that require special

formatting, Active4D gives you simple commands that relieve you of having to know the

HTTP specification.

Working with Character Sets
Internally Active4D (like 4D) uses Unicode exclusively. Text comes into Active4D from

several sources, each of which may be in a different character set (or “charset”):

3 Executable source files: These may be in any charset, but if you are working with a

non-Asian language, it is recommended you use UTF-8.

3 Database: 4D uses Unicode internally and expects text to be in this charset.

case of
 :(_form{"f_search"} # "")
 // Do the search
 :(_form{"f_previous"} # "")
 // Go to the previous group of records
 :(_form{"f_next"} # "")
 // Go to the next group of records
end case
104 Chapter 7 Interpreter

Active4D v6.3
3 URL query strings: Query strings are URL-encoded UTF-8.

3 Posted form data: Form data is URL-encoded in the charset of the page in which the

form appears.

3 Files read programmatically: Text files may be in any charset. It is up to you to know

which one.

In each case, text must be converted to Unicode.

Text can go out from Active4D to several destinations:

3 Web browser: Text sent to the browser via the write commands should be in the

target HTML charset, usually UTF-8. In addition, you may need to HTML-encode

reserved characters such as ‘<’.

3 Database: 4D expects Unicode.

3 Files written programmatically: You can use whatever charset you want.

Clearly, it would be a real pain — not to mention error-prone — if you had to remember

to do all of the character set conversions yourself. Fortunately, Active4D allows you to

configure the various charsets and then takes care of most of these conversions for you.

Internally Active4D uses Unicode, since that is what 4D expects and because it allows

Active4D to work with any character set on Earth. The character sets you configure

determine which charset Active4D converts from on input and which charset it converts

to on output.

Platform Character Set

The platform charset determines what charset Active4D converts from when reading

executable source files, which may contain non-ASCII characters both in HTML and in

Active4D string literals.

For example, if you are using a programmer’s editor to write your embedded scripts,

identifiers and string literals would most likely be in UTF-8. On the other hand, if you are

writing your scripts with Dreamweaver, string literals would be in the charset of the page

you are creating.

You can set the platform charset with the “platform charset” config option in

Active4D.ini. You may also use the set platform charset command. For more

information on the “platform charset” option, see the comments in Active4D.ini.

Warning: If your source files contain non-ASCII characters, it is essential that they all

are encoded in the same character set, and that character set is configured as the

“platform charset” in Active4D.ini. Otherwise those non-ASCII characters will be

incorrectly converted to Unicode when the source file is read by Active4D.
Chapter 7 Interpreter 105

Active4D v6.3
On a Japanese language system, the default platform charset is “shift_jis”. On a Chinese

language system, the default platform charset is “gb2312”. For all other systems, the

default is “utf-8”.

Output Character Set

Before returning to 4D, Active4D must convert its response buffer to a BLOB. If the

response buffer is text, it must be converted from Unicode to the charset that will be sent

to the browser. The output charset determines what charset Active4D converts the

response buffer to from Unicode.

You can set the output charset with the “output charset” config option in Active4D.ini.

The possible options are the same as for the platform character set. You may also use the

set output charset command.

The default output charset on Japanese language systems is “shift_jis”. The default

output charset on Chinese language systems is “gb2312”. The default output charset on

all other systems is “utf-8”.

Output Encoding

The output encoding determines how Active4D converts special characters to HTML

character entities when text is written to the response buffer. Output encoding is

performed before the output character set conversion, since the encoding tables are

based on Unicode.

You can set the output encoding with the “output encoding” config option in

Active4D.ini. You specify one or more bit flags to indicate which characters to encode.

More than one flag can be specified by separating them by ‘+’ and any number of spaces.

The bit flags are “none”, “quotes”, “tags”, “ampersand”, “extended”, “html” and “all”

(without the quotes). Note that “extended” and “html” are synonymous.

You may also use the set output encoding command at runtime. For more information

on output encoding, see “set output encoding” on page 305.

The default output encoding on Japanese or Chinese language systems is “none”. The

default output encoding on all other systems is “html”.

Text is HTML encoded according to the following rules:

3 If a character is ASCII, has a named entity, and the current encoding mode asks for that

entity to be encoded, it is encoded.

Note: In previous versions of Active4D, the default platform charset for non-

Japanese/Chinese systems was “mac” on Mac OS X and “windows-1252” on

Windows. If your source files are not in UTF-8 (which they should be!) and you did not

set a platform charset in Active4D.ini, you will have to set the platform charset now.

Note: In previous versions of Active4D, the default platform charset for non-

Japanese/Chinese systems, the default output charset was “iso-8859-1”. If your

output is not in UTF-8 (which it should be!) and you did not set an output charset in

Active4D.ini, you will have to set the output charset now.
106 Chapter 7 Interpreter

Active4D v6.3
3 If a character is non-ASCII, the output charset is ISO-8859-1 or ISO-8859-15, the mode

is “extended” or “all”, and the character has a named entity, it is encoded.

3 Otherwise the character is passed through as is.

HTTP Request Decoding

When parsing an HTTP request, the headers are left as is. This is not a problem, since all

headers except cookies will be in US ASCII and the character set is not an issue.

Query string parameters are automatically URL decoded and converted from UTF-8 to

Unicode.

Posted form variables are automatically URL decoded and converted from the output

character set to Unicode.

Informing the Browser of Your Output Character Set

You should always put the following tag in the header of HTML pages returned to a

browser:

The charset name at the end should match the charset name you use in the “output

charset” config option. In the example above the output charset is “utf-8”.

This is critical for two reasons:

3 The browser must know how to interpret non-ASCII characters in the page in order to

correctly display them.

3 When a form is posted, the browser encodes the form data in the character set of the

page in which the form appears. There is unfortunately no mechanism within HTTP to

communicate the character set of posted form data to the server. So Active4D must

assume that the posted data is encoded in the output character set. Therefore it is

critical that you use a Content-Type meta tag that matches your output character set.

Working with Files

Active4D cannot know the source platform of a file or its charset. It’s up to you to know

the charset used by a file, then convert to the appropriate character set when saving to

the database or writing to the browser.

Error Handling
Active4D goes to considerable lengths to catch errors and display meaningful error

messages. If any errors occur during the execution of an Active4D program, execution is

immediately aborted and the error handler takes over.

For complete information on error handling within Active4D, see Chapter 14, “Error

Handling.”

<meta http-equiv="Content-Type" content="text/html;charset=utf-8"/>
Chapter 7 Interpreter 107

Active4D v6.3
Script Timeout

Despite our best intentions, sometimes our scripts may do bad things like going into

infinite loops or waiting an inordinate amount of time for a shared resource.

Every script is given a set amount of time to execute. Before executing each line,

Active4D checks to see if the timeout has been reached, and if so it generates an error

and aborts execution.

You may set the script timeout with the “script timeout” config option in Active4D.ini.

The value set with this option is the minimum script timeout in seconds and is the default

value for all subsequent script executions.

The actual timeout can be set higher within Active4D with the set script timeout

command. This command will affect the next execution of Active4D, not the one in

which the command is used, and in no case can it be set lower than the minimum value

set in Active4D.ini.
108 Chapter 7 Interpreter

. .
CHAPTER 8

Methods

As you build your web site with Active4D, you will undoubtedly come across chunks of

code that can be reused in many different contexts, just as you would reuse code in 4D.

Fortunately, Active4D has a powerful system for defining its own methods.

Defining Methods
The simplest way to define a method in Active4D is to declare it inline with the rest of

your code, then reference it sometime later in the flow of execution.

Inline methods “live” only as long as the current invocation of Active4D. This means that

you incur a small performance penalty each time the method is used, because it has to

be parsed and stored in temporary memory before it can be used.

In general, you will only want to use inline methods during testing and debugging,

because there is a much better way of defining and using methods: libraries. Libraries

have many advantages over inline methods and allow you to group many methods

together into one logical unit. They are covered completely in the next chapter,

“Libraries”.

Method Declaration
Whether a method is defined inline or in a library, the syntax for declaring a method is

the same:

This may look complex, but it is actually quite simple. Keep reading.

Method Name

The method name must be a double-quoted literal string which follows the rules for 4D

method names in terms of allowable characters. The maximum length of an Active4D

method name is 255 characters. The double-quotes are necessary to allow you to

include spaces as part of the method name, and to differentiate the method name from

the method keyword.

method "<name>" {({&}$arg1{=expression}
 {...{&}$argN{=expressionN}})}
 <statements>
end method
Chapter 8 Methods 109

Active4D v6.3
Here is a simple Active4D method definition:

Method Parameter Declaration

If a method takes parameters, the parameter list must follow the method name enclosed

in parentheses. Unlike 4D, where method parameters are numbered, Active4D method

parameters are declared by name, with each parameter becoming a local variable with

that name within the body of the method. Parameter names must begin with ‘$’and

follow the rules for local variable names.

Note that there is currently no facility in Active4D for passing a variable number of

parameters. You can simulate this technique by:

3 Passing a reference to an array and accessing the elements of the array

3 Passing a collection and accessing collection items by name

3 Using default parameters, which are covered in the next section

Most of the time default parameters provide the best solution, so you should try to use

them wherever possible.

Method Parameters
Parameters to Active4D methods differ from 4D method parameters in several important

ways.

Parameter Type

There is no typing of parameters, as they are simply local variables with a variant type.

This means you can pass values of different types in the same parameter, as long as the

use of the parameter in the method would not cause any type incompatibilities. If you

want to ensure a parameter is of a particular type, you would have to test its type within

the method using the Type command.

method "sayHello"
 write("Hello world!")
end method

method "multiplyValues"($inValue1; $inValue2)
 return ($inValue1 * $inValue2)
end method
110 Chapter 8 Methods

Active4D v6.3
Here is an example of how you can take advantage of the variant parameter typing:

Scope

Parameters passed to an Active4D method become a local variable within the scope of

the method. Thus, like local variables in 4D, they have no existence outside of the

method body.

Likewise, local variables defined outside of an Active4D method cannot ordinarily be

referenced within the method.

method "writeMany"($inValue; $inHowMany)
 for ($i; 1; $inHowMany)
 writebr($inValue)
 end for
end method

writeMany("Hello world!"; 3)
writeMany(7.13; 2)

// The output:
Hello world!
Hello world!
Hello world!
7.13
7.13

method "paramTest"($inParam)
 $inParam:="bar" // The global $inParam is still "foo"
 writebr($inParam)
end method

$inParam:="foo"
writebr($inParam)
paramTest($inParam)
writebr($inParam)

// The output:
foo
bar
foo

method "localTest"
 write($local) // This generates an 'unknown identifier' error
end method

$local := "foobar"
localTest
Chapter 8 Methods 111

Active4D v6.3
Referencing “Global” Local Variables

Just as in 4D, it is best to pass whatever values a method needs as parameters. But what if

you want to change the value of a local variable which was declared outside of a

method? There are two ways to accomplish this: pass by reference and the global

keyword.

Pass by reference allows you to effectively pass a pointer to a local variable. This is the

preferred way of modifying locals external to the method, and is covered below. But at

times it is preferable to reference an external local variable directly. For example, you

may need to reference or modify many external variables within a method, and it would

be too cumbersome to pass many parameters.

In these cases you may use the global keyword to declare a list of local variables that you

want to make accessible to the method, as in this example:

Note that the global keyword means just what it says: it looks for the named variables in

the global scope. If the variable you want to reference was declared within another

method, you must use global before declaring or first assigning that variable, which

forces it into the global scope, like this:

Pass by Reference

Normally, parameters passed into Active4D methods are passed by value. In other words,

the expression passed into the given parameter is evaluated and the constant value

resulting from the expression is assigned to the parameter.

In addition to pass by value, Active4D also allows you to pass by reference. This powerful

feature is activated by prefixing a parameter in the method argument list with an

ampersand (&).

method "writeNames"
 global($names)

 for($i;1;size of array($names))
 writebr($names{$i})
 end for
end method

array string(80;$ names; 0)
set array($names; "Tom"; "Dick"; "Harry")
writeNames

method "outer"
 global($foo)
 $foo := "bar"
 inner
end method

method "inner"
 global($foo)
 write($foo) // writes "bar"
end method
112 Chapter 8 Methods

Active4D v6.3
Reference parameters are essentially pointers to the entity that was passed into them.

You can pass 4D pointers into Active4D methods, but there are two important ways in

which reference parameters are unlike 4D pointers:

3 You need not explicitly dereference the parameter to access the underlying value

3 You can pass local variables by reference

Any entity that is assignable — including variables, fields, array elements, collection

items and character references — may be passed by reference. You can even pass a

character reference to an array element by reference!

Here is some examples of passing by reference:

As you can see, the combination of 4D pointer support (mainly for tables and fields) and

pass by reference allows you to write highly generic, reusable code within Active4D.

Default Parameters

In 4D, method parameters are numbered. Thus it is easy to pass a variable number of

parameters. In Active4D, parameters are named, so there is another technique for

passing variable number of named parameters. This technique is called default

parameters and is another feature of Active4D borrowed from other languages.

To create a default parameter, append the parameter name with ‘=’ and any expression

which is valid at the point of method declaration. The expression is evaluated once when

the method is first parsed, and the expression’s value is stored with the method

parameter. Within a default parameter expression, you can reference variables, methods,

named constants, etc., as long as they are valid at the point of declaration.

method "paramTest"($inByValue; &$ioByReference)
 ++$inByValue
 ++$ioByReference
end method

$byValue := 7
$byReference := 7
paramTest($byValue; $byReference)

// At this point $byValue still = 7, but $byReference = 8

method "showArray"(&$inArray)
 for ($i;1;size of array($inArray))
 writebr($inArray{$i})
 end for
end method

array longint($longs; 0)
set array($longs; 7; 13; 27)
showArray($longs)

array text($names;0)
set array($names; "Tom"; "Dick"; "Harry")
showArray($names)
Chapter 8 Methods 113

Active4D v6.3
Here is an example:

In the first call to ShowArray, the $inDelimiter parameter is not passed, so Active4D uses

its default value of “
\n”. In the second call to ShowArray, the $inDelimiter parameter

was passed, so the passed value is used.

This is how you would have accomplished the same thing in 4D:

Returning Values

To return a value from a method, use the return keyword, like this:

The return keyword can also be used without a value, but if you return a value the

expression must be enclosed in parentheses. Whether or not you return a value, the

return keyword will immediately exit the method, no matter where in the method it

occurs. This allows you to quickly exit a method when a termination condition is reached,

much as the break keyword allows you to immediately exit a loop. It turns out this is

extremely useful, as it saves you from having to set some kind of “success” flag which you

test after the loop.

method "showArray"(&$inArray; $inDelimiter="
\n")
 writeln(join array($inArray; $inDelimiter))
end method

showArray($myArray) // each element is on a separate line
showArray($myArray;", ") // elements are comma-delimited

C_POINTER($1)
C_STRING(255;$2)

If (Count parameters < 2)
 $2:="
\n"
End if

`And so on

method "concatStrings"($inFirst; $inSecond)
 return ($inFirst + $inSecond)
end method
114 Chapter 8 Methods

Active4D v6.3
Here is an example:

method "findFirstOver"(&inArray; $inCompare)
 for ($i; 1; size of array($inArray))
 if ($inArray{$i} > $inCompare)
 return ($i) // The method terminates and returns $i
 end if
 end for

 // We only get here if the loop completes without a match
 return (-1)
end method
Chapter 8 Methods 115

Active4D v6.3
116 Chapter 8 Methods

. .
CHAPTER 9

Libraries

It is common for programmers to continually build up their own set of utility methods

which they can call upon when needed. In 4D, these methods can be grouped together

either by a name prefix or by placing them in a component.

In Active4D, you can group methods together into a named logical unit called a library.

The library in effect serves as both the component and the name prefix.

Library Search Path
Active4D looks for libraries using the following search path:

3 <Database folder>/Active4D (Standalone/Server)

3 <User home>/Library/Application Support/4D/com.aparajita/Active4D/lib

(Mac OS X)

3 <Disk>:\Users\<user>\AppData\Roaming\4D\com.aparajita\Active4D\lib

(Windows 7 or Vista)

3 <Disk>:\Documents and Settings\<user>\Application Data\4D\com.aparajita\lib

(Windows XP)

3 /Library/Application Support/4D/com.aparajita/Active4D/lib

(Mac OS X)

3 <Disk>:\ProgramData\4D\com.aparajita\Active4D\lib

(Windows 7 or Vista)

3 <Disk>:\Documents and Settings\All Users\Application

Data\4D\com.aparajita\Active4D\lib

(Windows XP)

3 Active4D.bundle/Contents/Resources/lib

Because Active4D will follow the entire search path, you can structure your libraries in a

hierarchy, from the most specific to the most general, by placing them at various points

in the search path.

In addition, you can specify a list of library folders to search in the config file. For more

information, see the documentation for the “lib dirs” setting in the sample Active4D.ini

config file.

Note: Active4D will follow aliases and symbol links on Mac OS X and shortcuts on

Windows.
Chapter 9 Libraries 117

Active4D v6.3
Library Definition
Libraries are special files that can only contain the following entities:

3 import keyword

3 define keyword

3 library keyword

3 end library keyword

3 Method definitions

3 Comments

Any methods within a library file must be enclosed by a library/end library pair. The

library keyword must be followed by a literal string which gives the name of the library.

The library name must match the name of the library’s definition file, minus the file

extension. Libraries may not be nested.

Here is an example library file called “mylib.a4l”:

Importing Libraries
To use the methods in a library, you must first import it. Importing can happen in several

ways:

3 Implictly during startup if the library is a circuit library. For more information on circuit

libraries, see “Circuit libraries and initializers” on page 550.

3 By using the full library.method syntax.

3 By using the import command.

The import command takes a library name as its argument — not a path, but simply the

library name with no filename extension. The import process does the following:

Note: The names “Active4D” and “global” are reserved and may not be used as

library names.

library "mylib"

define(kMyConstant; 7)

method "myMethod"($inMyParam)
 writebr($inMyParam)
end method

method "myConcat"($inText1; $inText2)
 return ($inText1 + $inText2)
end method

end library
118 Chapter 9 Libraries

Active4D v6.3
1 Checks to see if the named library is already loaded into memory. If it has been

nothing more is done.

2 If the library is not in memory, the library search path is followed to find a file called

<lib>.<ext>, where <lib> is the library name in a full <library>.<method> call or the

library name passed to the import command, and <ext> is the currently configured

library extension. For information on the library search path, see “Library Search

Path” on page 117.

3 If the library file is found, it is parsed. Active4D strips out all comments and empty

lines, storing only the body of each method along with information about the

method parameters. In addition, if any constants are defined in the library, they are

stored as well.

4 If the library is parsed successfully, Active4D looks for a method in the library called

“__load__”. If it exists, it is executed.

5 If no errors occurred up to this point, the library name is added to a list of imported

libraries.

6 If any of the above steps fails, an error is generated and execution is aborted, unless

* is passed as a second parameter to the import command, in which case a Boolean

is returned to indicate the success of the import.

If you read the above steps closely, you will notice the following advantages that libraries

have over inline methods:

3 Libraries are only loaded and parsed once during the life of the server (unless you

modify or explicitly unload them). Inline methods are loaded and parsed every time

their page is executed.

3 Comments within an inline method’s page must be parsed every time. Comments and

empty lines in a library are not stored. Thus you may liberally comment library

methods with no performance penalty.

3 The methods in a library are scoped to the library’s name, whereas inline methods are

global in scope. See the next section for more on this.

Import Configuration

Active4D follows a standard search path when attempting to locate a library during

import. If you wish to put your libraries in a directory other than one in the standard

search path, you may add the directory to the “lib dirs” path list in Active4D.ini.

By default the “lib dirs” path list is empty.

When importing a library, by default Active4D appends “.a4l” to the library name and

searches for a file with that name. If you wish to use a different extension for libraries, you

may change it by setting the “lib extension” option in Active4D.ini. The extension must

be a dot followed by no more than five alphanumeric characters.

Import Errors

When parsing a library, if Active4D encounters a error in the syntax of the methods

definitions, it generates an error message with the location and type of syntax error. If

the library is imported as part of an executable request, a standard Active4D error
Chapter 9 Libraries 119

Active4D v6.3
message is generated. If the library is being reloaded asynchronously during a refresh,

the error message is logged.

Automatic Re-Import

Active4D periodically checks to see if the source file for each imported library has been

modified. The interval between checks is set with the “refresh interval” option in

Active4D.ini. If a library’s source file has been modified, it is re-imported automatically, so

there is no need to quit and restart 4D to have the changes take effect.

Library Namespace
Methods and constants defined in a library are stored in memory under the library’s

name. The library name then becomes a namespace that encapsulates all of the methods

defined within it. This allows you to define method names without worrying whether

another developer has chosen to use the same method name. As long as they are in

libraries with different names, you can access each method separately.

Name Resolution

When Active4D encounters a non-4D method name, it first searches all of the imported

libraries for a method with that name. If there is more than one match, an error is

generated and execution is aborted. If there is one and only one match that method is

executed.

If two or more libraries are imported that have a method with the same name, you must

disambiguate the method name by prepending the library name and a dot before the

method name. Otherwise Active4D will stop and tell you that there is an ambiguous

reference to a local method.

For example, suppose you have these two libraries:

Note: Once a library is imported you cannot move its source file to another location

without explicitly flushing the library or restarting the Active4D server.

library "foo"
 method "doSomething"
 return ("Hello from foo")
 end method
end library

library "bar"
 method "doSomething"
 return ("Hello from bar")
 end method
end library
120 Chapter 9 Libraries

Active4D v6.3
To call the two “doSomething” methods, you must do the following:

Library scope

Methods and constants defined within a library may be referenced anywhere within that

library without using the library.entity syntax. In fact, all entity names within a library

take precedence over names external to the library.

This rule leads to the following type of problem:

In this example, the library method showArrayAndSomethingElse calls the method

showArray. Because showArray is defined within the library, that version of the method

takes precedence over the inline showArray method defined outside the library.

The “global” library

In the example above, what if you wanted to reference the inline showArray method

within the library? Fortunately there is a way.

All methods that are defined inline, i.e. in global scope, are placed in a special library

called “global” which is implicitly imported. The global library exists only as long as the

current execution of the interpreter, and cannot be flushed programmatically. Any

attempt to import a library with the name “global” will result in an error, as that name is

reserved.

To reference a global method or constant within a library, you can (and probably should)

use the form global.method or global.constant. This will ensure that the global version

of the entity will be referenced.

writebr(foo.doSomething) `Output is "Hello from foo"
writebr(bar.doSomething) `Output is "Hello from bar"

method "showArray"(&$inArray)
 `Do something here
end method

`Imagine the following is within a separate library file
library "myUtils"

method "showArray"(&$inArray)
 `Do something here
end method

method "showArrayAndSomethingElse"(&$inArray, $inSomethingElse)
 showArray($inArray) `This will call myUtils.showArray()
 write($inSomethingElse)
end method

end library
Chapter 9 Libraries 121

Active4D v6.3
Going back to the example above, to ensure the method

showArrayAndSomethingElse calls the global method showArray, you would write it

like this:

Private methods

If a library method becomes overly long and complex, you may wish to split it up into

several smaller methods. Or there may be several methods within a library that share

common code and you want to factor the common code into a separate method.

However, you don’t want these helper methods to be publicly accessible outside the

library as they have no use by themselves.

You can make a method private to its library by prefixing the method name with an

underscore(“_”). Any attempt to call such a method from outside its library will result in

an error.

For an example of this technique, you can examine the newFromX RowSet library

methods, which use several private helper methods.

Library-private collections

In addition to private methods, libraries also are provided with a private collection in

which to store library-private data. This collection is created automatically when a library

is loaded during import and is cleared when a library is unloaded.

The library-private collection is accessed through the keyword self, which returns a

handle to the collection. The self keyword may only be used within a library method.

Attempting to use it outside of a library method will generate an error. For examples of

how to use self, see “Library Initialization/Deinitialization”.

Because library-private collections cannot be accessed from outside the library, you may

want to provide a debugging method like the following to view self:

method "showArrayAndSomethingElse"(&$inArray, $inSomethingElse)
 global.showArray($inArray) `Calls the inline showArray()
 write($inSomethingElse)
end method

Note: Because the library-private collection is in effect global in scope, if you want to

store another collection within it, it must be a global collection, and you must be sure

to clear that collection in the library’s __unload__ method.

method "dumpData"
 a4d.debug.dump collection(self; \\
 current library name + ": self"; \\
 true)
end method
122 Chapter 9 Libraries

Active4D v6.3
Library Initialization/Deinitialization
There are two special methods you may define within your libraries: __load__ and

__unload__. If present, the __load__ method is executed when a library is loaded

during import. If present, the __unload__ method is executed when a library is

unloaded during a flush (either from a direct command or as part of a refresh).

In conjunction with the self collection, these methods allow you to turn libraries into

completely self-contained components.

For example, it is very common for a database to have lists of options that need to be

presented as HTML lists on a page. In many cases these lists are static, or they come from

the database but change very infrequently. In such cases you can cache the pre-built

HTML option lists in a library that provides methods to return the option lists.

Here is what such a library might look like:

Note the use of a private _loadAll method, which actually does the loading. The reason

for providing such a method is to enable the site administrator to reload the library’s

// Menus library for ORM project

library "orm.menus"

method "__load__"
 _loadAll
end method

method "_loadAll"
 _loadStates
 _loadCountries
 _loadStatuses
end method

method "_loadStates"
 self{"states"} := ""
 array string(2; $codes; 0)
 array string(31; $names; 0)
 split string(a4d.web.kUS_UnsortedStateCodes; ";"; $codes)
 split string(a4d.web.kUS_SortedStateNames; ";"; $names)

 for ($i; 1; size of array($codes))
 $opt := '<option value="$codes{$i}">$names{$i}</option>\n'
 self{"states"} += $opt
 end for
end method

// and so on for the other _load methods

method "getStateMenu"($inCode)
 $value := 'value="$inCode"'
 return (replace string(self{"states"}; $value; \\
 $value + " selected"))
end method
Chapter 9 Libraries 123

Active4D v6.3
cached data through the web by executing a library method from a web page. For

example, we could add the following method to the above library:

Because we factored the loading logic into _loadAll, neither __load__ nor reload will

have to change if the loading logic changes.

Storing collections in library-private data

When storing collections in the library-private self collection, special care has to be

taken, because self is private to the library but persistent in its lifetime. Therefore global

collections must be stored in the self collection.

For example, let us assume that orm.menus._loadStatuses in the library example above

fills a collection with contact status information. To implement this we would have to

make the following changes:

The most important change is the call to _unload in the __unload__ and reload

methods, which ensures the global collection self{"status"} is cleared.

Creating a Poor Man’s Class
Libraries also allow you to create a class-like structure that can be used to make

collections that act sort of like traditional objects. These “objects” act like objects

method "reload"
 _loadAll
end method

method "__unload__"
 _unload
end method

method "reload"
 _unload
 _loadAll
end method

method "_loadStatuses"
 self{"status"} := new global collection
 all records([status])
 distinct values([status]type; $types)

 for ($i; 1; size of array($types))
 $type := $types{$i}
 query([status]; [status]type = $type)
 selection to array([status]code; self{"status"}{$type})
 end for
end method

method "_unload"
 clear collection(self{"status"})
end method
124 Chapter 9 Libraries

Active4D v6.3
because they encapsulate private data, and you can call methods on these objects with

an object-oriented style syntax.

To create a Poor Man’s Class, follow these steps:

1 Create a library (we will use “Foo” in this example) that will act as the class.

2 Make one or more constructor methods (newFoo, newFooFromBar, etc.). In the

process of construction you create a collection which becomes the "object".

3 Make sure the collection has an item called "__class__" whose name matches the

library name. It is best to use the current library name command for this.

4 If you want the object’s data to be private — which you should, as good object-

oriented design dictates you should force data access to go through methods —

prefix the key names with an underscore, which prevents them from being accessed

outside of the object’s library/class. So, for example, if the newFromBar constructor

took a bar parameter, you would store it like this:

5 Return the collection handle to the caller from the constructor, that is the object

reference.

6 To define object methods, define methods with a first parameter called $self, which

will receive the object reference (which is actually a collection handle). For example:

7 Given an object reference, you can call a method on that object using the

dereference operator (this syntax is taken from C++/PHP), like this:

When Active4D sees ->, it transforms:

 $object->method(params)

internally into:

 $object{"__class__"}.method($object; $params)

$object{"_bar"} := $inBar

method "setBar"($self; $inBar)
 $self{"_bar"} := $inBar
end method

method "getBar"($self)
 return ($self{"_bar"})
end method

$foo := Foo.newFromBar("foobar")
write($foo->getBar)
$foo->setBar("barfoo")
Chapter 9 Libraries 125

Active4D v6.3
So here is our complete Foo class:

Limitations

There is a reason these are called “Poor Man’s Classes”. Real classes have inheritance, real

constructors, destructors, and so on. In traditional terms, this technique is actually object-

based programming, not object-oriented programming. Someday in the future we will

have real classes and objects in Active4D, but for now this technique is quite sufficient to

implement many object-oriented techniques into your applications.

For good examples of Poor Man’s Classes, take a look at the source code for RowSets and

Breadcrumbs, both of which use this technique extensively.

library "Foo"

method "new"
 return (_init(""))
end method

method "newFromBar"($inBar)
 return (_init($inBar))
end method

method "_init"($inBar)
 $object := new collection("__class__"; current library name;\\
 "_bar"; $inBar)
 return ($object)
end method

method "setBar"($self; $inBar)
 $self{"_bar"} := $inBar
end method

method "getBar"($self)
 return ($self{"_bar"})
end method

end library
126 Chapter 9 Libraries

. .
CHAPTER 10

Event Handlers

In the course of executing a script, there are well-defined points at which a developer

would like have some control.

Active4D recognizes special event handler methods which are executed before and after

various “events.” To be activated, these event handler methods must be defined in a

special library called “Active4D.<lib>”, which must reside in an Active4D directory. The

“<lib>” extension must be whatever you have configured the library extension to be in

the Active4D.ini file. By default the library extension is “.a4l”.

As with the config files, you may have multiple copies of the Active4D library in different

directories in the search path. An Active4D library at the beginning of the search path

will override one later in the search path.

Event Handler Methods
The event handler methods are outlined below. In addition to these, you may define and

call other methods within the Active4D library just as you would with any library.

Each handler is executed within a certain context which determines what data is

accessible within the handler. For example, handlers that execute within the context of

an HTTP request have access to all HTTP request and response collections which

Active4D creates.

In order of execution (from startup to shutdown), the event handler methods are:

On Application Start

This handler is executed when 4D first starts up or after the Active4D server has been

restarted. This handler is analogous to the On Startup database method in 4D.

The only Active4D collection you have access to in this handler is the globals collection.

In addition, you can reliably read the following variables:

Note: You need not define an event handler if you are not going to use it.

Variable Description

<>A4D_HostAddr IP address of host on which Active4D is running

<>A4D_HostPort Port on which web server is listening
Chapter 10 Event Handlers 127

Active4D v6.3
On Request

This handler is executed just before the Active4D HTTP server handles a request, before

Active4D parses the request URL.

The handler is passed the path portion of the URL. The _query collection (or _form

collection if “parameter mode” is set to “form variables” in Active4D.ini) is populated with

the contents of the request’s query (if any), and is set to read-write mode so that you can

directly modify the query.

Within the handler, there are several actions you can take:

3 Leave the URL unchanged: If you do not return any value or return an empty string,

the URL is left unchanged.

3 Change the URL: If you wish to change the URL, you may do so by returning a non-

empty string. The URL must be non-URL encoded Unicode.

3 Modify the query: If you wish to modify the query, you may directly modify the

contents of the built in _query collection (or _form collection if “parameter mode” is set

to “form variables” in Active4D.ini).

3 Reject the request: You may refuse the request altogether by calling set response

status with a status other than 200 (OK), such as 404 (Not Found) or 303 (See Other). If

you set the response status to something other than 200, you do not need to return a

result.

3 Redirect: You may redirect to another URL by setting a response of 303 (See Other) or

301 (Moved Permanently) and setting a “Location” response header with the full target

URL (including query), which should be url encoded UTF-8. If you do a redirect in this

way, you do not need to return a result.

<>A4D_HostType Type of TCP/IP host (“4D”, “NTK”)

<>A4D_ClientIsWebServer True if serving on 4D Remote

Variable Description
128 Chapter 10 Event Handlers

Active4D v6.3
Here is what an On Request handler might look like:

The request info, request cookies, response headers and response cookies collections are

accessible within this handler. This allows you to check things like the host, set cookies,

etc.

On Authenticate

When Active4D determines that the current request is in a protected realm, if this event

handler is defined it is invoked before the On Session Start and On Execute Start event

handlers.

// We want to change "/products/show?id=13"
// into "/index.a4d?action=show;id=13"

method "On Request"($inURL)
 // The URL is in the form /<circuit>/[<action>][?<query>].
 // If there is a dot in the filename, assume it is a
 // non-executable resource, and return the url as is.
 $circuit := directory of($inURL; *)
 $action := filename of ($inURL)

 if ("." !~ $action)
 // If the url has only a circuit name with no trailing slash,
 // $circuit will be empty and $action has the circuit name.
 // In that case call the main action on the circuit.

 if (length($circuit) = 0)
 if (length($action) > 0)
 $circuit := $action
 $action := "main"
 end if
 else
 $circuit := substring($circuit; 2)

 if (length($action) = 0)
 $action := "main"
 end if
 end if

 if (length($circuit) > 0)
 _query{fusebox.conf.fuseaction} := '$circuit.$action'
 end if

 return ("/index.a4d")
 end if
end method
Chapter 10 Event Handlers 129

Active4D v6.3
Here is what a sample On Authenticate handler might look like:

In this example we are using a table that defines all of the users and passwords for each

realm. If we find a match, we check the passwords to make sure the capitalization is

exactly the same. If there is no match, we authenticate again.

Be sure to pass along an authentication failure message with the authenticate

command, either by writing directly to the response buffer, by including another file, or

by utilizing the standard HTTP error handling mechanism as described in “HTTP Error

Handling” on page 63. When the authenticate command returns, the HTTP status code

is 401.

Within this handler you may access all of the Active4D collections.

On Session Start

This handler is executed when a new user (one with no current session) makes a

successful HTTP request (one with a result code of 200 OK), before the On Execute Start

handler.

For example, here is an On Session Start handler that initializes three items in a session:

method "On Authenticate"
 if (auth user = "")
 authenticate
 else
 query([security];[security]realm = current realm;*)
 query([security];&;[security]username = auth user;*)
 query([security];&;[security]password = auth password)

 case of
 : (records in selection([security]) = 0)
 authenticate
 : (not(identical strings([security]password; \\
 auth password)))
 authenticate
 end case
 end if
end method

Note: Whether or not you set any session items in On Session Start, if this event

handler is defined a new session will always be created for each new visitor to your

site. Therefore you should only define this method if your intention is to track each

new visitor through a session.

method "On Session Start"
 session{"start"} := 1
 session{"recsPerPage"} := 10
 session{"sortAscending"} := true
end method
130 Chapter 10 Event Handlers

Active4D v6.3
The first time a user makes a request from your site, these three session items will be set.

For more information on sessions, see “Sessions” on page 343.

If you want to initialize new sessions only when a certain event occurs, such as a

successful user login, do not use this handler. Rather, initialize your session at the point at

which you determine one is needed.

You can use the requested url command to determine which part of your web site was

accessed, thus determining how to initialize the session. You may also use the redirect

command to force all new sessions to go to a login page, for example.

For the redirect trick to work, if you are using session cookies the user must have cookies

on, otherwise you will end up in an endless loop. To prevent this, in the redirect page you

must check for the presence of the session cookie, and if it is not there you must then

redirect to a static HTML page (not an executable page!) which tells the user they must

turn cookies on.

Within this handler you may access all of the Active4D collections.

On Execute Start

This handler is executed before Active4D begins execution. Typical uses for this handler

would include dumping some debugging information, or initializing timing information.

Because this handler is executed before the requested file is parsed, any HTML you write

to the response buffer will appear before the opening <html> tag. It is possible that some

browsers may not like this, although both Internet Explorer and Netscape seem to

handle it without problems.

Within this handler you may access all of the Active4D collections.

On Execute End

This handler is executed after Active4D completes execution, unless the redirect

command was called.

Within this handler you may access all of the Active4D collections.

On Session End

This handler is executed when a session goes to heaven (if it has been good), either

because it timed out, it was expired with the abandon session command, the Active4D

server has been restarted, or because the server is shutting down.

Typically you would use this handler to clean up data that was stored during the course

of the user’s session. For example, if the user uploaded a file and you stored the path to

the file in the session, when the session times out you would use this handler to delete

the file.

Note: On Session End is not invoked if you are using a custom session handler. For
more information, see “Session Handlers” on page 348.
Chapter 10 Event Handlers 131

Active4D v6.3
Because this handler is executed asynchronously at idle time, the only Active4D

collection you have access to is the globals collection, as there is no request context.

However, the about-to-be-purged session is made current and you can access all of its

data one last time before kissing it goodbye.

There are a couple of important points to note in regards to this handler:

3 If you wish to identify a session persistently, always use session internal id, as the

result of session id is undefined in this handler.

3 There is no deterministic way of knowing when this handler will run. The only thing

you know for sure is that it will run sometime after a session expires.

3 If multiple sessions have expired when a session purge cycle begins, this handler will

be run once for each session. However, there is no deterministic way of knowing the

order in which the sessions will be handled.

On Application End

This handler is executed just before the server shuts down, either when 4D is shutdown

or when the Active4D server is restarted. This handler is analogous to the On Exit

database method in 4D.

The only Active4D collection you have access to in this handler is the globals collection.

Modifying the Active4D Library
Because the Active4D library has event handlers that are run only at application start and

application shutdown, it is not automatically reloaded when it is modified.

If you want to change the methods in the Active4D library while 4D is running, delegate

the Active4D methods to another library. For example, you can create another library

called “_active4d.a4l”, move your event handling code there, and do this in Active4D.a4l:

This technique allows you to make modifications to the event handling code without

affecting the Active4D library itself. Because the “_active4d” library is a normal library,

when you modify the code in that library, the library will automatically be reloaded.

method "On Request"($inURL)
 return (_active4d.onRequest($inURL))
end method

method "On Authenticate"
 _active4d.onAuthenticate
end method

// and so on
132 Chapter 10 Event Handlers

. .
CHAPTER 11

Command Reference

Active4D implements over 460 commands that provide unparalleled power and

simplicity to web site programming. Of these commands, over 170 are 4D commands.

The remaining 300 commands are specific to Active4D.

4D Commands
Following is a list of the 4D commands implemented by Active4D. Unless indicated by

the formats noted below, they take the same parameters and work exactly as they do in

4D.

3 Commands in bold have been enhanced by Active4D.

3 Commands in italics have a limitation relative to the 4D v11+ version.

Any commands which were added or extended in 4D v11+ are implemented in their

extended form in Active4D.

Using a Default Table

You cannot use a default table in Active4D. All commands that may take a table in 4D

must be given one in Active4D.

Note: Unlike 4D, the 4D commands used by Active4D are always in English. If you are

using a foreign language version of 4D, please be aware that you will have to use

English commands and named constants in Active4D.
Chapter 11 Command Reference 133

Active4D v6.3

4D Commands Supported by Active4D
Abs

Add to date

ADD TO SET

ALL RECORDS

Append document

APPEND TO ARRAY

ARRAY BLOB

ARRAY BOOLEAN

ARRAY DATE

ARRAY INTEGER

ARRAY LONGINT

ARRAY PICTURE

ARRAY POINTER

ARRAY REAL

ARRAY STRING

ARRAY TEXT

ARRAY TIME

Ascii

AUTOMATIC RELATIONS

Average

Before selection

BLOB size

BLOB TO DOCUMENT

BLOB to longint

BLOB to text

C_BLOB

C_BOOLEAN

C_DATE

C_LONGINT

C_PICTURE

C_POINTER

C_REAL

C_STRING

C_TEXT

C_TIME

CANCEL TRANSACTION

Char

Character code

CLEAR NAMED SELECTION

CLEAR SEMAPHORE

CLEAR SET

CLEAR VARIABLE

CLOSE DOCUMENT

Command name

COPY ARRAY

COPY DOCUMENT

COPY NAMED SELECTION

COPY SET

Count fields

Count in array

Count tables

Create document

CREATE EMPTY SET

CREATE FOLDER

CREATE RECORD

CREATE SELECTION FROM ARRAY

CREATE SET

CREATE SET FROM ARRAY

Current date

Current method name

Current process

Current time

CUT NAMED SELECTION

Date

Day number

Day of

Dec

DELAY PROCESS

DELETE DOCUMENT

DELETE ELEMENT

DELETE FOLDER

DELETE FROM ARRAY

DELETE RECORD

DELETE SELECTION

Delete string

DIFFERENCE

DISTINCT VALUES

DOCUMENT LIST

DOCUMENT TO BLOB

End selection

EXECUTE

False

Field

Field name

Find in array

Find in field

Find index key

FIRST RECORD

FOLDER LIST

Get character code

Get document position

Get document size

GET FIELD PROPERTIES

Get indexed string

Get last field number

Get last table number

GET PICTURE FROM LIBRARY

Get pointer

GOTO RECORD

GOTO SELECTED RECORD

INSERT ELEMENT

INSERT IN ARRAY

Insert string

Int

INTERSECTION

Is field number valid

Is in set

Is table number valid

ISO to Mac (deprecated)

LAST RECORD

Length

LIST TO ARRAY

LOAD RECORD

Locked

LONGINT TO BLOB

Lowercase

Max

Milliseconds

Min

Month of

MOVE DOCUMENT

NEXT RECORD

Nil

Not

Num

ONE RECORD SELECT

Open document

ORDER BY

ORDER BY FORMULA
134 Chapter 11 Command Reference

Active4D v6.3

4D Commands Supported by Active4D (cont.)
PICTURE PROPERTIES

Picture size

Position

PREVIOUS RECORD

QUERY

QUERY BY FORMULA

QUERY SELECTION

QUERY SELECTION BY FORMULA

QUERY SELECTION WITH ARRAY

QUERY WITH ARRAY

Random

READ ONLY

Read only state

READ PICTURE FILE

READ WRITE

RECEIVE PACKET

Record number

Records in selection

Records in set

Records in table

REDUCE SELECTION

RELATE MANY

RELATE MANY SELECTION

RELATE ONE

RELATE ONE SELECTION

REMOVE FROM SET

Replace string

Resolve path

RESOLVE POINTER

Round

SAVE RECORD

SCAN INDEX

Selected record number

SELECTION RANGE TO ARRAY

SELECTION TO ARRAY

Semaphore

SEND PACKET

Sequence number

SET AUTOMATIC RELATIONS

SET BLOB SIZE

SET DEFAULT CENTURY

SET DOCUMENT POSITION

SET QUERY DESTINATION

SET QUERY LIMIT

Size of array

SLEEP

SORT ARRAY

START TRANSACTION

String

STRING LIST TO ARRAY

Structure file

Substring

Sum

Table

Table name

Test path name

Test semaphore

TEXT TO BLOB

Tickcount

Time

Time string

Trunc

True

Type

Undefined

UNION

UNLOAD RECORD

Uppercase

USE NAMED SELECTION

USE SET

VALIDATE TRANSACTION

WRITE PICTURE FILE

Year of
Chapter 11 Command Reference 135

Active4D v6.3
Active4D Commands
Active4D implements almost 300 of its own commands. Most are focused on web

programming. Some are additions to the 4D language that we have always wanted. The

bottom line is this: if you learn these new commands, you will be far more productive. So

please take the time to learn them!
136 Chapter 11 Command Reference

Active4D v6.3

Active4D Commands
_form

_query

_request

abandon response cookie

abandon session

add datetime to json

add element

add function to json

add rowset to json

add selection to json

add to json

add to timestamp

append to array

auth password

auth type

auth user

authenticate

auto relate

base64 decode

base64 encode

blob to collection

blob to session

blowfish decrypt

blowfish encrypt

buffer size (deprecated)

build query string

call 4d method

call method

capitalize

cell

choose

clear array

clear buffer (deprecated)

clear collection

clear response buffer

collection

collection has

collection to blob

compare strings

concat

configuration

copy collection

copy upload

count collection items

count form variables

count globals

count query params

count request cookies

count request infos

count response cookies

count response headers

count session items

count uploads

current file

current library name

current line number

current path

current platform

current realm

day of year

deep clear collection

deep copy collection

default directory

define

defined

delete collection item

delete global

delete response cookie

delete response header

delete session item

directory exists

directory of

directory separator

enclose

end json array

end json object

end save output

execute in 4d

extension of

file exists

filename of

fill array

first not of

first of

form variables

form variables has

format string

full requested url

get auto relations

get cache control

get call chain

get collection

get collection array

get collection array size

get collection item

get collection item count

get collection keys

get content charset

get content type

get current script timeout

get error page

get error status

get expires

get expires date

get field numbers

get field pointer

get form variable

get form variable choices

get form variable count

get form variables

get global

get global array

get global array size

get global item

get global keys

get http error page

get item array

get item key

get item type

get item value

get library list

get license info

get local

get log level

get output charset

get output encoding

get platform charset

get query param

get query param choices
Chapter 11 Command Reference 137

Active4D v6.3

Active4D Commands (cont.)
get query param count

get query params

get request cookie

get request cookies

get request info

get request infos

get request value

get response buffer

get response cookie

get response cookie domain

get response cookie expires

get response cookie path

get response cookies

get response header

get response headers

get response status

get root

get script timeout

get session

get session array

get session array size

get session item

get session names

get session stats

get session timeout

get throw code

get throw message

get time remaining

get timestamp datetime

get upload content type

get upload encoding

get upload extension

get upload remote filename

get upload size

get utc delta

get version

global

globals

globals has

hide session field

html encode

identical strings

import

in error

include

include into

insert into array

interpolate string

is a collection

is an iterator

is array

join array

join paths

json encode

json to text

last not of

last of

left trim

library list

load collection

local datetime to utc

local time to utc

local variables

lock globals

log message

longint to time

mac to html

max of

md5 sum

merge collections

method exists

min of

more items

multisort arrays

multisort named arrays

native to url path

new collection

new global collection

new json

new local collection

next item

nil pointer

param text

parameter mode

parse json

query params

query params has

random between

redirect

regex callback replace

regex find in array

regex find all in array

regex match

regex match all

regex quote pattern

regex replace

regex split

request cookies

request info

request query

requested url

require

resize array

response buffer size

response cookies

response headers

right trim

save collection

save output

save upload to field

session

session has

session id

session internal id

session local

session query

session to blob

set array

set cache control

set collection

set collection array

set content charset (deprecated)

set content type

set current script timeout

set error page

set expires

set expires date

set global

set global array
138 Chapter 11 Command Reference

Active4D v6.3

Active4D Commands (cont.)
set http error page

set local

set log level

set output charset

set output encoding

set platform charset

set response buffer

set response cookie

set response cookie domain

set response cookie expires

set response cookie path

set response header

set response status

set script timeout

set session

set session array

set session timeout

slice string

split path

split string

start json array

start json object

throw

time to longint

timestamp

timestamp date

timestamp day

timestamp difference

timestamp hour

timestamp millisecond

timestamp minute

timestamp month

timestamp second

timestamp string

timestamp time

timestamp year

trim

type descriptor

unlock globals

upload to blob

url decode

url decode path

url decode query

url encode

url encode path

url encode query

url to native path

utc to local datetime

utc to local time

variable name

week of year

write

write blob

write gif

write jpeg

write jpg

write json

write jsonp

write raw

write to console

writebr

writeln

writep
Chapter 11 Command Reference 139

Active4D v6.3
Command Syntax
The commands in this chapter are listed with the same basic format that the 4D

documentation uses, with a few small differences:

3 Commands unique to Active4D are all lowercase to distinguish them from 4D

commands which have been implemented by Active4D.

3 Parameters have a prefix to indicate what happens to them within the body of the

method. The prefix “in” means the value of the parameter is read but not written. The

prefix “io” means the value is both read and written. The prefix “out” means the value is

written, replacing any existing value.

Unicode and Charsets
Because Unicode is used throughout Active4D, there are times when a command needs

to convert text to or from Unicode. In those cases an inCharset parameter is provided,

which should be a valid IANA character set name (or alias). For a list of IANA character set

names and aliases, see:

http://demo.icu-project.org/icu-bin/convexp?s=IANA&s=ALL
140 Chapter 11 Command Reference

Arrays Active4D v6.3
Arrays

Active4D adds several commands and an extended syntax which make working with

arrays much easier. It will pay many times over for you to learn and use these commands.
Chapter 11 Command Reference 141

Active4D v6.3 Arrays
Discussion

Active4D adds a new syntax for appending elements to an array. If you use an empty

index with an array, a new element is appended to the array and the index is set to the

newly appended element.

This allows you to add items to an array in a very simple way, like this:

Discussion

Active4D adds a new syntax for referencing elements relative to the end of an array.

By using a negative index, you index array elements from the end of the array, with -1

being the last element and -Size of array being the first element.

For example, to reference the last element of an array, you can simply do this:

{} (appending index) version 4.0

<array>{}

array longint($longs; 0)
$longs{} := 7 // same as append to array($longs; 7)
$longs{} := 13 // same as append to array($longs; 13)

// $longs now contains 2 elements, 7 and 13

{-<index>} (from end index) version 4.5

<array>{-<index>}

$myArray{-1} := 7

// old way, which one is easier?
$myArray{size of array($myArray)} := 7
142 Chapter 11 Command Reference

Arrays Active4D v6.3
Discussion

This command appends one or more empty elements to ioArray. If inHowMany is

omitted, one element is appended to the end of ioArray. The element appended to the

array is initialized to the default value for the array’s type. This command is essentially

shorthand for the following standard 4D statement:

Discussion

This command appends one or more values to the existing contents of ioArray. If a value

is not assignment compatible with ioArray, an error is generated and execution is

aborted.

Unlike the 4D version of this command, in Active4D you can append multiple values at

once, like this:

add element version 1

add element(ioArray {; inHowMany})

Parameter Type Description

ioArray Array  The array to which you want to

append elements

inHowMany Number  How many elements to append

insert element($ioArray; size of array($ioArray) + 1; $inHowMany)

append to array version 1 (modified v2)

append to array(ioArray; inValue {; inValueN})

Parameter Type Description

ioArray Array  The array to which you want to

append elements

inValue <any>  Elements to append

append to array($array; "one"; "two"; "three")

Note: If you want to unconditionally set the contents of an array when it is declared,

it is easier to use the extended array declaration syntax. If you want to reset the

contents of an array after it has been created, as opposed to appending, you might

want to use the set array command.
Chapter 11 Command Reference 143

Active4D v6.3 Arrays
Discussion

This command allows you to declare or resize an array and define its elements in one

statement.

If type is a STRING or TEXT, the values are automatically converted to the appropriate

type with the default string conversion. For all other types, if a value is not assignment

compatible with type, an error is generated and execution is aborted.

If you are running Active4D in 4D v14 or later, the ARRAY BLOB and ARRAY TIME

commands may be used to create BLOB and Time arrays. Except where noted, you may

use an element of a BLOB or Time array anywhere a command is documented as taking

or returning a BLOB or Time.

Examples

ARRAY <type>
4D version 3

version 1 (modified v6.1r6)

ARRAY <type>({inStringWidth; } outArray; *; inValue {; inValueN})

Parameter Type Description

inStringWidth Number  Width for fixed string elements

outArray Array  The array to be created/resized

* *  Indicates inline value setting

inValue <any>  Elements to set

Note: As with 4D in Unicode mode, ARRAY STRING actually creates ARRAY TEXT.

Note: If you attempt to use these commands with an earlier version of 4D, an error is

generated and execution is aborted.

// 4D way
array text($items; 3)
$items{1} := "one"
$items{2} := string(current date)
$items{3} := string(?07:27:13?)

// easier Active4D way
array text($items; 0)
set array($items; "one"; string(!04/13/64!); string(?07:27:13?))

// easier way
array text($items; *; "one"; !04/13/64!; ?07;27;13?)
144 Chapter 11 Command Reference

Arrays Active4D v6.3
Discussion

This command resizes one or more arrays to zero elements.

Discussion

If inStart and inEnd are not passed, this command works exactly like it does in 4D.

If inStart and inEnd are passed, ioDestArray will receive a copy of that subrange of

elements.

If inStart is zero, elements are copied starting at the zero element of ioDestArray,

otherwise elements are copied starting at the first element of ioDestArray.

clear array version 2

clear array(ioArray {; …ioArrayN})

Parameter Type Description

ioArray Array  Array to clear

COPY ARRAY
(modified 4D) version 3

version 4.0

COPY ARRAY(inSourceArray; ioDestArray {; inStart; inEnd})

Parameter Type Description

inSourceArray Array  Array from which to copy

ioDestArray Array  Array to receive copied elements

inStart Number  Starting element to copy

inEnd Number  Ending element to copy
Chapter 11 Command Reference 145

Active4D v6.3 Arrays
Discussion

This command differs from the 4D version of this command in that you can pass inStart

to specify where to start searching for inValue.

If inStart is not passed, it defaults to 1. If inStart is less than zero, it is pinned to zero. If it is

greater than the size of inArray, the result will be zero.

Discussion

This command fills an array with a sequence of values. In its simplest form, you can just

pass an array and an integral number. In that case the array will be filled with a sequence

of values from 1 to inStart inclusive, starting at element 1 of ioArray.

If ioArray does not exist when this command is called, it is created as a Real array.

If both inStart and inEnd are passed, the sequence will start at inStart and increment by 1

until Abs(step) > Abs(inEnd). If inStep is passed, the sequence will start at inStart and

increment by inStep until Abs(step) > Abs(inEnd). All of these parameters may be non-

integral.

If inArrayStart is passed, the sequence begins at that element. If inArrayStart > Size of

array(ioArray), the array is extended accordingly.

Count in array (modified 4D) v5

Count in array(inArray; inValue {; inStart}) Number

Parameter Type Description

inArray Array  Array to search

inValue Array  Value to search for

inStart Number  Element at which to start searching

Result Number  Occurrences of inValue

fill array version 4.0

fill array(ioArray; inStart {; inEnd {; inStep {; inArrayStart}}})

Parameter Type Description

ioArray Longint/Real array  The array to fill

inStart Number  Starting number in sequence or size of

sequence

inEnd Number  Ending number in sequence

inStep Number  Difference between steps in sequence

inArrayStart Number  Where to start filling array
146 Chapter 11 Command Reference

Arrays Active4D v6.3
Examples

Discussion

This command inserts one or more values into the existing contents of ioArray. The first

inserted value will be element inWhere. If inWhere > Size of array(ioArray), the values are

appended.

If a value is not assignment compatible with ioArray, an error is generated and execution

is aborted.

// fill an array with numbers 1-100
fill array($array; 100)

// fill an array with numbers 10 to -10
fill array($array; 10; -10; -1)

// fill an array with numbers from 1 to 2.5 by .5
fill array($array; 1; 1; 2.5; .5)

insert into array version 4.0

insert into array(ioArray; inWhere; inValue {; inValueN})

Parameter Type Description

ioArray Array  Array into which to insert

inWhere Number  Element before which values are

inserted

inValue..inValueN <any>  Values to insert
Chapter 11 Command Reference 147

Active4D v6.3 Arrays
Discussion

This command returns true if the given variable type is an array type. It is shorthand for

the following test:

Discussion

This command joins the elements of inArray together into a single string. Non-textual

array elements are automatically converted to text.

If inStart is not specified, it defaults to 1.

If inPrefixNum is not specified, it defaults to False. If it is specified and True, each element

is prefix by “{#} ”, where # is the element number.

If inQuoteText is not specified, it defaults to False. If it is specified and True, elements of

text or string arrays are surrounded by double quotes.

is array version 2

is array(inType) Boolean

Parameter Type Description

inType Longint  The type to test

Result Boolean  True if given type is an array type

// 4D way
$isArray := ((type($var) >= Array 2D) & \\
 (type($var) <= Boolean array))

// Active4D way
$isArray := is array(type($var))

join array version 2

join array(inArray; inSeparator {; inStart {; inPrefixNum {; inQuoteText}}}) Text

Parameter Type Description

inArray Array  The array to join

inSeparator Text  The text to insert between elements

inStart Number  The element to begin joining from

inPrefixNum Boolean  True to prefix the element number

inQuoteText Boolean  True to quote-enclose elements of

Text or String arrays

Result Text  Concatenation of array elements
148 Chapter 11 Command Reference

Arrays Active4D v6.3
Here are some examples:

This command is especially useful for writing the contents of an array to the Active4D

debugging console. Use this form:

Discussion

This command performs a multilevel sort on the elements of inArray1 through inArrayN.

The direction of the sort for each array is specified by the the inDirection argument

following the array:

You may sort any array type except for picture arrays and pointer arrays. The arrays may

be local, process, or interprocess variables.

The sort direction may be one of the operators ‘>’, ‘<‘ and ‘=’, or may be any text

expression which resolves to one of those characters. This allows you to

programmatically set the direction of the sort.

array longint($longs;0)
set array($longs; 7; 13; 27)
writebr(join array($longs; ", "))

array text($nums;0)
set array($nums; "one"; "two"; "three")
writebr(join array($nums; "
"; 1; true; true))

// Here is the output in the browser
7, 13, 27
{1} "one"
{2} "two"
{3} "three"

write to console(join array($array; "\r"; 1; true; true))

multisort arrays version 3.0

multisort arrays(inArray1; inDirection1 {; …inArrayN; inDirectionN})

Parameter Type Description

inArray Array  The array to sort

inDirection <>= or Text  The sort direction

Character Direction

> Ascending

< Descending

= Don’t care, follow array to left
Chapter 11 Command Reference 149

Active4D v6.3 Arrays
Discussion

This command is identical to multisort arrays, except that instead of passing direct array

references, you pass text expressions which resolve to the names of arrays. This allows

you to programmatically determine both the order and direction of the sort.

The arrays names should begin with ‘$’ to indicate a local array, ‘<>’ to indicate an

interprocess array, and no prefix to indicate a process array.

Discussion

This command resizes ioArray to the given size. If inSize is less than zero, the array will be

resized to zero.

Discussion

These commands have been enhanced in that the array arguments may be any valid

array reference, including collection items which do not yet exist. This allows you to load

data directly into collections (including built in collections like session), like this:

multisort named arrays version 3.0

multisort named arrays(inArrayName1; inDirection1 {; …inArrayNameN; inDirectionN})

Parameter Type Description

inArrayName Text  The name of an array to sort

inDirection <>= or Text  The sort direction

resize array version 3.0

resize array(ioArray; inSize)

Parameter Type Description

ioArray Array  The name of an array to sort

inSize Number  The new size of the array

SELECTION/SELECTION RANGE TO ARRAY
(modified 4D) version 2

modified version 4.0

SELECTION TO ARRAY
SELECTION RANGE TO ARRAY

selection to array([ingredients]id; session{"ids"}; \\
 [ingredients]name; session{"names"}; \\
 [vendors]name; session{"vendors"})
150 Chapter 11 Command Reference

Arrays Active4D v6.3
Discussion

This command replaces the existing contents of ioArray with one or more values. If a

value is not assignment compatible with ioArray, an error is generated and execution is

aborted.

This command is the fastest way to initialize an array to a known set of values. For

example:

set array version 2

set array(ioArray; inValue {; inValueN})

Parameter Type Description

ioArray Array  The array which you want to set to the

given elements

inValue <any>  Elements to set

array longint($primes;0)
set array($primes; 2; 3; 5; 7; 11; 13)
Chapter 11 Command Reference 151

Active4D v6.3 BLOBS
BLOBS

The BLOB commands supported by Active4D function exactly as they do in 4D. Active4D

adds two named constants for use with the LONGINT TO BLOB and BLOB to longint

commands:

3 Intel byte ordering: This is the equivalent of the 4D named constant PC byte ordering.

3 PPC byte ordering: This is the equivalent of the 4D named constant Macintosh byte

ordering.

You should prefer the Active4D equivalents over the 4D constants because they avoid

the confusion arising from the fact that all new Macintoshes have used so-called “PC

byte ordering” for several years, ever since the move to Intel processors.
152 Chapter 11 Command Reference

Collections Active4D v6.3
Collections

The collection commands allow you to create, manipulate, examine and destroy your

own local (temporary) or global (persistent) collections within your scripts.

For more information on collections, see “Collections” on page 99.

Note: Many of the collection commands are no longer necessary as they have been

replaced with the extended indexing syntax, which is much easier to use. They have

been retained for backwards compatibility. For more information, see “Referencing

Collection Values” on page 101.

Note: In previous versions of Active4D, collection keys were kept in alphabetical

order, although officially no order was guaranteed. In v6 the keys are kept in no

predictable order, so if you have code that relies on alphabetical keys, you will have to

get the collection keys, sort them, and then use the sorted keys to access the

collection items.
Chapter 11 Command Reference 153

Active4D v6.3 Collections
Discussion

Given a collection, this command returns an iterator to the first item in the collection.

For more information on iterators, see “Iterators” on page 214.

Discussion

This command creates a new local or global collection and returns a handle to the

collection. You then use this handle with the other collection commands.

If no * is passed, this command is exactly equivalent to new local collection. If * is

passed, this command is exactly equivalent to new global collection.

You may also initialize the collection with key/value pairs by passing pairs of parameters.

If an array is passed as the value, it is stored in its entirety in the item.

For example, this code would create a local collection and initialize it with two items:

collection version 2

collection(inHandle) Longint

Parameter Type Description

inHandle Longint  Collection handle

Result Longint  Iterator reference

new collection
version 2

modified version 3.0

new collection{(* {; inKey; inValue {; inKeyN; inValueN}})} Longint

Parameter Type Description

* *  Pass to create a global collection

inKey Text  Item key

inValue <any>  Item value

Result Longint  Collection handle

$person := new collection("name"; [People]Name; \\
 "age"; [People]Age)
154 Chapter 11 Command Reference

Collections Active4D v6.3
Discussion

This command creates a new local collection and returns a handle to the collection. You

then use this handle with the other collection commands. This command is exactly

equivalent to new collection.

A collection created with this command is automatically cleared by Active4D when the

script finishes execution.

Discussion

This command creates a new global collection and returns a handle to the collection.

You then use this handle with the other collection commands. This command is exactly

equivalent to new collection(*).

A collection created with this command remains in memory until the server shuts down

or until it is deleted with clear collection or deep clear collection.

new local collection version 2

new local collection{(inKey; inValue {; inKeyN; inValueN})} Longint

Parameter Type Description

iinKey Text  Item key

inValue <any>  Item value

Result Longint  Collection handle

Warning: You should always assign a local collection handle to a local variable or

local collection item in the same scope.

new global collection
version 2

modified version 3.0

new global collection{(inKey; inValue {; inKeyN; inValueN})} Longint

Parameter Type Description

inKey Text  Item key

inValue <any>  Item value

Result Longint  Collection handle

Warning: Be sure to store the handle in a place where you can retrieve it later, such

as in the globals collection.
Chapter 11 Command Reference 155

Active4D v6.3 Collections
Discussion

This command serializes the data in the collection referenced by inRef. If ioBlob is passed,

the serialized data is appended to ioBlob and nothing is returned. If ioBlob is not passed,

the serialized data is returned as a new BLOB. In either case, you can store the BLOB

somewhere for later restoral via blob to collection.

To recursively serialize a collection, use the library method a4d.utils.collectionToBlob.

Discussion

This command creates a new collection from the serialized collection data contained in

inBLOB. If ioOffset is passed, the serialized data must begin at that byte offset within

inBLOB. After the collection is successfully deserialized, ioOffset will point to the first byte

beyond the serialized data.

If inBLOB was not created with collection to blob, an error will be generated and

execution will be aborted.

collection to blob
version 3.0

modified v5.0

collection to blob(inRef {; ioBlob}) BLOB | <none>

Parameter Type Description

inRef Longint  Collection handle or iterator

ioBlob BLOB  BLOB to append data to

Result BLOB  Serialized collection data

Warning: Do not attempt to serialize a v6 collection and then load it with a previous

version of Active4D.

Note: If the collection contains BLOB or Time arrays, it must be deserialized in 4D v14
or later. Attempting to deserialize in earlier versions will generate an error.

blob to collection
version 3.0

modified v5.0

blob to collection(inBLOB {; ioOffset }{; *}) Longint

Parameter Type Description

inBLOB BLOB  BLOB with serialized collection data

ioOffset Number  Offset within BLOB to get data

* *  Create a global collection

Result Longint  Collection handle
156 Chapter 11 Command Reference

Collections Active4D v6.3
If the optional * parameter is given, the new collection is a global collection, otherwise

the collection is local and will be cleared when the current script is finished executing..

Discussion

This command directly saves a serialized collection. It is effectively the same as:

See collection to blob for notes and warnings about serializing a collection.

Discussion

This command directly loads a serialized collection. It is effectively the same as:

Note: Active4D v6 will deserialize collections serialized with previous versions.

save collection version 4.0

save collection(inRef; inPath)

Parameter Type Description

inRef Longint  Collection handle or iterator

inPath Text  File path

$blob := collection to blob($inRef)
blob to document($inPath; $blob)

load collection version 4.0

load collection(inPath) Longint

Parameter Type Description

inPath Text  File path

Result Longint  Collection handle

document to blob($inPath; $blob)
$collection := blob to collection($blob)

Note: Active4D v6 will deserialize collections serialized with previous versions.
Chapter 11 Command Reference 157

Active4D v6.3 Collections
Discussion

This command makes a shallow copy of the collection referenced by inRef and returns a

handle to the copy. You can then use this handle with the other collection commands.

If the optional * parameter is given, the new collection is a global collection, otherwise

the collection is local and will be cleared when the current script is finished executing.

Because this command makes a shallow copy of inRef, collection references embedded

within inRef will not be copied, and the original will still be referred to in the copy.

To make a deep (recursive) copy, use the deep copy collection command.

Discussion

This command makes a deep (recursive) copy of the collection referenced by inRef and

returns a handle to the copy. You can then use this handle with the other collection

commands.

If the optional * parameter is given, the new collection is a global collection, otherwise

the collection is local and will be cleared when the current script is finished executing.

When copying inRef, the following recursive algorithm is followed:

1 A shallow copy of the inRef is made.

2 The type of each item in the copy is checked.

3 If the item is a Longint and is a collection handle, the value is replaced with the result

of a deep copy of that collection.

copy collection
version 3.0

modified version 4.0

copy collection(inRef {; *}) Longint

Parameter Type Description

inRef Longint  Collection handle or iterator

* *  Create a global collection

Result Longint  Collection handle

deep copy collection version 4.0

deep copy collection(inRef {; *}) Longint

Parameter Type Description

inRef Longint  Collection handle or iterator

* *  Create a global collection

Result Longint  Collection handle
158 Chapter 11 Command Reference

Collections Active4D v6.3
4 If the item is a Longint Array, each element of the array is checked to see if it is a

collection, and if so the element is replaced with the result of a deep copy of that

collection.

Discussion

This command merges all of the collections referenced by inRef1…inRefN and returns a

handle to the merged collection. You can then use this handle with the other collection

commands.

The merged collection is the union of all of the items in referenced collections. Because

the collections are merged from left to right, if items two or more collections have the

same key, the items in the collections to the right will overwrite those to the left.

If the optional * parameter is given, the new collection is a global collection, otherwise

the collection is local and will be cleared when the current script is finished executing.

Example

Warning: Circular collection references encountered by this command will cause

Active4D (and 4D) to die a horrible death.

merge collections version 3.0

merge collections(inRef1; inRef2 {…inRefN} {; *}) Longint

Parameter Type Description

inRef Longint  Collection handle or iterator

* *  Create a global collection

Result Longint  Collection handle

// We want a merge of form variables and query params
c_longint($attributes)
$attributes := merge collections(form variables; query params)
Chapter 11 Command Reference 159

Active4D v6.3 Collections
Discussion

This command deletes the collection and all of its items. After using this command,

inHandle is no longer a valid collection handle.

Discussion

This command deletes the collection and all of its items. After using this command,

inHandle is no longer a valid collection handle.

When clearing inHandle, the following recursive algorithm is followed:

1 The type of each item is checked.

2 If the item is a Longint and is a collection handle, a deep clear of that collection is

performed.

3 If the item is a Longint Array, each element of the array is checked to see if it is a

collection, and if so a deep clear of that collection is performed.

clear collection version 2

clear collection(inHandle)

Parameter Type Description

inHandle Longint  Collection handle

Note: You may use this command on local collections, but there is usually not much

point as local collections are automatically cleared when script execution ends.

deep clear collection version 4.0

deep clear collection(inHandle)

Parameter Type Description

inHandle Longint  Collection handle

Note: You may use this command on local collections, but there is usually not much

point as local collections are automatically cleared when script execution ends.

Warning: Circular collection references encountered by this command will cause

Active4D to die horribly.
160 Chapter 11 Command Reference

Collections Active4D v6.3
Discussion

This command searches the collection specified by inRef for the item with the key inKey.

If the item is found and inIndex is not specified, the item’s value is returned. If the item

value is an array, an empty string is returned.

If the item is found and an index is specified, the given array element is returned. If the

index is out of range, an error is generated and execution is aborted.

If the item is not found, an empty string is returned.

Discussion

This command searches the collection specified by inRef for the item with the key inKey.

If outArray is not an array, an error is generated and execution is aborted.

If the item is found and its value is an array, outArray receives a copy. If outArray has not

yet been defined, it is created with the same type as the source array.

If the item is found and its value is not an array, an error is generated and execution is

aborted.

get collection
version 2

modified version 4.0

get collection(inRef; inKey {; inIndex}) <any>

Parameter Type Description

inRef Longint  Collection handle or iterator

inKey Text  Key of collection item to retrieve

inIndex Longint  Index of array element to retrieve

Result <any>  Value of collection item or ""

Note: This command has been superceded by the simpler syntax:

 collectionRef{inKey} or collectionRef{inKey}{inIndex}

get collection array
version 2

modified version 4.0

get collection array(inRef; inKey; outArray)

Parameter Type Description

inRef Longint  Collection handle or iterator

inKey Text  Key of collection item to retrieve

outArray Array  Receives the array
Chapter 11 Command Reference 161

Active4D v6.3 Collections
If the item is not found, outArray is resized to zero. If outArray has not yet been defined, it

is created as a text array.

Discussion

This command searches the collection specified by inRef for the item with the key inKey.

If the item is found and its value is an array, the size of the array is returned.

If the item is found and its value is not an array, an error is generated and execution is

aborted.

If the item is not found, zero is returned.

Note: This command has been superceded by the simpler syntax:

 collectionRef{inKey}

If the resulting value is an array, it may be used with all of the array commands such

as append to array and DELETE ELEMENT.

get collection array size
version 2

modified version 4.0

get collection array size(inRef; inKey) Longint

Parameter Type Description

inRef Longint  Collection handle or iterator

inKey Text  Key of collection item to check

Result Longint  Size of array

Note: This command has been superceded by the simpler syntax:

 Size of array(collectionRef{inKey})
162 Chapter 11 Command Reference

Collections Active4D v6.3
Discussion

This command searches the collection specified by inRef for the item with the key inKey.

If the item is found, an iterator reference for the item is returned.

If the item is not found, an empty iterator is returned. For information on empty iterators,

see “Iterating Over a Collection” on page 102.

Discussion

This command searches the collection specified by inRef for the item with the key inKey.

If the item is found and contains an array, the size of the array is returned.

If the item is found and its value is not an array, 1 is returned.

If the item is not found, zero is returned.

get collection item
version 2

modified version 4.0

get collection item(inRef; inKey) Longint

Parameter Type Description

inRef Longint  Collection handle or iterator

inKey Text  Key of collection item to retrieve

Result Longint  Iterator for collection

get collection item count version 4.0

get collection item count(inRef; inKey) Longint

Parameter Type Description

inRef Longint  Collection handle or iterator

inKey Text  Key of form variable to check

Result Longint  Size of array
Chapter 11 Command Reference 163

Active4D v6.3 Collections
Discussion

This command fills outKeys with all of the keys in the collection. If outKeys has not yet

been defined, it is created as a string array.

If outKeys is defined but is not a string or text array, an error is generated an execution is

aborted.

Discussion

This command searches the collection specified by inHandle for the item with the key

inKey.

If the item is found and its value is not an array, you may pass more than one key/value

pair to set multiple items at once. If the item is found and its value is an array, you may

pass an index to set an element of the array.

If the item is found and an index is not specified, the item’s value is replaced with inValue.

If the item is found, its value is an array, and an index is specified, the given array element

is set. If the index is out of range or the type of inValue is not assignment-compatible

with the array, an error is generated and execution is aborted.

If the item is not found and an index is not specified, a new item is added to the

collection with the given keys and values.

If the item is not found and an index is specified, an error is generated and execution is

aborted.

get collection keys
version 2

modified version 4.0

get collection keys(inRef; outKeys)

Parameter Type Description

inRef Longint  Collection handle or iterator

outKeys String/Text Array  Receives the collection keys

set collection version 2

set collection(inHandle; inKey; inValue {; inKeyN; inValueN | inIndex})

Parameter Type Description

inHandle Longint  Collection handle

inKey Text  Key of collection item to store

inValue <any>  Value to set for the given item

inIndex Longint  Index of array element to set
164 Chapter 11 Command Reference

Collections Active4D v6.3
Here is an example of set collection using multiple items:

Discussion

This command searches the collection specified by inHandle for the item with the key

inKey.

If inArray is not an array, an error is generated and execution is aborted.

If the item is found, its value is replaced with inArray.

If the item is not found, a new item is added to the collection with the given key and

array.

$c := new collection
set collection($c; "name"; "Aparajita"; "age"; 40)
// Collection now contains two items

Note: This command has been superceded by the simpler syntax:

 collectionRef{inKey} := inValue or collectionRef{inKey}{inIndex} := inValue

set collection array version 2

set collection array(inHandle; inKey; inArray)

Parameter Type Description

inHandle Longint  Collection handle

inKey Text  Key of collection item to store

inArray Array  Array to set for the given item

Note: This command has been superceded by the simpler syntax:

 collectionRef{inKey} := inArray
Chapter 11 Command Reference 165

Active4D v6.3 Collections
Discussion

This command tests a value to ensure it is a collection handle. Although Active4D tests

the validity of collection handles in commands that take one, if the handle is not valid an

error is generated and execution is aborted.

If you are unsure if a value is a collection handle and you don’t want your script to be

prematurely aborted, you should use this command to test the value before passing it to

a collection command.

If the value is not a Longint, this command returns False.

Discussion

This command searches the collection specified by inRef for the item with the key inKey.

If * is passed, inKey may contain 4D wildcard characters and they will be honored in the

search.

If the item is found, True is returned, otherwise False.

is a collection
version 2

modified version 4.0

is a collection(inRef) Boolean

Parameter Type Description

inRef <any>  Potential collection handle or iterator

Result Boolean  True if inRef is a collection handle

collection has
version 2

modified version 4.0

collection has(inRef; inKey {; *}) Boolean

Parameter Type Description

inRef Longint  Collection handle or iterator

inKey Text  Key of collection item to test

* *  Perform wildcard search

Result Boolean  True if key is in collection
166 Chapter 11 Command Reference

Collections Active4D v6.3
If a collection value might be a non-text type, it is not sufficient to get its value and

check for an empty string being returned. In such cases you should always use this

command to test for the existence of a collection item, as shown here:

Discussion

This command returns the number of items in the collection specified by inRef.

Discussion

This command searches the collection specified by inHandle for the item with the key

inKey. To delete more than one item, you may use a wildcard in the key. All items that

match will be removed from the collection.

$c := new local collection

if ($c{"test"} # "")
 // This would break if "test" existed and was a number
end if

// The correct way
if (collection has($c; "test"))
 $test := $c{"test"}
else
 $test := "this is a test"
 $c{"test"} := $test
end if

count collection items
version 2

modified version 4.0

count collection items(inRef) Longint

Parameter Type Description

inRef Longint  Collection handle or iterator

Result Longint  Number of items in collection

delete collection item version 2

delete collection item(inHandle; inKey)

Parameter Type Description

inHandle Longint  Collection handle

inKey Text  Key of collection item to delete
Chapter 11 Command Reference 167

Active4D v6.3 Cryptography
Cryptography

Active4D provides a few simple commands for doing basic encryption/decryption and

hashing of text, in case you need to make aspects of your site more secure.

Each of the cryptography commands has a corresponding plugin command accessible

from 4D, so that you can share encrypted data between 4D and Active4D.

The details of the various cryptographic algorithms employed are beyond the scope of

this document. There is a wealth of information on cryptography online.
168 Chapter 11 Command Reference

Cryptography Active4D v6.3
Discussion

This command decodes text that was encoded with base 64 encoding (such as the

base64 encode command).

If passed text and no charset, base64 decode returns a BLOB.

If passed text and a charset, base64 decode decodes the text, converts from the given

charset to Unicode, and returns Unicode text.

If * is passed or inURLSafe is passed and is True, text is assumed to be in a URL safe form of

base 64 encoding where ‘+’ and ‘/‘ are replaced with ‘-’ and ‘_’ and the “=” padding at the

end is stripped. If you do URL safe decoding, be sure the text was encoded in a URL safe

form.

When text is passed, whitespace (carriage return, linefeed, space, tab) in the text is

ignored. If the text contains invalid base64 characters, an empty string is returned.

If passed a BLOB, base64 decode returns a BLOB, because there is no guarantee that the

decoded data contains valid Unicode.

base64 decode
version 4.0

modified v5

base64 decode(inText {; inCharset {; * | inURLSafe}}) Text | BLOB
base64 decode(inBlobData) BLOB

Parameter Type Description

inText Text  Base64 encoded text

inCharset Text  Charset of decoded text

* *  Use URL safe mode

inURLSafe Boolean  True to use URL safe mode

Result Text | BLOB  Original data

inBlobData BLOB  Base64 encoded data

Result BLOB  Original data
Chapter 11 Command Reference 169

Active4D v6.3 Cryptography
Discussion

This command encodes arbitrary bytes of binary data as a base 64 number which is

represented by a letter or symbol in the 7-bit ASCII character set. The 7-bit ASCII nature

of this text makes it easy to use in a URL, store in a database text field, etc., because it will

never be changed due to character set conversions.

This command is primarily designed to be used in conjunction with blowfish encrypt,

which returns 8-bit ASCII.

Because Unicode is a multibyte character set and base 64 is byte-oriented, Unicode text

must be converted to a byte-oriented character set before it is encoded.

By default, Unicode text passed to base64 encode is converted to Mac Roman for

backwards compatibility. You can specify another character set (such as UTF-8) by

passing the inCharset parameter, which should be a valid IANA charset name. If the name

is empty, it defaults to Mac Roman. If the name is not valid, an error is generated and

execution is aborted.

If * is passed or inURLSafe is passed and is True, a URL safe form of base 64 encoding is

created where ‘+’ and ‘/‘ are replaced with ‘-’ and ‘_’ and the “=” padding at the end is

stripped. If you create URL safe encoding, be sure to do URL safe decoding as well.

base64 encode can take a BLOB as the first parameter, in which case the bytes of the

blob are encoded directly and no charset is necessary.

base64 encode
version 4.0

modified v5

base64 encode(inText {; inCharset {; * | inURLSafe}}) Text
base64 encode(inBlobData) Text

Parameter Type Description

inText Text  Original text

inCharset Text  Charset of encoded text

* *  Use URL safe mode

inURLSafe Boolean  True to use URL safe mode

Result Text  Encoded text

inBlobData BLOB  Original data

Result Text  Encoded data

Note: The charset you choose should be byte-oriented (e.g. UTF-8), not multibyte

(e.g. UTF-16).
170 Chapter 11 Command Reference

Cryptography Active4D v6.3
Example

Discussion

This command decrypts data that was encrypted with the Blowfish symmetric block

cipher (such as the blowfish encrypt command). The passphrase and initialization

vector (inIV) must be the same as those that were used to encrypt the text.

If * is not passed, the decrypted BLOB is converted to Unicode text. If inCharset is not

passed in, the decrypted data is converted from Mac Roman for backwards compatibility.

You can specify another character set (such as UTF-8) by passing inCharset, which should

be a valid IANA charset name. If the name is empty, it defaults to Mac Roman. If the name

is not valid, an error is generated and execution is aborted.

If * is passed, the data is decrypted in place and nothing is returned.

$id := string(session{"user.id"})
$enc := blowfish encrypt($id; "test"; "test"; "utf-8")
$qry := build query string(""; "u"; base64 encode($enc))

blowfish decrypt
version 4.0

modified v5

blowfish decrypt(inBlob; inPassphrase {; inIV {; inCharset {; *}}}) Text | <none>

Parameter Type Description

inBlob BLOB  Encrypted data to decrypt

inPassphrase Text  Key used to encrypt data

inIV Text  IV used to encrypt data

inCharset Text  Charset of encrypted text

* *  Decrypt in place

Result Text | <none>  Encrypted text

Note: The charset you choose should be byte-oriented (e.g. UTF-8), not multibyte

(e.g. UTF-16).
Chapter 11 Command Reference 171

Active4D v6.3 Cryptography
Discussion

This command encrypts inText or inBLOB with the Blowfish symmetric block cipher.

Blowfish encryption and decryption in Active4D use a variable length key between 1 and

56 bytes and an eight-byte IV, or initialization vector. After conversion to the target

character set, both the key and IV are truncated to the maximum length or padded with

spaces to the minimum length.

Text to be encrypted is converted from Unicode to the target character set, then padded

with PKCS#5 padding to an even multiple of eight bytes before encryption. If you are

encrypting and decrypting within Active4D, you don’t need to know this, but if you are

sharing encrypted data with other software, you need to know the encryption format.

inPassphrase is the key with which you encrypt and decrypt the text. It must be non-

empty.

In addition, you may supply an initialization vector, or seed text, in the inIV parameter.

The initialization vector (IV) is used as the seed text which the encryption algorithm uses.

You may leave it empty if you wish.

By default, the text, passphrase and IV are converted to Mac Roman for backwards

compatibility. You can specify another character set (such as UTF-8) by passing the

inCharset parameter, which should be a valid IANA charset name. If the name is empty, it

defaults to Mac Roman. If the name is not valid, an error is generated and execution is

aborted.

blowfish encrypt
version 4.0

modified v5

blowfish encrypt(inText; inPassphrase {; inIV {; inCharset}}) BLOB
blowfish encrypt(inBLOB; inPassphrase {; inIV {; inCharset {; *}}}) BLOB | <none>

Parameter Type Description

inText Text  Text to encrypt

inPassphrase Text  Key to encrypt/decrypt text

inIV Text  Seed text for encryption

inCharset Text  Character set to convert to

Result BLOB  Encrypted data

inBLOB BLOB  Data to encrypt

inPassphrase Text  Key to encrypt/decrypt data

inIV Text  Seed text for encryption

inCharset Text  Character set to convert to

* *  Encrypt in place

Result BLOB  Encrypted data

Note: The charset you choose should be byte-oriented (e.g. UTF-8), not multibyte

(e.g. UTF-16).
172 Chapter 11 Command Reference

Cryptography Active4D v6.3
Typically the IV is used to add a bit of randomness to the encrypted text, to make it

harder for potential crackers to determine the passphrase. Because the IV must be

known in order to decrypt, it is usually added to the encrypted text and then retrieved

when the text is decrypted.

For example, you could do something like this:

Like I said, you could do something like the above if you are paranoid or are operating in

an environment where your data is so valuable that it is worth it for someone who has

both significant knowledge of cryptographic algorithms and significant computing

resources to attempt to crack your encryption.

In other words, for the vast majority of us, it is quite sufficient to use either no IV or the

same IV all of the time.

If you pass a BLOB as the first parameter and do not pass *, an encrypted BLOB is

returned. If you pass a BLOB and *, the BLOB is encrypted in place and nothing is

returned.

// encryption
$enc := blowfish encrypt(string(milliseconds); "ivpass"; "")
$iv := substring(base64 encode($enc); 1; 8)
$enc := blowfish encrypt("Some text"; "secret pass"; $iv; "utf-8")
$encText := $iv + base64 encode($enc)
$queryValue := url encode query($encText)

// decryption
$encText := _query{"q"} // already url decoded by Active4D
$iv := substring($encText; 1; 8) // separate IV
$encText := susbstring($encText; 9)
$encText := base64 decode($encText; "utf-8")
$text := blowfish decrypt($encText; "secret pass"; $iv)

Note: blowfish encrypt always encrypts to a BLOB in Active4D v6 because

encryption actually creates a bunch of numbers which cannot reliably be converted

to valid Unicode text.
Chapter 11 Command Reference 173

Active4D v6.3 Cryptography
Discussion

This command performs an MD5 hash of inData, which results in a 128-bit (16-byte)

checksum that is returned as a 32-byte hexidecimal number.

MD5 is a one-way algorithm designed to uniquely identify a sequence of bits in a secure

manner. You cannot reconstruct the original data from the resulting MD5 checksum.

If inData is text and inCharset is not passed, the text is converted to Mac Roman for

compatibility with Active4D v4.x. If inCharset is passed and is empty, it defaults to Mac

Roman. Otherwise it should be a valid IANA character set name or alias. If the name is

invalid, an error is generated and execution is aborted.

For a complete list of valid character set names, see:

http://demo.icu-project.org/icu-bin/convexp?s=IANA&s=ALL

You may also pass a BLOB to this command to calculate a hash on arbitrary data.

md5 sum
version 4.0

modified v5

md5 sum(inData {; inCharset}) Text
md5 sum(inData) Text

Parameter Type Description

inText Text  Original data

inCharset Text  Charset to convert to

Result Text  MD5 hash

inData BLOB  Original data

Result Text  MD5 hash
174 Chapter 11 Command Reference

Database Active4D v6.3
Database

Active4D adds a few database commands which make it easier to dynamically get

pointers to tables and fields.

Trigger Errors

If your database uses triggers which return your own error numbers (-15000 to -32000),

those errors are available from Active4D for the following triggers:

3 On saving new record

3 On saving an existing record

3 On deleting a record

If a trigger error is returned from a command that invokes one of those triggers (SAVE

RECORD, DELETE RECORD and DELETE SELECTION), you can access the error number

in the variable A4D_Error. You may also check the value of the OK variable to see if the

command executed successfully.

For example, the following code save a record and then checks for a trigger error,

warning the user if something went wrong.

save record([people])

if (A4D_Error # 0)
 writebr("An error occurred saving the record: " + A4D_Error)
end if
Chapter 11 Command Reference 175

Active4D v6.3 Database
Discussion

Active4D enhances the 4D version of the Field name command with an extra option. If *

is passed as the last parameter, the full [table]field reference will be returned.

Discussion

This command resolves a table or field reference in the form “[table]” or “[table]field” into

the corresponding table and field numbers. It allows you to dynamically build a table or

field reference as a string and then resolve it.

If inReference is not a valid table or field reference, both outTableNum and outFieldNum

will be zero.

If the reference is valid but only a table is passed, outFieldNum will be zero.

Field name
version 1

modified v4.0

Field name(inFieldPtr {; *} | inTableNum; inFieldNum {; *}) Text

Parameter Type Description

inFieldPtr Pointer  Field pointer

inTableNum Number  Number of field’s table

inFieldNum Number  Field’s number

* *  Return full [table]field ref

Result Text  Field name

get field numbers version 1

get field numbers(inReference; outTableNum; outFieldNum)

Parameter Type Description

inReference Text  Table or field reference as text

outTableNum Longint  Receives the table number

outFieldNum Longint  Receives the field number
176 Chapter 11 Command Reference

Database Active4D v6.3
Discussion

The first form of this command takes two parameters. The first parameter is a table

number or pointer, and the second is a field name (without a table name). If inField is a

valid field name within the table referenced by inTable, a pointer to the field is returned,

otherwise a nil pointer is returned.

The second form of this command takes one parameter, which is a table or field

reference in the form “[table]” or “[table]field”. If inReference is a valid table or field

reference, a pointer to that table or field is returned. If inReference is not valid, a nil

pointer is returned.

Discussion

Active4D supports 4D’s extended QUERY syntax with its own extension:

3 inConjunction may be used on the first line of a built query, but it ignored.

3 inConjunction may be any unary expression that resolves to “&”, “|” or “#”. This is an

extension that 4D does not support.

3 inConjunction may be omitted in multi-line queries, and it will default to &.

3 inComparator and inValue may be separate arguments.

get field pointer version 1

get field pointer(inTable; inField | inReference) Pointer

Parameter Type Description

inTable Number | Pointer  Table number of pointer

inField Text  Field name (no table)

inReference Text  Table or field reference as text

Result Pointer  Pointer to table or field

QUERY
version 1

modified v2, v6.1r2

QUERY(inTable; {; inConjunction}; inField; inComparator; inValue {; *})

Parameter Type Description

inTable [table]  Main table on which to query

inConjunction Logical | Text  Conjunction with previous line

inField [table]field  Field on which to query

inComparator Operator | Text  How to compare field with value

inValue <any>  Value to compare against field
Chapter 11 Command Reference 177

Active4D v6.3 Database
3 inComparator may be any expression that resolves to a valid value compator (“=”, “#”,

“<“, “<=”, “>”, “>=” or “%”).

Discussion

If * is not passed, this command differs from the 4D version of QUERY BY FORMULA in

that expression is evaluated by Active4D and must be valid Active4D code. This allows

you to call Active4D methods and use local variables in the expression, as well as

reference collections like _form, _query, etc.

If * is passed, this command is executed on the server within 4D’s context, which means

it may execute faster, but you will have no access to Active4D’s variables, collections and

methods.

Discussion

See the discussion of QUERY.

QUERY BY FORMULA
version 1

modified v5

QUERY BY FORMULA({*; } inTable; <expression>)

Parameter Type Description

* *  Execute within 4D’s context

inTable [table]  Main table on which to query

expression Boolean  Boolean expression

QUERY SELECTION
version 1

modified v2, v6.1r2

QUERY SELECTION(inTable; {; inConjunction}; inField; inComparator; inValue {; *})

Parameter Type Description

inTable [table]  Main table on which to query

inConjunction Logical | Text  Conjunction with previous line

inField [table]field  Field on which to query

inComparator Operator | Text  How to compare field with value

inValue <any>  Value to compare against field
178 Chapter 11 Command Reference

Database Active4D v6.3
Discussion

See the discussion of QUERY BY FORMULA.

Discussion

This command differs from the 4D version if inDestination is Into variable:

3 Local variables are not allowed.

3 The process or interprocess variable specified must already be defined, but you can

define them yourself with a compiler declaration within Active4D.

Discussion

Active4D enhances the 4D version of the Table name command with an extra option. If *

is passed as the last parameter, the table name will be returned enclosed by square

brackets ([]).

QUERY SELECTION BY FORMULA
version 4.0

modified v5

QUERY SELECTION BY FORMULA({*; } inTable; <expression>)

Parameter Type Description

* *  Execute within 4D’s context

inTable [table]  Main table on which to query

expression Boolean  Boolean expression

SET QUERY DESTINATION version 1

SET QUERY DESTINATION(inDestination {; inValue})

Table name
version 1

modified v4.0

Table name(inTableNum {; *} | inTablePtr {; *}) Text

Parameter Type Description

inTableNum Number  Table number

inTablePtr Pointer  Pointer to table

* *  Return [tablename]

Result Text  Field name
Chapter 11 Command Reference 179

Active4D v6.3 Database
180 Chapter 11 Command Reference

Date and Time Active4D v6.3
Date and Time

UTC Commands

In an internet-based application, your users may be anywhere in the world. It is

important to be able to keep track of various times in a consistent way.

Coordinated Universal Time, otherwise known as UTC or GMT, is an international

standard for coordinating times from different time zones. By storing your dates and

times in UTC, you can be sure that date and time comparisons are accurate.

Active4D provides a suite of commands that allow you to easily convert between local

time and UTC. These conversions are based on the system settings for the current time

zone and whether or not your location within the time zone uses Daylight Savings Time.
Chapter 11 Command Reference 181

Active4D v6.3 Date and Time
Discussion

The 4D Date command has been extended to allow you to construct a date from a year,

month and day. This allows you to quickly create a date without having to play tricks like

constructing a string and then parsing it, or using the idiom:

Discussion

This command returns the serial day number within the year represented by inDate. For

example:

Date v5 (modified 4D)

Date(inYear; inMonth; inDay) Date

Parameter Type Description

inYear Number  Year of date

inMonth Number  Month of date

inDay Number  Day of date

Result Date  Full date

// old way, obscures your intention
$date := add to date(!00/00/00!; $year; $month; $day)

// new way, much clearer
$date := date($year; $month; $day)

day of year version 2

day of year(inDate) Number

Parameter Type Description

inDate Date  A date

Result Number  Day number within the date’s year

$day := day of year(!01/01/01!) // $day = 1
$day := day of year(!12/31/01!) // $day = 365
182 Chapter 11 Command Reference

Date and Time Active4D v6.3
Discussion

In the first form of this command, it returns the number of hours and minutes that would

have to be subtracted from the local time to get a UTC time. Note that local times west of

Greenwich Mean Time will result in negative outHours. Subtracting this negative number

results in adding that many hours to the local time.

In the second formof this command, you pass no parameters and it returns the number

of minutes that would have to be subtracted from the local time to get a UTC time. In

other words, it is the equivalent of:

Discussion

This command converts ioDate and ioTime from a date and time in the local time zone to

UTC.

get utc delta
version 2

modified v5

get utc delta(outHours; outMinutes)
get utc delta Number

Parameter Type Description

outHours Number variable  Hour difference between local/UTC

time

outMinutes Number variable  Minute difference between local/UTC

time

Result Number  Minute difference between local/UTC

time

get utc delta($hours; $minutes)
$minutes += $hours * 60

local datetime to utc version 2

local datetime to utc(ioDate; ioTime)

Parameter Type Description

ioDate Date variable  Date to convert

ioTime Time variable  Time to convert
Chapter 11 Command Reference 183

Active4D v6.3 Date and Time
Discussion

This command converts inTime from a time in the local time zone to UTC. The UTC time is

normalized to fall in the range 00:00:00 to 23:59:59.

The UTC date may be before or after the local date. If you need the date as well, use the

local datetime to utc command.

Discussion

This command converts ioDate and ioTime from a date and time in UTC to the local time

zone.

Discussion

This command converts inTime from a time in UTC to a time in the local time zone. The

local time is normalized to fall in the range 00:00:00 to 23:59:59.

The local date may be before or after the UTC date. If you need the date as well, use the

utc to local datetime command.

local time to utc version 2

local time to utc(inTime) Time

Parameter Type Description

inTime Time  A time

Result Time  Converted time

utc to local datetime version 2

utc to local datetime(ioDate; ioTime)

Parameter Type Description

ioDate Date variable  Date to convert

ioTime Time variable  Time to convert

utc to local time version 2

utc to local time(inTime) Time

Parameter Type Description

inTime Time  A time

Result Time  Converted time
184 Chapter 11 Command Reference

Date and Time Active4D v6.3
Discussion

This command returns the serial week number within the year represented by inDate. For

example:

week of year version 2

week of year(inDate) Number

Parameter Type Description

inDate Date  A date

Result Number  Week number within the date’s year

$week := week of year(!01/01/01!) // $week = 1
$week := week of year(!12/31/01!) // $week = 53

Note: The week number for dates in the first week of the year may actually be 53. For

more information, see the “WEEK_OF_YEAR” note at:

http://userguide.icu-project.org/datetime/calendar#TOC-Disambiguation
Chapter 11 Command Reference 185

Active4D v6.3 Debugging
Debugging

No development environment would be complete without debugging tools. Although

Active4D does not yet have an interactive debugger, it provides a number of debugging

tools that allow you quickly and easily view what is going on “inside” your scripts.

Most of the debugging tools are actually part of the standard libraries and 4D shell code

distributed with Active4D. The commands in this section are for the most part low level

commands used by the debugging tools.

For more information on Active4D’s debugging tools, see Chapter 13, “Debugging.”
186 Chapter 11 Command Reference

Debugging Active4D v6.3
Discussion

This command returns the name of the library in which execution is taking place at the

time this command is called. If this command is executed outside of a library method, an

empty string is returned.

Discussion

This command returns the line number of the currently executing method. If the

command is not executed within a method, the line number is the line number of the

source file in which the command appears. If the command is executed within a method,

the line number returned is the line number within the body of the method, not

including the method declaration.

Discussion

This command has two forms. If the * is not passed, the name of the current method is

returned. If you are currently executing outside of an Active4D method, an empty string

is returned.

If the * is passed in, a full descriptor of the current execution context is returned as

follows:

current library name version 4.0

current library name Text

Parameter Type Description

Result Text  Library name

current line number version 2

current line number Number

Parameter Type Description

Result Number  Line number

current method name version 2

current method name{(*)} Text

Parameter Type Description

* *  Show full method descriptor

Result Text  Method descriptor
Chapter 11 Command Reference 187

Active4D v6.3 Debugging
Discussion

This command returns the names of all of the methods in the call chain from the point at

which it is executed.

outChain must be a local variable, but it need not be defined before calling this

command.

The chain is represented with the currently executing method in element 1, followed by

the caller in element 2, and so on. The names are in the form library.method, except for

the top level execution scope, which is called “main”. For inline methods (not declared in

a library), the library name will be “global”.

The values in the outChain array are suitable for passing to the local variables

command.

Discussion

This command returns the names of all of the libraries that have been imported. If outList

does not exist or is not a Text array, it will created as or converted into a Text array.

Context Descriptor

File Full URL-style path to the file

Inline method Method "<method>"

Library method Method "<lib.method>"<argument list>

get call chain version 3

get call chain(outChain)

Parameter Type Description

outChain Text Array  Receives the call chain

library list version 4.0

library list(outList)

Parameter Type Description

outList Text Array  Receives the list of imported libraries
188 Chapter 11 Command Reference

Debugging Active4D v6.3
Discussion

This command is functionally equivalent to the write command, but instead of

appending its output to the response buffer, it appends its output to the Active4D

debugging console.

For more information on the Active4D debugging console, see “Using the Debugging

Console” on page 606.

write to console version 2

write to console(inValue {; inFormat})

Parameter Type Description

inValue <any>  Value to write to the response buffer

inFormat Text | Number  Format to use when converting to text
Chapter 11 Command Reference 189

Active4D v6.3 Error Handling
Error Handling

Bad things happen to good people. When things do go wrong, Active4D is there to help

you find out why.

The commands in this section control the various aspects of error handling in Active4D,

which is discussed in Chapter 14, “Error Handling.” It is recommended that you read that

chapter before reading the command descriptions in this section.
190 Chapter 11 Command Reference

Error Handling Active4D v6.3
Discussion

This command returns the root-relative error page path for the currently executing

script. The default error page is specified by the “error page” option in Active4D.ini.

Discussion

Within the context of an error handler, this command returns the response status that

triggered the handler. For example, if an execution error occurs and there is a custom

error handler, within the handler the response status will be 200 (OK), but get error

status will return 500 (Internal Server Error).

If executed outside of an error handler, this command will always return zero.

get error page version 1

get error page Text

Parameter Type Description

Result Text  Root-relative path to error page

get error status version 1

get error status Number

Parameter Type Description

Result Number  The status that triggered an error
Chapter 11 Command Reference 191

Active4D v6.3 Error Handling
Discussion

This command returns the root-relative http error page path. The default http error page

is specified by the “http error page” option in Active4D.ini.

Discussion

This command returns the current log level, which determines which errors or messages

are logged.

Discussion

This command returns True if an error page is currently being executed, False if not.

get http error page v6.0

get http error page Text

Parameter Type Description

Result Text  Root-relative path to HTTP error page

get log level version 1

get log level Number

Parameter Type Description

Result Number  The current log level

in error version 1

in error Boolean

Parameter Type Description

Result Boolean  True if executing an error page
192 Chapter 11 Command Reference

Error Handling Active4D v6.3
Discussion

This command sends inMessage to the Active4D log file if the A4D Log User Messages flag

is set in the current log level. Whereas log messages generated by Active4D are marked

with “Active4D:” after the date and time, log messages generated by this command are

marked by “DB:”. This allows you to easily filter the log entries by their source.

Because this command has no effect if the A4D Log User Messages flag is not set, you can

set the flag during development and use this command to write debugging messages,

then turn off the flag during production to eliminate the debug messages.

If inIsError is passed and is True, the message will be flagged in the log as an error.

Discussion

After executing this command, any Active4D errors that occur will cause the given script

to be executed. To use the default error page as specified by the “error page” option in

Active4D.ini, pass an empty string.

The path given should be a URL-style root-relative path. A leading ‘/’ is ignored. In

addition, the path must contain no native directory separators and no directory

movement (/../).

The path is not validated when this command is executed, but rather when Active4D

attempts to load the given error page. Thus it is up to you to ensure that inPath is valid.

log message version 1

log message(inMessage {; inIsError})

Parameter Type Description

inMessage Text  Message to append to the log file

inIsError Boolean  True to mark as an error message

set error page version 1

set error page(inPath)

Parameter Type Description

inPath Text  Root-relative path to error page
Chapter 11 Command Reference 193

Active4D v6.3 Error Handling
Discussion

After executing this command, any HTTP errors that occur will cause the given script to

be executed. To use the default HTTP error page as specified by the “http error page”

option in Active4D.ini, pass an empty string.

The path given should be a URL-style root-relative path. A leading ‘/’ is ignored. In

addition, the path must contain no native directory separators and no directory

movement (/../).

The path is not validated when this command is executed, but rather when Active4D

attempts to load the given error page. Thus it is up to you to ensure that inPath is valid.

Discussion

This command sets the current log level, which determines which errors or messages are

logged.

set http error page v6.0

set http error page(inPath)

Parameter Type Description

inPath Text  Root-relative path to HTTP error page

Note: This command operates on a global basis and will affect all subsequent
requests.

set log level version 1

set log level(inLevel)

Parameter Type Description

inLevel Number  Set of bit flags
194 Chapter 11 Command Reference

File Uploads Active4D v6.3
File Uploads

The HTTP specification allows for binary objects to be included as part of a posted form,

and the HTML specification implements this by providing an input field of type “file”.

When such a field is placed on a form, the browser shows a “Browse” button, enabling

the user to select a file for uploading.

When the form is posted, the form’s fields and the file’s contents are specially encoded

and sent to the server. Active4D transparently handles the decoding of this type of

request for you.

How File Upload Works

When a user posts a form with an uploaded file, before code execution starts Active4D

saves the file to a directory called “Active4D uploads” in the default directory (see “The

Default Directory” on page 42). Note that for security reasons, you may not reference the

file directly in that directory.

If the size of the uploaded file would exceed the maximum request size specified by the

“max request size” option in Active4D.ini, the uploaded file is not saved and Active4D

returns the status 413 Request Entity Too Large.

The uploaded file is given the name <sequence><extension>, where <sequence> is a

number starting from 1 which is incremented each time a file is uploaded, and

<extension> is the file extension (if any) of the upload filename as it was on the client’s

machine. If a file already exists in the “Active4D uploads” directory with the proposed

name, Active4D increments the sequence number and tries again until the name is

unique.

Referencing File Uploads

Within your code, you reference uploaded files by the name of the file field on the form

that was posted. For example, if your HTML form contains this field definition:

you would reference the uploaded file like this:

Every file upload command takes a reference as the first parameter.

Given an upload reference, you can find out information about the file, copy it from the

upload directory to another directory, or save it to the database. If you pass a reference

to a non-existent upload to an upload command, OK is set to zero and A4D_Error is set to

-43 (File Not Found).

<input type="file" name="upload" />

$size := get upload size("upload")
Chapter 11 Command Reference 195

Active4D v6.3 File Uploads
The Importance of Filename Extensions

It is important that you know the type of a file. For example, if you are requesting a

graphic, you want to ensure that a graphic file is uploaded, not a text file.

Most browsers rely on filename extensions to determine the type of a file before

uploading it. The presence and accuracy of this extension is critical. Thus you should

encourage your users to upload files only with proper extensions.

If you want you can check the extension of the upload and reject the upload if it is

incorrect or missing.

Upload Auto-Deletion

If an error occurs during script execution, you may lose track of uploads from the current

request. To prevent the accumulation of orphaned uploads, uploads are automatically

deleted from the “Active4D uploads” directory when the current script finishes

executing, even if there was an error.

If want to retain a copy of the upload, before the script finishes executing, you must use

on of the following:

3 copy upload to copy the upload out of the “Active4D uploads” directory

3 upload to blob to copy the upload to a blob

3 save upload to field to save the upload to a database field

Discussion

This command copies the referenced upload to the directory and filename given by the

native or URL-style path inDestPath. If inDestPath is absolute, it is considered a full path. If

inDestPath is relative, it is relative to the default directory.

If a file already exists with the same path, it is overwritten. If the copy succeeds, OK is set

to 1. Otherwise OK is set to zero and A4D_Error contains the error code.

As with all document commands, inDestPath must be within either the web root

directory or a directory in the “safe doc dirs” path list in Active4D.ini. For information on

document paths, see “Document Paths” on page 387. For more information on the “safe

doc dirs” path list, see “Misusing Document Commands” on page 51.

copy upload version 2

copy upload(inReference; inDestPath)

Parameter Type Description

inReference Text  Name of file field on form

inDestPath Text  Directory and filename of destination
196 Chapter 11 Command Reference

File Uploads Active4D v6.3
Discussion

This command returns how many files were actually uploaded in the current request.

Even though a file field may be on a form, the user may post the form without uploading

a file.

Discussion

This command returns the MIME type of the given upload, which is determined by its

filename extension. For example, if the uploaded file was called “logo.gif”, this command

will return “image/gif”.

If no such upload exists, an empty string is returned.

Discussion

This command returns the transfer encoding of the given upload, if it was provided by

the client browser (which is usually not the case).

If a transfer encoding was not provided or no such upload exists, an empty string is

returned.

count uploads version 2

count uploads Number

Parameter Type Description

Result Number  Number of files uploaded

get upload content type version 2

get upload content type(inReference) Text

Parameter Type Description

inReference Text  Name of file field on form

Result Text  MIME type of file

get upload encoding version 2

get upload encoding(inReference) Text

Parameter Type Description

inReference Text  Name of file field on form

Result Text  Transfer encoding of file
Chapter 11 Command Reference 197

Active4D v6.3 File Uploads
Discussion

This command returns the filename extension (including the dot) of the given upload.

If the upload has no extension or there is no such upload, an empty string is returned.

Discussion

This command returns the filename of the given upload as it exists on the client’s

machine.

If no such upload exists, an empty string is returned.

get upload extension version 2

get upload extension(inReference) Text

Parameter Type Description

inReference Text  Name of file field on form

Result Text  Filename extension of file

get upload remote filename version 2

get upload remote filename(inReference) Text

Parameter Type Description

inReference Text  Name of file field on form

Result Text  Filename of file

Note: Some browsers return the full path to the remote file, some just return the

filename. You can use the filename of command to be sure you have only the

filename.
198 Chapter 11 Command Reference

File Uploads Active4D v6.3
Discussion

This command returns the size in bytes of the given upload.

If no such upload exists, -1 is returned. You can use this to test whether the given file was

actually uploaded.

Discussion

This command saves the given upload to the field identified either by a field reference or

by a field pointer.

If the given upload does not exist, the destination field is not a BLOB field, or if the save

fails in any way, OK is set to zero. If the save succeeds, OK is set to 1.

get upload size version 2

get upload size(inReference) Number

Parameter Type Description

inReference Text  Name of file field on form

Result Number  Size in bytes of file

save upload to field version 2

save upload to field(inReference; inFieldRef | inFieldPtr)

Parameter Type Description

inReference Text  Name of file field on form

inFieldRef [table]field  Full field reference of destination

inFieldPtr Field pointer  Pointer to destination field

Note: Beginning with v6.0r10, you can assign the result of upload to blob directly to
the field, although that will result in an extra copy of the file’s contents in memory.
Chapter 11 Command Reference 199

Active4D v6.3 File Uploads
Discussion

This command returns the contents of the given upload as a BLOB.

If the given upload does not exist or memory for the BLOB cannot be allocated, OK is set

to zero and an empty BLOB is returned. Otherwise, OK is set to 1.

upload to blob v6.0r10

upload to blob(inReference)

Parameter Type Description

inReference Text  Name of file field on form

Result BLOB  Contents of file in a BLOB

Note: Beginning with v6.0r10, you can assign the result this method directly to a
field instead of using save upload to field, although doing so will result in an extra
copy of the file’s contents in memory.
200 Chapter 11 Command Reference

Form Variables Active4D v6.3
Form Variables

When a form is posted, Active4D puts the form variable names and their associated

values into a collection. You can access this collection in your scripts. The form variables

collection is read-only, and follows the same pattern as all read-only collections.

When Form Variables Are Query Params (and vice versa)

If the configuration option “parameter mode” is set to “query params” in Active4D.ini,

form variables will not go into the form variables collection, but into the query params

collection. Likewise, if the “parameter mode” option is set to “form variables”, query

parameters will go into the form variables collection.

Posting JSON Data

Normally, item values in the form variables collection are either text or text arrays.

However, if a form is posted with the Content-Type “application/json”, and the “parse json

request” configuration option is true, and the “parameter mode” configuration option is

not set to “query params”, Active4D parses the form data (in the same way as the parse

jsoncommand) and places the result in the form variables collection with the key

“_json_”. If the “parse json request” configuration option is false, the JSON data is

considered raw data.

Posting Raw Data

Normally, item values in the form variables collection are either text or text arrays.

However, if a form is posted which contains raw data (such as XML) and no form

variables, and the “parameter mode” configuration option is not set to “query params”,

Active4D creates a single BLOB item in the form variables collection with the key

“_data_”.

Multiple-choice Form Fields

When a multiple-choice list is placed on a form and the user selects more than one item

in the list, one form variable for each selected item is sent as part of the posted form. In

such cases, Active4D creates a text array to hold the selected items, the key of which is

the choice list’s form name.
Chapter 11 Command Reference 201

Active4D v6.3 Form Variables
Discussion

This command is an alias for the form variables command.

Discussion

This command returns an iterator to the first item in the form variables collection.

For more information on iterators, see “Iterators” on page 214.

Discussion

This command searches the form variables collection for the item with the key inKey. If *

is passed, inKey may contain 4D wildcard characters and they will be honored in the

search.

If the item is found, True is returned, otherwise False.

_form version 3.0

_form Longint

Parameter Type Description

Result Longint  Iterator reference

form variables version 2

form variables Longint

Parameter Type Description

Result Longint  Iterator reference

form variables has version 2

form variables has(inKey {; *}) Boolean

Parameter Type Description

inKey Text  Key of item to test

* *  Perform wildcard search

Result Boolean  True if key is in collection
202 Chapter 11 Command Reference

Form Variables Active4D v6.3
Discussion

This command searches the form variable collection for the item with the key inKey.

If the item is found and an index is not specified, the item’s value is returned. If the item

value is an array of multiple choices, the first multiple-choice value is returned. Note that

this behavior is different than using the syntax:

When using the collection indexing syntax, a reference to an array with no index returns

the array itself, which when assigned results in the current element of the array, which is

a longint.

If the item is found and an index is specified, the given multiple choice value is returned.

If the index is out of range, an error is generated and execution is aborted.

If the item is not found, an empty string is returned.

Discussion

This command searches the form variables collection for the item with the key inKey.

If outArray is defined but is not a string or text array, an error is generated and execution

is aborted. If outArray was not defined, it is created as a text array.

get form variable version 2

get form variable(inKey {; inIndex}) Text | BLOB

Parameter Type Description

inKey Text  Key of form variable to retrieve

inIndex Longint  Index of multiple-choice list value to

retrieve

Result Text | BLOB  Value of form variable or ""

$value := _form{"multiple_choice_field"} // Returns longint

Note: For scalar values this command has been superceded by the simpler syntax:

 _form{inKey} or _form{inKey}{inIndex}

get form variable choices version 2

get form variable choices(inKey; outArray)

Parameter Type Description

inKey Text  Key of form variable to retrieve

outArray String/Text Array  Receives the array of choices
Chapter 11 Command Reference 203

Active4D v6.3 Form Variables
If the item is found and has multiple-choice values in an array, outArray is set to a copy of

the multiple-choice values.

If the item is found and its value is not an array of multiple-choice values, outArray is set

to a single element containing the form variable value.

If the item is not found, outArray is resized to zero elements.

Discussion

You use this command to check how many values were selected in a multiple-choice list

on a form.

This command searches the form variables collection for the item with the key inKey.

If the item is found and has multiple-choice values in an array, the size of the array is

returned.

If the item is found and its value is not an array of multiple-choice values, 1 is returned.

If the item is not found, zero is returned.

Note: This command is not really necessary, as you can directly refer to a multiple-

choice array with the syntax:

 _form{inKey}

For more information see “Referencing Collection Values” on page 101.

get form variable count version 2

get form variable count(inKey) Longint

Parameter Type Description

inKey Text  Key of form variable to check

Result Longint  Size of array
204 Chapter 11 Command Reference

Form Variables Active4D v6.3
Discussion

This command has two forms. The first form fills outKeys and outValues with all of the

keys and values in the form variables collection. If a value is a multiple-choice array, the

first element of the array is put into the outValues array.

If outKeys was not defined, it is created as a string array. If outValues was not defined, it is

created as a text array.

If outKeys is defined but is not a string or text array, an error is generated an execution is

aborted.

The second form of the command returns a concatenation of the form variables in the

form “key1=value1;key2=value2”, suitable for use as a query string. If a form variable is a

multiple-choice array, all of the array values are included in the concatenation.

The keys and values are converted to UTF-8 and URL encoded.

You may optionally pass in a string which will be matched against items whose key

matches the string. Wildcards are allowed in the filter string. To include items that match

the filter, prefix it with ‘+’. To exclude items that match the filter, prefix it with ‘-’. If there is

no prefix, it is assumed to be an inclusion filter.

Discussion

This command returns the number of items in the form variables collection.

get form variables version 2

get form variables(outKeys {; outValues})
get form variables{(*; inKeyFilter)} Text

Parameter Type Description

outKeys String/Text Array  Receives the collection keys

outValues String/Text Array  Receives the collection values

*  Indicates a filter is being used

inKeyFilter Text  Keys are matched against this

Result Text  Concatenation of keys and values

count form variables version 2

count form variables Longint

Parameter Type Description

Result Longint  Number of items in collection
Chapter 11 Command Reference 205

Active4D v6.3 Globals
Globals

In the course of programming a web site, you may need to store application-wide

information. Because each HTTP request is handled in a separate process, this means you

must have storage that is accessible across processes.

You could define interprocess variables in 4D and access them in Active4D. However, this

means you must modify the database if you need more interprocess variables in your

web site. The whole premise of Active4D is to insulate the database from changes to

your web site, so this is not the optimal solution.

Active4D provides a special global collection which can be accessed in any Active4D

script. By using this collection, you no longer need to use 4D interprocess variables.

Locking and Unlocking the Globals

Because the global collection is accessible to any executing process, you must ensure

that only one process at a time can change it, just as you would with an interprocess

array in 4D.

In 4D you would accomplish this with a global semaphore. Active4D provides a custom

lock specifically for the global collection. If you are setting more than one global

collection item, you should surround the code with the commands lock globals and

unlock globals.

Here is an example that would appear in the On Application Start and On Session Start

methods in the Active4D library:

Note that in the On Session End method, the globals are not being locked. Active4D

automatically locks the globals within the set global command, so for a single set

global call it is not necessary to lock the globals.

method "On Application Start"
 // We don’t need to lock globals here
 // because it happens at startup
 set global("last visit"; ?00:00:00?)
 set global("visitors"; 0)
end method

method "On Session Start"
 lock globals // Make sure we have exclusive access
 set global("last visit"; current time)
 set global("visitors"; get global("visitors") + 1)
 unlock globals // Let other processes have access
 set session("visit start"; current time)
end method

method "On Session End"
 set global("visitors"; get global("visitors") - 1)
end method
206 Chapter 11 Command Reference

Globals Active4D v6.3
In general, you should lock the globals only when necessary and for as few lines of code

as possible. While they are locked, any other processes that try to access the globals will

be suspended. If this happens often enough it can have an adverse effect on the

performance of your web site.

Note: To prevent a potential deadlock condition, Active4D releases the globals lock

at the end of script execution and at the end of the following special methods:

On Application Start, On Application End, On Session Start, On Session End
Chapter 11 Command Reference 207

Active4D v6.3 Globals
Discussion

This command returns an iterator to the first item in the global collection.

For more information on iterators, see “Iterators” on page 214.

Discussion

This command searches the globals collection for the item with the key inKey. If the item

is found, True is returned, otherwise False.

Discussion

This command searches the globals collection for the item with the key inKey.

If the item is found and inIndex is not specified, the item’s value is returned. If the item

value is an array, an empty string is returned.

If the item is found and an index is specified, the given array element is returned. If the

index is out of range, an error is generated and execution is aborted.

globals version 2

globals Longint

Parameter Type Description

Result Longint  Iterator reference

globals has version 2

globals has(inKey) Boolean

Parameter Type Description

inKey Text  Key of item to test

Result Boolean  True if key is in collection

get global version 2

get global(inKey {; inIndex}) <any>

Parameter Type Description

inKey Text  Key of global value to retrieve

inIndex Longint  Index of array element to retrieve

Result <any>  Value of global or ""
208 Chapter 11 Command Reference

Globals Active4D v6.3
If the item is not found, an empty string is returned.

Discussion

This command searches the global collection for the item with the key inKey.

If outArray is not an array, an error is generated and execution is aborted.

If the item is found and its value is an array, outArray receives a copy. If outArray has not

yet been defined, it is created with the same type as the source array.

If the item is found and its value is not an array, an error is generated and execution is

aborted.

If the item is not found, outArray is resized to zero. If outArray has not yet been defined, it

is created as a text array.

Note: For scalar values this command has been superceded by the simpler syntax:

 globals{inKey} or globals{inKey}{inIndex}

get global array version 2

get global array(inKey; outArray)

Parameter Type Description

inKey Text  Key of global item to retrieve

outArray Array  Receives the array

Note: There is no longer any need to copy a globals array just to manipulate it. You

should use the simpler syntax:

 globals{inKey}

The resulting value may be used with all of the array commands such as append to

array and DELETE ELEMENT.
Chapter 11 Command Reference 209

Active4D v6.3 Globals
Discussion

This command searches the global collection for the item with the key inKey.

If the item is found and its value is an array, the size of the array is returned.

If the item is found and its value is not an array, an error is generated and execution is

aborted.

If the item is not found, zero is returned.

Discussion

This command searches the global collection for the item with the key inKey.

If the item is found, an iterator reference for the item is returned.

If the item is not found, an empty iterator is returned. For information on empty iterators,

see “Iterating Over a Collection” on page 102.

get global array size version 2

get global array size(inKey) Longint

Parameter Type Description

inKey Text  Key of global item to retrieve

Result Longint  Size of array

Note: This command has been superceded by the simpler syntax:

 Size of array(globals{inKey})

get global item version 2

get global item(inKey) Longint

Parameter Type Description

inKey Text  Key of collection item to retrieve

Result Longint  Iterator for collection
210 Chapter 11 Command Reference

Globals Active4D v6.3
Discussion

This command fills outKeys with all of the keys in the global collection. If outKeys has not

yet been defined, it is created as a string array.

If outKeys is defined but is not a string or text array, an error is generated an execution is

aborted.

Discussion

This command searches the global collection for the item with the key inKey.

If the item is found and its value is not an array, you may pass more than one key/value

pairs to set multiple items at once. If the item is found and its value is an array, you may

pass an index to set an element of the array.

If the item is found and an index is not specified, the item’s value is replaced with inValue.

If the item is found, its value is an array, and an index is specified, the given array element

is set. If the index is out of range or the type of inValue is not assignment-compatible

with the array, an error is generated and execution is aborted.

If the item is not found and an index is not specified, a new item is added to the

collection with the given keys and values.

If the item is not found and an index is specified, an error is generated and execution is

aborted.

get global keys version 2

get global keys(outKeys)

Parameter Type Description

outKeys String/Text Array  Receives the collection keys

set global version 2

set global(inKey; inValue {; inKeyN; inValueN | inIndex})

Parameter Type Description

inKey Text  Key of collection item to store

inValue <any>  Value to set for the given item

inIndex Longint  Index of array element to set

Note: For scalar values this command has been superceded by the simpler syntax:

 globals{inKey} := inValue or globals{inKey}{inIndex} := inValue
Chapter 11 Command Reference 211

Active4D v6.3 Globals
Discussion

This command searches the global collection for the item with the key inKey.

If inArray is not an array, an error is generated and execution is aborted.

If the item is found, its value is replaced with inArray.

If the item is not found, a new item is added to the collection with the given key and

array.

Discussion

This command returns the number of items in the global collection.

set global array version 2

set global array(inKey; inArray)

Parameter Type Description

inKey Text  Key of collection item to set

inArray Array  Array to set for the given item

Note: This command has been superceded by the simpler syntax:

 globals{inKey} := inArray

count globals version 2

count globals Longint

Parameter Type Description

Result Longint  Number of items in collection
212 Chapter 11 Command Reference

Globals Active4D v6.3
Discussion

This command searches the global collection for the item with the key inKey. To delete

more than one item, you may use a wildcard in the key. All items that match will be

removed from the collection.

Discussion

This command locks the global collection such that no other processes may access it.

This is the equivalent of using an interprocess semaphore in 4D.

For information on globals locking, see “Locking and Unlocking the Globals” on

page 206.

Discussion

This command unlocks the global collection so that other processes may access it. This is

the equivalent of using an interprocess semaphore in 4D.

For information on globals locking, see “Locking and Unlocking the Globals” on

page 206.

delete global version 2

delete global(inKey)

Parameter Type Description

inKey Text  Key of global item to delete

lock globals version 2

lock globals

unlock globals version 2

unlock globals
Chapter 11 Command Reference 213

Active4D v6.3 Iterators
Iterators

As with arrays, it is frequently useful or necessary to iterate over the contents of a

collection. With arrays this is easy; you just use a For loop and index into the array to

access a specific element.

Collections, on the other hand, are not necessarily stored in such a way that a numeric

index can efficiently be used to access a particular item. Thus it is necessary to provide

another mechanism, known as iteration. Iteration means that you start at the

“beginning” of a collection and advance one item at a time towards the “end” of the

collection. At each step the key and value of the current item can be retrieved. This

process is known as iterating over a collection.

Using for each

There are two ways of iterating over a collection in Active4D. The easiest and most direct

way is to use the for each/end for each looping control structure. The basic method of

using for each looks like this:

In the example above, the collection being iterated over is the form variables collection.

Within each pass through the loop, $key is set to the key of the current item, and $value is

set to the value of the current item. If the item’s value is an array, $value receives a copy of

the array.

Using Iterators

An iterator is represented by a Longint and can be thought of as a special kind of pointer.

When an iterator is first created, it points at the first item in a collection. Given an iterator,

you can retrieve the key or value of the item it points to and advance to the next item. Of

course, you need to know when you have reached the end of the collection, so iterators

also provide a way of telling if there are more items left.

for each(form variables; $key; $value)
 writebr('$key=$value')
end for each

Note: In previous versions of Active4D, collection keys were kept in alphabetical

order, although officially no order was guaranteed. In v6 the keys are kept in no

predictable order, so if you have code that relies on alphabetical keys, you will have to

get the collection keys, sort them, and then use the sorted keys to access the

collection items.
214 Chapter 11 Command Reference

Iterators Active4D v6.3
The basic template for iterating over a collection looks like this:

Pretty simple. You can also test the type of an item’s value in case it might be an array,

and get the item’s array if it is.

Iterator Validity

Active4D tests the validity of the iterator passed to each of the iterator commands. If the

iterator is not valid, an error is generated and execution is aborted. Thus you do not have

to worry about crashing the server because of a bad iterator.

All iterators become invalid when execution of a script ends.

$it := <get an iterator command>

while (more items($it))
 $key := get item key($it)
 $value := get item value($it)
 next item($it)
end while

Warning: If you delete or add an item in a collection, any iterators for that collection

will no longer be valid. Thus you should not attempt to delete or add items while

iterating over a collection.
Chapter 11 Command Reference 215

Active4D v6.3 Iterators
Discussion

For a full discussion of for each/end for each, see “for each/end for each” on page 245.

Discussion

This command returns True if there are more items in the collection to be iterated.

Discussion

This command advances the iterator to the next item in the collection.

for each/end for each version 3.0

for each(inCollectionRef; outKey {; outValue})

Parameter Type Description

inCollectionRef Longint  Collection handle or iterator

outKey <any>  Receives the item key

outValue <any>  Receives the item value

more items version 2

more items(inIterator) Boolean

Parameter Type Description

inIterator Longint  Iterator

Result Boolean  True if more items in collection

next item version 2

next item(ioIterator)

Parameter Type Description

ioIterator Longint  Iterator
216 Chapter 11 Command Reference

Iterators Active4D v6.3
Discussion

This command returns the key of the item currently pointed to by the iterator.

Discussion

This command returns the value of the item currently pointed to by the iterator. If the

value is an array, the current value of the array is returned.

Discussion

This command returns the type of the item currently pointed to by the iterator.

get item key version 2

get item key(inIterator) Text

Parameter Type Description

inIterator Longint  Iterator

Result Text  Key of current item

get item value version 2

get item value(inIterator) <any>

Parameter Type Description

inIterator Longint  Iterator

Result <any>  Value of current item

get item type version 2

get item type(inIterator) Longint

Parameter Type Description

inIterator Longint  Iterator

Result Longint  Type of current item
Chapter 11 Command Reference 217

Active4D v6.3 Iterators
Discussion

This command returns the array value of the item currently pointed to by the iterator.

If the iterator is not currently pointing at an item with an array value, an error is

generated and execution is aborted.

Discussion

This command returns True if inIterator is a valid iterator reference. If the value is not a

Longint, this command returns False.

get item array version 2

get item array(inIterator; outArray)

Parameter Type Description

inIterator Longint  Iterator

outArray Array  Receives a copy of item’s array

is an iterator version 2

is an iterator(inIterator) Boolean

Parameter Type Description

inIterator <any>  Iterator

Result Boolean  True if a valid iterator
218 Chapter 11 Command Reference

JSON Active4D v6.3
JSON

If you are using an AJAX-based Javascript library in your web sites, at some point it is

likely you will need to create JSON (see json.org) formatted data within Active4D.

Active4D provides a full set of commands for easily creating properly formatted JSON

data from all of the data types Active4D supports, including collections. In addition,

there are commands for quickly adding a selection of records or a RowSet to JSON data.

Using the commands

The JSON commands have two primary interfaces: a high level interface and a low level

interface. Most of the time you will use the high level interface to create, populate and

output a JSON “object”. The high level command names begin with “add”, “start” or “end”.

If you need more control over the format of the JSON data, you can use the low level

“json encode” command.

UTF-8 and Ajax

When using Ajax requests, posted data is encoded as UTF-8 and UTF-8 encoded data is

expected in return.

Active4D handles this transparently. When Active4D detects an Ajax request, it

automatically decodes posted UTF-8 data into Unicode. If you use the JSON commands

to return data to an Ajax request, the data is automatically encoded as UTF-8.

Note: The functionality of the a4d.json library has been replaced by native JSON

commands, which are much faster (up to 50x) and more powerful. For backwards

compability, the a4d.json library has been retained, but is now just a thin wrapper

around the built in JSON commands, resulting in much greater speed.

It is recommended that you convert any a4d.json-based code to use the built in

commands, as the a4d.json library will be deprecated in a future version.
Chapter 11 Command Reference 219

Active4D v6.3 JSON
Discussion

This command creates a new JSON “object” that can be used with other commands in

this library to add JSON-formatted data. JSON objects are automatically cleared at the

end of the current request.

If inWrap is not passed, it defaults to True. If inWrap is True, when json to text or write

json is called the output will be wrapped within an enclosing object ({}).

Discussion

This command adds data to a JSON object. You may add an unlimited number of

key/value pairs with a single call. All Active4D data types may be used, including arrays

and collections.

If inKey is not an empty string, a new keyed item is added to the object. If inKey is empty,

data is added without a key. Ordinarily you would only add data without a key if you are

dynamically building an array using the start json array and end json array commands.

The data in inValue is converted to JSON format according to its type:

new json v6.1

new json{(inWrap)} Object

Parameter Type Description

inWrap Boolean  True to wrap the JSON data within an

enclosing object

Result JSON Object  Object to be used with other JSON

commands

add to json v6.1

add to json(ioJSON; inKey; inValue {; *; inFilter}{; inKeyN; inValueN {; *; inFilterN}})

Parameter Type Description

ioJSON JSON object  Object to add data to

inKey Text  Key for data item

inValue <any>  Data to add

inFilter Text  Filter for collections

Value type Result

String/Text Encoded string, double-quoted

Number Number

Date Date in IETF “Mon Day, Year” format
220 Chapter 11 Command Reference

JSON Active4D v6.3
If inValue is a collection and it is followed by * and inFilter, inFilter is used to filter the

contents of inValue. For more information, see “json encode” on page 234.

The array types supported by add to json are those whose scalar elements types are

supported. If an element of longint array is a collection handle, the collection is encoded.

Arrays of an unsupported type will be added as an empty JSON array.

Examples

To understand how this command works, let’s look at some examples to see the resulting

output. First let’s look at the output from the basic data types:

Notice that the “time” item returned a value of null, because time is not a supported type

in JSON. Also notice how we could add multiple key/value pairs at once.

Now let’s look at what happens if we add a collection and an array to a JSON object.

As you can see, the items in a collection are added as a subobject with the given key. The

values in a collection are added with the add command.

Boolean true or false

Array Encoded according to element type

Collection Encoded as a subobject

JSON object Added as a subobject

Other null

$json := new json
add to json($json; "name"; "Sri Chinmoy"; "age"; 76; \\
 "birthdate"; !08/27/1931!; "Bengali"; true; \\
 "time"; ?07:13:27?)
write json($json)

// The output is:
{"name":"Sri Chinmoy","age":76,"birthdate":"Aug 27, 1931",
"Bengali":true,"time":null}

$json := new json
$info := new collection("age"; 76; "birthdate"; !08/27/1931!; \\
 "Bengali"; true; "time"; ?07:13:27?)
array text($siblings; *; "Chitta"; "Mantu"; \\
 "Hriday"; "Lily"; "Arpita"; "Ahana")
add to json("info"; $info; "siblings"; $siblings)
$json->write

// The output is:
{"name":"Sri Chinmoy","info":{"age":76,"birthdate":"Aug 27,
1931","Bengali":true,"time":null},"siblings":["Chitta","Mantu",
"Hriday","Lily","Arpita","Ahana"]}

Value type Result
Chapter 11 Command Reference 221

Active4D v6.3 JSON
Finally, let’s look at an example of adding a value with no key.

Discussion

This command adds an IETF format datetime item to a JSON object. Such an item can be

turned into a Javascript Date object by passing the item string to the Date constructor.

If inKey is not an empty string, a new keyed item is added to the object. If inKey is empty,

a datetime item is added without a key. Ordinarily you would only add a datetime

without a key if you are dynamically building an array using the start json array and end

json array commands.

inTimezone should be in the timezone indicated in the inTimeZone parameter. inTimezone

should be minute offset from GMT.

array text($siblings; *; "Chitta"; "Mantu"; \\
 "Hriday"; "Lily"; "Arpita"; "Ahana")

$json := new json
add to json($json; "name"; "Sri Chinmoy")
start json array($json; "siblings")

for each($siblings; $name)
 add to json($json; ""; $name)
end for each

end json array($json)
write json($json)

// The output is:
{"name":"Sri Chinmoy","siblings":["Chitta","Mantu","Hriday",
"Lily","Arpita","Ahana"]}

add datetime to json v6.1

add datetime to json(ioJSON; inKey; inDate; inTime; inTimezone)

Parameter Type Description

ioJSON JSON object  Object to add data to

inKey Text  Key for data item

inDate Date  Date portion of datetime

inTime Time  Time portion of datetime

inTimezone Number  Timezone portion of datetime
222 Chapter 11 Command Reference

JSON Active4D v6.3
Example

Discussion

This command adds an item to ioJSON with the key inName and a value of inBody as is,

unquoted and unencoded. This is useful when you need to add a function (such as a

handler or callback) to your JSON data.

Example

$json := new json
// add a datetime in EST (GMT-5)
add datetime to json($json; "DA"; !02/17/1980!; ?20:31:07?; \\
 -5 * 60)
write json($json)

// The output is:
{"DA":"Feb 17, 1980 20:31:07 GMT-0500"}

// Javascript on the client, JSON is in a variable called json
var da = new Date(json.DA)

add function to json v6.1

add function to json(ioJSON; inName; inBody)

Parameter Type Description

ioJSON JSON object  Object to add data to

inName Text  Function name

inBody Text  Function body

$json := new json
add function to json($json; "renderer"; \\
"""function(value, metadata, record) {
 return record.data.title + " " + value;
}""")
Chapter 11 Command Reference 223

Active4D v6.3 JSON
Discussion

This command adds rows from inRowSet to the JSON object ioJSON. If you have a RowSet

and you want to use it for generating JSON data, this command is the fastest and easiest

way to do so. If the RowSet is selection-based and is not being used for other purposes,

in most cases you will want to use add selection to json instead of this command.

The RowSet’s rows are added as an array of objects, with each object containing one

item for each column of data. The column data is converted as if were passed to the add

to json command. If inDataKey is passed and is non-empty, the array will have the key

inDataKey.

If inCountKey is passed and is non-empty, an item will be added to ioJSON whose key is

inCountKey and whose value is the number of rows in inRowSet.

If inMap is not passed or is empty, all of the columns in inRowSet will be added to the row

array. If inMap is passed and is non-empty, it must be a semicolon-delimited list of

mappings from RowSet column names to JSON key names. If the RowSet column name

will be used as is, it is sufficient to use just the column name. If you want to rename a

RowSet column, then the mapping should be a <JSON key>:<RowSet column> pair. This

allows you to specify a subset of the RowSet columns for inclusion in the JSON data,

and/or to rename the RowSet columns.

If inFirst is passed and is >= 1, it specifies the one-based index of the first row from

inRowSet that will be added to self. If inLimit is passed and is >= 0, it specifies the

maximum number of rows from inRowSet that will be added to self. Together, inFirst and

add rowset to json v6.1

add rowset to json(ioJSON; inRowSet {; inCountKey {; inDataKey {; inMap
{; inFirst {; inLimit}}}}})

Parameter Type Description

ioJSON JSON object  Object to add data to

inRowSet RowSet  RowSet from which to get data

inCountKey Text  Key for row count item

inDataKey Text  Key for row data item

inMap Text  JSON name to RowSet column map

inFirst Number  Index of first row to add

inLimit Number  Maximum number of rows to add

Note: The number of rows returned with inCountKey is the result of calling

$inRowSet->rowCount, not $inRowSet->sourceRowCount.
224 Chapter 11 Command Reference

JSON Active4D v6.3
inLimit make it easy to specify a subset of rows, which is typically the case when paging

through a large RowSet.

Examples

Let’s look at a few examples to illustrate the typical use of the various options. First, we’ll

create a RowSet and then add it a JSON object.

Now let’s add the rest of the parameters to see the effect. This time we want to eliminate

the id column from the JSON data, and we want to rename the RowSet birthdate column

to the JSON key dob. In addition, we are receiving the starting index in a query parameter

called “start” whose value is “2”, and the number of rows to return in a query parameter

called “size” whose value is “1”.

Note: Depending on the Ajax toolkit you are using, it is likely that the start index for

a page of data will be zero-based. It is up to you to add 1 to make it one-based before

using the value for inFirst.

// Assume we have a selection of 3 [employee] records
$map := """
name: ‘concat(" "; [employee]first; [employee]last)‘;
id: [employee]id;
birthdate: [employee]birthdate"""
$rs := RowSet.newFromSelection(->[employee]; $map)
$json := new json
add rowset to json($json; $rs; "count"; "rows")
write json($json)

// The output is:
{"count":3,"rows":[{"name":"Tiny Tim","id":31,"birthdate":"Apr
12, 1932"},{"name":"James Taylor","id":27,"birthdate":"Mar 12,
1948"},{"name":"Pat Metheny","id":13,"birthdate":"Aug 12,
1954"}]}

// RowSet setup is the same as the example above

// Use "name" column as is, rename "birthdate" to "dob"
$jmap := "name;dob:birthdate"

// If "start" query param is not passed, default to "0",
// convert it to one-based number
$first := num($attributes{"start"} | "0") + 1

// If "size" query param is not passed, default to "20"
$limit := num($attributes{"size"} | "20")
$json := new json
add rowset to json($json; $rs; "count"; "rows"; $jmap; \\
 $first; $limit)
write json($json)

// The output is:
{"count":3,"rows":[{"name":"Pat Metheny","dob":"Aug 12, 1954"}]}
Chapter 11 Command Reference 225

Active4D v6.3 JSON
Note that the count item still returns 3, because the number of rows in the RowSet is still

3, even though there is only one row in the rows array. The reason for this is because

when you are showing paging information for a RowSet, you usually want to display

something like “Displaying records <start>-<end> of <total>”, so you always need the

total number of rows in the source dataset.

Discussion

This command adds record data from the current selection of inTable to the JSON object

ioJSON. If you have a selection of records and you want to use it for generating JSON

data, this command is the fastest and easiest way to do so.

This command operates in two modes:

3 selection mode: If inFirst # -1, the selection’s records are output as an array of objects,

with each object containing one item for each field.

inFirst specifies the one-based index of the first record in the current selection of

inTable that will be added to self. If inLimit is passed and is >= 0, it specifies the

maximum number of records from the current selection of inTable that will be added

to self. Together, inFirst and inLimit make it easy to specify a subset of records, which is

typically the case when paging through a large selection.

3 current record mode: If inFirst = -1, only the current record of the selection is output

as a single object (not within an array) with one item for each field.

The field data is converted as if were passed to the add to json command. If inDataKey is

passed and is non-empty, the record data will have the key inDataKey.

If inCountKey is passed and is non-empty, an item will be added to ioJSON whose key is

inCountKey and whose value is the number of records in the current selection of inTable.

add selection to json v6.1

add selection to json(ioJSON; inTable {; inCountKey {; inDataKey {; inMap
{; inFirst {; inLimit}}}}})

Parameter Type Description

ioJSON JSON object  Object to add data to

inTable Table  Main table from which to get data

inCountKey Text  Key for row count item

inDataKey Text  Key for row data item

inMap Collection  JSON name to value map

inFirst Number  Index of first row to add

inLimit Number  Maximum number of rows to add

Note: Depending on the Ajax toolkit you are using, it is likely that the start index for

a page of data will be zero-based. It is up to you to add 1 to make it one-based before

using the value for inFirst.
226 Chapter 11 Command Reference

JSON Active4D v6.3
If inMap is not passed or is empty, all of the fields in inTable will be added to the record

array, with the field name being the JSON column key. If inMap is passed and is non-zero,

it must be a collection which maps JSON column keys to column values. The keys in

inMap are used as the JSON column keys. The values may be one of three types:

3 Table pointer: If the value is a table pointer, the current record number for inTable is

output as a JSON number.

3 Field pointer: If the value is a field pointer, the value of the field is output as if it were

passed to the add to json command. Fields from tables other than inTable may be

used if there is a many to one relation (it need not be automatic) between inTable and

the foreign field’s table. If any foreign fields are used in inMap, RELATE ONE($inTable->)

is executed before each record is output to ensure related data is available.

3 Text: If the value is text, it must be an expression than returns a value (although using

return is not necessary). The resulting value is output as if it were passed to the add to

json command. If you want the result to appended verbatim, without being JSON

encoded, prefix the expression with “@”. If you want to evaluate the expression in 4D

instead of Active4D, prefix the expression (after “@”) with “!”.

If inMap contains an item whose key is “a4d.json.callback”, then the value should be a

text block of code to execute after each record of inTable is loaded. The code does not

have to return a value. If you want the code to be executed in 4D instead of Active4D,

prefix it with “!”. Code executed in Active4D may consist of multiple statements

separated by carriage returns. Code executed in 4D may only be one line.

Examples

Let’s look at a few examples to illustrate the typical use of the various options. First, we’ll

create a selection of records and then add it a JSON object.

Notice how all of the fields were automatically included in the JSON output. Now let’s

add the rest of the parameters to see the effect.

To make the output more useful, we would like to do the following:

3 Include the record number of the [employee] table

// [employee] table
// id Longint
// firstname Alpha20
// lastname Alpha20
// company_id Longint, relate one with [company]id
// dob Date
query([employee]; [employee]contact_id = $attributes{"id"})
$json := new json
add selection to json($json; [employee]; "count"; "rows")
write json($json)

// The output is:
{"count":3,"rows":[{"id":31,"firstname":"Tiny","lastname":"Tim",
"company_id":101,"dob":"Apr 12, 1932"},{"id":27,
"firstname":"James","lastname":"Taylor","company_id":107,
"dob":"Mar 12, 1948"},{"id":13,"firstname":"Pat",
"lastname":"Metheny","company_id":107,"dob":"Aug 12, 1954"}]}
Chapter 11 Command Reference 227

Active4D v6.3 JSON
3 Concatenate the first name and last name into a single name column

3 Return the company name instead of its id

3 Rename “dob” to “birthdate”

We accomplish this by creating a map and passing it to add selection to json:

Finally, suppose we have vendors and products they sell, and we want one JSON object

for each vendor which contains an array of objects for each product. We could manually

build the data using start json array/start json object and end json object/end json

Note: For an example of how to use the inFirst and inLimit parameters, see the

documentation for “add rowset to json” on page 224.

// Selection setup is the same as the example above

$map := new collection

// output record number
$map{"recnum"} := ->[employee]

// output concatenation of firstname + " " + lastname
$map{"name"} := "concat(\" \"; [employee]firstname;
[employee]lastname)"

// output foreign related one field
$map{"company"} := ->[company]name

// rename a field
$map{"birthdate"} := ->[employee]dob

// use a callback
$map{"a4d.json.callback"} := \\
"query([family]; [family]employee_id = [employee]id)\r" + \\
"query([family]; &; [family]type = 1)" // type 1 is child

$map{"num_children"} := "records in selection([family])"

$json := new json
add selection to json($json; [employee]; "count"; "rows"; $map)
write json($json)

// The output is:
{"count":3,"rows":[{"recnum":207,"name":"Tiny Tim",
"company":"Tulips, Inc.","birthdate":"Apr 12, 1932",
"num_children":0},{"recnum":331,"name":"James Taylor",
"company":"Gorilla Corp.","birthdate":"Mar 12, 1948",
"num_children":2}, {"recnum":713,"name":"Pat Metheny",
"company":"The Way Up","birthdate":"Aug 12, 1954",
"num_children":1}]}
228 Chapter 11 Command Reference

JSON Active4D v6.3
array. But there is a faster and easier way, using a nested JSON object return by a

method that is executed with every vendor record.

// Define a method that will output an array of products
// for the current vendor.

method "vendorProducts"
 relate many([vendors]id) // get related products
 $json := new json(false) // don’t wrap result in an object
 $map := new collection(\\
 "id"; ->[products]id; "name"; ->[products]name; \\
 "price": ->[products]price)
 add selection to json($json; [products]; ""; ""; $map)
 return (json to text($json))
end method

// Now encode the vendors

all records([vendors])
$json := new json
$map := new collection(\\
 "id"; ->[vendors]id; "name"; ->[vendors]name; \\
 "products": "@vendorProducts")

// Note we prefixed the method name with "@" so the result
// will not be encoded as a string but appended verbatim.

add selection to json($json; [vendors]; "count"; "rows"; $map)
write json($json)

// Output:
{"count":2,"rows":[{"id":100,"name":"Spacely Sprockets",
"products":[{"id":7,"name":"Widget 100","price":13.99},
{"id":13,"name":"Sprocket","price":7.5}]},{"id":103,
"name":"Cogswell Cogs","products":[{"id":31,"name":"Flange
X","price":27.5},{"id":47,"name":"Cog","price":3.99}]}]}
Chapter 11 Command Reference 229

Active4D v6.3 JSON
Discussion

This command adds an array start marker to a JSON object. Ordinarily you would only

call this command if you are dynamically building an array using the start json array

and end json array commands instead of using the add to json command.

If inKey is not passed or is an empty string, the array start marker is preceded by an item

key.

Example

start json array v6.1

start json array(ioJSON {; inKey})

Parameter Type Description

ioJSON JSON object  Object to add data to

inKey Text  Key for array item

Warning: To ensure valid JSON data, be sure to balance a call to this command with

a call to end json array.

array text($siblings; *; "Chitta"; "Mantu"; \\
 "Hriday"; "Lily"; "Arpita"; "Ahana")

$json := new json
start json array($json; "siblings")

for each($siblings; $name)
 add to json($json; ""; $name)
end for each

end json array($json)
write json($json)

// The output is:
{"siblings":["Chitta","Mantu","Hriday", "Lily","Arpita","Ahana"]}
230 Chapter 11 Command Reference

JSON Active4D v6.3
Discussion

This command adds an array end marker to a JSON object. Ordinarily you would only call

this command if you are dynamically building an array using the start json array and

end json array commands instead of using the add to json command.

Example

See “start json array” on page 230.

Discussion

This command adds an object start marker to a JSON object. Ordinarily you would only

call this command if you are dynamically building an object using the start json object

and end json object commands instead of using the add to json command.

end json array v6.1

end json array(ioJSON)

Parameter Type Description

ioJSON JSON object  Object to add data to

Warning: To ensure valid JSON data, be sure to balance a call to this command with

a previous call to start json array.

start json object v6.1

start json object(ioJSON {; inKey})

Parameter Type Description

ioJSON JSON object  Object to add data to

inKey Text  Key for subobject

Warning: To ensure valid JSON data, be sure to balance a call to this command with

a call to end json object.
Chapter 11 Command Reference 231

Active4D v6.3 JSON
If inKey is not passed or is an empty string, the object start marker is preceded by an item

key.

Example

Discussion

This command adds an object end marker to a JSON object. Ordinarily you would only

call this command if you are dynamically building an object using the start json object

and end json object commands instead of using the add to json command.

Example

See “start json object” on page 231.

$json := new json
start json array($json; "employees")

for each([employee])
 start json object($json)
 add to json($json; "name"; [employee]name); \\
 "age"; [employee]age)
 end json object($json)
end for each

end json array($json)
write json($json)

// The output is:
{"employees":[{"name":"Tom","age":31},{"name":"Dick","age":27},
{"name":"Harry","age":42}]}

end json object v6.1

end json object(ioJSON)

Parameter Type Description

ioJSON JSON object  Object to add data to

Warning: To ensure valid JSON data, be sure to balance a call to this command with

a previous call to start json object.
232 Chapter 11 Command Reference

JSON Active4D v6.3
Discussion

This command returns the data that has been added to inJSON as JSON-formatted text.

Usually you will not need to call this command directly, since you will want to write the

reult of this command to the response buffer, and the write json command does that for

you.

Discussion

This command writes the data that has been added to self as JSON-formatted text to the

response buffer. This is the primary command you will use to return JSON data to a client.

If inSetContentType is not passed or is True, the content type of the response is set to

“application/json”.

json to text v6.1

json to text(inJSON) Text

Parameter Type Description

inJSON JSON object  Object from which to get JSON data

Result Text  JSON-formatted data

Warning: If you do decide to write JSON data to the response buffer yourself

(instead of using write json), be sure to use the write raw command to prevent any

HTML encoding.

write json v6.1

write json(inJSON; inSetContentType)

Parameter Type Description

inJSON JSON object  Object from which to write JSON data

inSetContentType Boolean  True to set the content type
Chapter 11 Command Reference 233

Active4D v6.3 JSON
Discussion

This command writes the data that has been added to inJSON as JSON-formatted text to

the response buffer, wrapped in a call to the function inCallback. This is the primary

command you will use to return JSON data to a client that is using the JSONP protocol.

If inSetContentType is not passed or is True, the content type of the response is set to

“application/json”.

Example

Assume your front end makes a JSONP request with the following URL:

You build the JSON response and then return it like this:

Discussion

This low level command encodes data into JSON format. All Active4D data types may be

used, including arrays and collections. Usually you would not use this command directly,

but use the high level add to json command instead.

write jsonp v6.1

write jsonp(inJSON)

Parameter Type Description

inJSON JSON object  Object from which to write JSON data

inCallback String  Callback expected by JSONP request

inSetContentType Boolean  True to set the content type

/enrollments/list?cb=CPJSONPConnectionCallbacks.callback32626

$json := new json
// add data to $json
$callback := $attributes{"cb"} // assuming fusebox
write jsonp($json; $callback)

json encode v6.1

json encode(inValue {; inFilter}) Text

Parameter Type Description

inValue <any>  Data to JSON encode

inFilter Text  Filter for collections

Result Text  Encoded value
234 Chapter 11 Command Reference

JSON Active4D v6.3
When encoding a collection, this command encodes the data in inValue as a JSON object,

with each key/value pair in the collection becoming a key/value pair in the JSON object.

If the value has no corresponding JSON type, the value null is returned.

If inFilter is passed and is non-empty, it is used as a matching expression to determine

which items from inCollection are encoded. The rules for the filter expression are as

follows:

3 If the filter begins with "#", it performs an exclusion, i.e. all items that match the filter

are excluded.

3 Otherwise only items that match the filter are included.

3 If the first character after the optional “#” and the last character is "/", it is considered a

regular expression pattern and regex matching is done.

3 Otherwise simple string comparison is performed.

Examples

Let’s take a look at some simple filters to see how they affect the output of this

command.

$c := new collection("foo"; 7; "bar"; !04/13/1964!; "baz"; false)

// simple string matching
$enc := json encode($c; "foo")
// $enc = {"foo":7}

// simple string matching with wildcard
$enc := json encode($c; "b@")
// $enc = {"bar":"Apr 13, 1964","baz":false}

// exclusion matching, simple string
$enc := json encode($c; "#bar")
// $enc = {"foo":7,"baz":false}

// exclusion matching, simple string with wildcard
$enc := json encode($c; "#b@")
// $enc = {"foo":7}

// regex matching
$enc := json encode($c; "/foo|bar/")
// $enc = {"foo":7,"bar":"Apr 13, 1964"}

// exclusion matching, regex
$enc := json encode($c; "#/foo|bar/")
// $enc = {"baz":false}
Chapter 11 Command Reference 235

Active4D v6.3 JSON
Discussion

This method parses JSON text into its corresponding Active4D value.

All valid JSON types and syntaxes are supported, with the exception that array elements

must all be of the same type. JSON types map to Active4D types as follows:

Note that JSON has no native representation for dates. To convert textual

representations of dates into 4D dates, pass a delimited regular expression in inDateKeys.

JSON strings or string arrays whose keys match the regular expression will be considered

for conversion. Conversion occurs if the string value matches one of the following

patterns:

Also note that all collections created from JSON objects will be local.

parse json v6.0r2

parse json(inJSON {; inDateKeys {; inThrowOnError}}) <any>

Parameter Type Description

inJSON Text  Text to parse

inDateKeys Text  Regular expression to match keys for

date conversion

inThrowOnError Boolean  True to throw on malformed JSON

Result <any>  Parsed JSON data

JSON type Active4D type

object collection

array array

string text

number real

true/false boolean

null nil pointer

Pattern Comments

Mmm d, yyyy IETF date format. Mmm is a 3-letter English month

abbreviation.

yyyy-mm-dd

yyyy-mm-ddThh:mm:ss

ISO Date format

Note: Because this command may return an array, you should always use the super
assign operator (::=) to assign the result of this command.
236 Chapter 11 Command Reference

JSON Active4D v6.3
If inThrowOnError is True (the default), malformed JSON will throw an error. Otherwise it

will skip the item and continue if it can recover. If it cannot recover, an error will be

thrown.

Example

// Given the JSON data:
{"name":"Sara","birthdate":"Dec 10, 1931"}

// When parsing, we can convert "birthdate" to a 4D date:
$data := parse json($json; "/^birthdate$/"; true)
Chapter 11 Command Reference 237

Active4D v6.3 Language
Language

Active4D supports every major feature of the 4D language. In addition, it extends the

language to make code writing more efficient.

You should especially learn to use the choose command, as it is tremendously useful.
238 Chapter 11 Command Reference

Language Active4D v6.3
Discussion

This command executes the given 4D method, passing any parameters which follow the

method name. It is critical that the parameters you pass are compatible with the

parameter declaration in the 4D method. If the method returns a value, it may be

ignored.

If inMethodName does not specify an existing 4D method, an error is generated and

execution is aborted.

For more on the purpose and use of this command, see “Indirect Method Calls (aka Poor

Man's method pointers)” on page 99.

Discussion

This command executes the given Active4D method, passing any parameters which

follow the method name. If the method returns a value, it may be ignored.

call 4d method version 1

call 4d method(inMethodName {;inParam1 {…;inParamN}}) <any>

Parameter Type Description

inMethodName Text  Name of method to call

inParam1..N <any>  Method parameters

Result <any>  Value returned by method

Note: The primary purpose of this command is to allow indirect method calls. Under

normal circumstances this command is unnecessary, as you can call 4D methods

directly with the same syntax as you would in 4D.

call method version 1

call method(inMethodName {;inParam1 {…;inParamN}}) <any>

Parameter Type Description

inMethodName Text  Name of method to call

inParam1..N <any>  Method parameters

Result <any>  Value returned by method

Note: The primary purpose of this command is to allow indirect method calls. Under

normal circumstances this command is unnecessary, as you can call Active4D

methods directly with the same syntax as you would a 4D method.
Chapter 11 Command Reference 239

Active4D v6.3 Language
You may specify a library method by using the library.method syntax, just as you would if

you were directly calling the method. If inMethodName does not specify an existing

Active4D method, an error is generated and execution is aborted.

Normal rules for parameter passing to Active4D methods apply to this command. For

more information on calling Active4D methods, see Chapter 8, “Methods.”

Discussion

This command evaluates the Boolean expression inCondition. If the expression evaluates

to True, the command evaluates and returns the result of trueExpression. If the expression

evaluates to False, the command evaluates and returns the result of falseExpression.

This command is basically a way of performing an inline If/Else/End if. Used properly, it

can greatly streamline your code.

For example, suppose you are building a table with a list of records. If a table cell has no

data at all, some browsers will not display the cell as empty, but rather as non-existent. To

prevent this, you insert a non-breaking space () in the cell.

choose version 2

choose(inCondition; trueExpression; falseExpression) <any>

Parameter Type Description

inCondition Boolean  Determines which expression to

evaluate

trueExpression <any>  Expression to evaluate if inCondition is

True

falseExpression <any>  Expression to evaluate if inCondition is

False

Result <any>  trueExpression or falseExpression
240 Chapter 11 Command Reference

Language Active4D v6.3
Without the use of choose, your code would look something like this:

Using choose, the If/Else/End if block becomes this:

Note that we have streamlined even further by using the = operator as a synonym for

write. For more information on this use of =, see “Response Buffer” on page 300.

Here’s another example where choose comes in handy: setting radio buttons. To set a

radio button in HTML, you must add the word “checked” to the radio button’s tag.

Ordinarily, this would require a separate test for each radio button declaration, like this:

<table>
 <%
 for ($i; 1; records in selection([contacts]))
 goto selected record([contacts]; $i)
 %>
 <tr>
 <td>
 <%
 if (length([contacts]name) = 0)
 write(" ")
 else
 write([contacts]name)
 end if
 %>
 </td>
 </tr>
 <% end for %>
</table>

<% =choose(length([contacts]name) = 0; " "; [contacts]name)
%>

<input type="radio" name="f_radio" value="1"
 <% if ([contact]rating = 1)
 write("checked")
 end if
 %>
/>Good

<input type="radio" name="f_radio" value="2"
 <% if ([contact]rating = 2)
 write("checked")
 end if
 %>
/>Better

<input type="radio" name="f_radio" value="3"
 <% if ([contact]rating = 3)
 write("checked")
 end if
 %>
/>Best

Chapter 11 Command Reference 241

Active4D v6.3 Language
Yuck. This would probably lead you to write a library method something like this:

This is better in one sense, but worse in another; because you have embedded the radio

button HTML in a method, you lose the ability to view and edit the checkbox in an HTML

editor. Remember, the whole point of Active4D is to embed your code in HTML, not the

other way around.

Using choose, you can have the best of both worlds, like this:

Discussion

This keyword defines a new named constant. The name must conform to the rules for 4D

process variables. The value can be any valid expression.

Named constants have scope, like local variables. Constants defined outside of a library

are global in scope, and may be accessed anywhere, including within the body of

methods.

Constants defined within libraries are scoped to the library, like library methods. Library

constants are accessible to all methods in the library without using the library name.

Outside of the library, library constants are accessible by using <library>.<constant>

notation, where <library> is the library name and <constant> is the constant name, or

method "makeRadio"($inName; $inValue; $inChecked)
 write('<input type="radio" name="$inName" value ="inValue"')

 if ($inChecked)
 write(" checked")
 end if

 write(" />")
end method

<input type="radio" name="f_radio" value="1"
 <%=choose([contact]rating = 1; "checked"; "")%> />Good

<input type="radio" name="f_radio" value="1"
 <%=choose([contact]rating = 2; "checked"; "")%> />Better

<input type="radio" name="f_radio" value="1"
 <%=choose([contact]rating = 2; "checked"; "")%> />Best

define version 1

define(inName; inValue)

Parameter Type Description

inName Identifier  A name for the constant

inValue <any>  The value to assign to the constant
242 Chapter 11 Command Reference

Language Active4D v6.3
simply by using <constant> if its name does not clash with any other name in the current

scope.

If used within a library definition, the define command must appear after between the

library and end library keywords, but outside of any method definitions. It is an error to

define a constant within the body of a method.

If a library constant referred to within a library method has the same name as a global

constant, the library constant is used. However, if you refer to a constant outside of a

library method that is defined in more than one imported library, or defined in an

imported library and the global scope, an error is generated because Active4D cannot

disambiguate the constant reference.

Thus, if a global constant has the same name as an imported library constant, it will no

longer be accessible.

The define command is useful anywhere you would normally want to use a named

constant within 4D, but you have not created one. For example, suppose you have a

Longint field called [Sales_Leads]Rating which classifies a sales lead according to the

following values:

If you have not defined 4DK# named constants for these values, it would be nice to refer

to them by names instead of numbers. You could create a file called “constants.a4d”

which contained the following code:

Within several scripts you need to use those constants. You cannot use include, because

it is an error to define the same constant more than once. This is where require comes

in. By using require before the code that uses the constants, like this:

you can ensure they are defined without worrying about whether or not they have

already been defined within the current script execution.

Value Description

1 Cold

2 Warm

3 Hot

4 Nuclear

<%
 define(kSalesLead_Cold; 1)
 define(kSalesLead_Warm; 2)
 define(kSalesLead_Hot; 3)
 define(kSalesLead_Nuclear; 4)
%>

<%
 require("constants.a4d")
 query([sales_leads];[sales_leads]rating = kSalesLead_Nuclear)
 // and so on
%>
Chapter 11 Command Reference 243

Active4D v6.3 Language
Discussion

This command can be used like the standard EXECUTE command in 4D, which is limited

to executing a single line of code.

Active4D extends the EXECUTE command to allow execute of an entire block of code,

including control structures like loops and If/Else/End if. This allows you to use

techniques such as storing scripts in the database to prevent manipulation by the end

user, like this:

Active4D also extends EXECUTE by allowing you to return a value using the return

keyword within the executed text, like this:

If the option * argument is passed, inText is treated as HTML with embedded Active4D

code instead of raw Active4D code. Effectively this is the same as an include, but the

code to include is passed directly into the command.

Discussion

This command executes inCode within 4D, and is subject to all of the restrictions of 4D's

EXECUTE command.

EXECUTE version 2 (enhanced 4D)

EXECUTE(inText {; *}) <any>

Parameter Type Description

inText Text  Text to execute

* *  Execute as embedded code

Result <any>  Optional return value

query([scripts];[scripts]name="query customer by name")
execute([scripts]text)

$text := "return (size of array(%s))" % $arrayName
$size := execute($text)

execute in 4d version 4.0

execute in 4d(inText {; *})

Parameter Type Description

inText Text  Text to execute

* *  Expect a result
244 Chapter 11 Command Reference

Language Active4D v6.3
If * is passed, the result of the executed code can be returned as the result of the

command. If there is an error in the parsing or execution of inCode, Active4D throws a

syntax error.

In conjunction with the ability to create process/interprocess variables within Active4D,

this command relieves you of the need to write wrapper 4D methods to implement

commands that are not supported natively within Active4D.

For example, let’s assume you need to use 4D’s Square root command. Instead of

writing a method to call the command, you can do this:

Discussion

This control structure is a generalized sequence iterator, where a sequence is defined as a

sequence of values, including collections, arrays, strings and selections. Depending on

the sequence which is passed as the first argument, for each takes different arguments.

Each for each must be balanced with a corresponding end for each.

$num := 7
$root := execute in 4d("Square root(%d)" % ($num); *)

for each/end for each version 3.0

for each(inCollection; outKey {; outValue})
for each(inArray; outValue {; outIndex})
for each(inText; outCharacter {; outIndex})
for each(inTable {; outIndex})

Parameter Type Description

inCollectionRef Longint  Collection handle or iterator

outKey <any>  Receives the item key

outValue <any>  Receives the item value

OR

inArray Array  Array to iterate over

outValue <any>  Receives the current array element

outIndex Number  Receives the current array index

OR

inText Text  Text to iterator over

outCharacter <any>  Receives the current character

outIndex Number  Receives the current character index

OR

inTable Table  Table to iterator over

outIndex Number  Receives the selected record index
Chapter 11 Command Reference 245

Active4D v6.3 Language
Collections

If a collection reference is passed as the first argument, for each iterates over the items in

the collection. In the body of the loop, outKey contains the key of the current collection

item, and outValue (if passed) contains a copy of the current collection item’s value. If the

item value is an array, outValue receives a copy of the array.

Example

Arrays

If an array is passed as the first argument, for each iterates over the elements in the array.

In the body of the loop, outValue contains the current array element, and outIndex (if

passed) contains the index of the element.

Example

Strings

If text is passed as the first argument, for each iterates over the characters in the text. In

the body of the loop, outCharacter contains the current character, and outIndex (if

passed) contains the index of the character.

for each(form variables; $key; $value)
 writebr($key + "=" + $value
end for each

$c := new collection
$c{"name"} := "Dave"
$c{"age"} := 31

for each($c; $key)
 writebr('$key=$c{$key}')
end for each

for each($myArray; $value; $i)
 writebr('$i: $value')
end for each

// above code is equivalent to:
for($i; 1; size of array($myArray))
 writebr('$i: $myArray{$i}')
end for
246 Chapter 11 Command Reference

Language Active4D v6.3
Example

Selections

If a table reference is passed as the first argument, for each iterates over the records in

the current selection of the table. In the body of the loop, outIndex (if passed) contains

the selected record index.

Example

Discussion

This command functions exactly like the Get pointer command in 4D, with the addition

that you may use “<>” with an interprocess variable name on Mac OS X.

$s := "foo"

for each($s; $char; $i)
 writebr('[[$i]]: $char')
end for each

// above code is equivalent to:
for($i; 1; length($s))
 writebr('[[$i]]: $s[[$i]]')
end for

for each([contacts]; $i)
 writebr('$i. [contacts]fullname')
end for each

// above code is equivalent to:
first record([contacts])

while(not(end selection([contacts])))
 writebr("%d. %s" % (selected record number([contacts]); \\
 [contacts]fullname))
end while

Get pointer
version 1

modified v5

Get pointer(inName)  Pointer

Parameter Type Description

inName Text  Name of variable

Result Pointer  Pointer to variable
Chapter 11 Command Reference 247

Active4D v6.3 Language
Discussion

This command returns the error code passed to the most recent throw command.

If no error code was passed to throw or this command is not executed within an error

handler (in error is True), it returns zero.

Discussion

This command returns the error message passed to the most recent throw command.

If no error message was passed to throw or this command is not executed within an

error handler (in error is True), it returns an empty string.

Discussion

When you call an Active4D method, the method has its own local variables in a separate

scope, just as in 4D.

If you want to access or modify local variables outside of the method, ordinarily you

would pass the variables to the method as by-value or by-reference parameters.

get throw code v6.0

get throw code Longint

Parameter Type Description

Result Longint  Error code used in throw command

get throw message v6.0

get throw message Text

Parameter Type Description

Result Text  Error message used in throw

command

global version 1

global(localVar {; localVarN} | *)

Parameter Type Description

localVar | * Local Variable | *  Local variable to bring into current

scope, or all locals
248 Chapter 11 Command Reference

Language Active4D v6.3
However, there are times when it is necessary to have direct access to local variables

outside of the method.

The action of this command depends on where it is used and whether or not the named

variables already exist.

3 If this command is used in the global scope, it does nothing.

3 If this command is used within a method and localVar exists in the global scope, it will

be accessible within the scope of the method.

3 If this command is used within a method and localVar does not exist in the global

scope, if it is defined within the method it will be in the global scope.

3 If this command is used within a method and you pass * instead of one or more

variable names, all locals in the global scope will be accessible within the method and

all locals defined within the method will be in the global scope.

Variables created with set local are also affected by the use of this command.

In general you should avoid using the form global(*), because you are likely to create

variables in the global scope unintentionally.

Example

In this example, the variable $foo is defined in the global scope before calling the

method foobar. Because $foo is declared as global within foobar, it is accessible within

that method. Because $bar is declared global before being defined, it is then accessible

in the global scope outside of foobar, but not until after foobar executes.

Discussion

This command loads an Active4D library. For a full discussion of library importing, see

“Importing Libraries” on page 118.

method "foobar"
 global($foo; $bar)
 writebr($foo)
end method

$foo := "foo"
foobar
writebr($bar) // this works because it is global

import
version 1

modified version 4.0

import(inLibName {; *}) {  Boolean }

Parameter Type Description

inLibName Text  Name of library to load

Result Boolean  True if successfully imported
Chapter 11 Command Reference 249

Active4D v6.3 Language
If the optional * is passed, no error is generated if the library is not successfully imported,

and a Boolean value is returned to indicate the success of the import. This allows you to

attempt to import optional libraries.

Discussion

This command includes the file specified by inPath. The path may be absolute or relative.

An absolute path will be relative to the web root directory, a relative path will be relative

to the currently executing file.

To include a file outside of the web root, you must either create an alias within the web

root to the include file or the directory in which the include file lives, or use relative

motion within the include path. Here are some examples:

For more information on includes, see “Including Other Files” on page 97.

Discussion

This command is identical to the include command, but it temporarily makes outBuffer

the response buffer for the duration of the include (and any nested includes). This is

include version 1

include(inPath)

Parameter Type Description

inPath Text  Path of file to include

// Here we are using relative motion in the include path.
// Note that ".inc" does NOT have to be registered as an
// executable extension, because the include command doesn't
// check that.
include("/../includes/foobar.inc")

// Here we have created an alias called "includes" within the
// web root which points to a directory outside the web root.
include("/includes/foobar.inc")

include into version 2

include into(inPath; outBuffer)

Parameter Type Description

inPath Text  Path of file to include

outBuffer Text/BLOB  Temporarily becomes the response

buffer
250 Chapter 11 Command Reference

Language Active4D v6.3
extremely useful when you want to create dynamic output that will go somewhere other

than the browser.

For example, if you want to generate an invoice and email it to a client, you could do the

following:

1 Create a nicely formatted HTML invoice, embedding Active4D code to fill in the

details of the invoice.

2 Use include into to dynamically generate the invoice and place the result in a text

variable.

3 Call a4d.utils.sendMail to email the generated invoice as the email body.

outBuffer may be a scalar (non-array) variable, an element of a string or text array, or a

reference to a collection item. If not, an error is generated and execution is aborted.

If an error occurs in the code of the included file (or any nested includes), outBuffer is left

untouched and the error message is placed in the normal response buffer for display in

the browser.

Discussion

This command converts a Longint value into a Time value.

Unless you use a compiler declaration, Active4D’s variables are variant in their type. To

assign a Longint to a variant variable as a Time you must use this command. This is

specially useful when you are storing Times in a Longint array and you want to retrieve

the elements as Times.

longint to time version 1

longint to time(inLong) Time

Parameter Type Description

inLong Longint  Value to convert to a time

Result Time  Converted value

Note: You could also use C_TIME to fix a variable’s type to Time and assign a Longint

to it. This would do type conversion for you.
Chapter 11 Command Reference 251

Active4D v6.3 Language
Discussion

This command determines if the method with the name inMethodName exists. If

inMethodName is a fully qualified library.method name, the library is imported if

necessary and then that library is checked for the given method name.

If inMethodName is not fully qualified, only the currently imported libraries are checked

for the given method name.

If outLibName is passed in, it receives the name of the library in which the method is

found, or an empty string if the method is not found. If inMethodName is the name of an

inline method, outLibName will be “global”.

Discussion

This command returns a nil pointer (big surprise). It is designed to be used in those cases

where you want to specifically pass a nil pointer to a method, instead of using the

standard trick:

With this command your intention is clearer.

method exists version 4.0

method exists(inMethodName {; outLibName}) Boolean

Parameter Type Description

inMethodName Text  Name of method to check

outLibName Text  Name of method’s library

Result Boolean  True if method exists

nil pointer version 4.0

nil pointer Pointer

Parameter Type Description

Result Pointer  A nil pointer

// old way
c_pointer($nil)
doSomething($nil)

// new way
doSomething(nil pointer)
252 Chapter 11 Command Reference

Language Active4D v6.3
Discussion

This command issues a true HTTP redirect to the specified URL, generating the necessary

response status, headers and content based on the HTTP version of the client.

inURL may be a full URL to an external server (beginning with “http://”), an absolute path,

or a relative path. Absolute paths are considered to be relative to the web root. Relative

paths are relative to the file which contains the redirect command.

If inIsPermanent is passed and is True, a 301 Moved Permanently status is returned to the

browser instead of 303 See Other.

As soon as redirect is executed, the script immediately stops execution and returns

control to the shell. Thus redirect will be the last command within a flow of execution.

Discussion

This command is identical to the include command, but if the given file has already been

loaded with the require command within the current script execution, it will not be

loaded again.

The primary use for this command is to create a file of defined constants which you want

to reference throughout your pages. For an example of this usage, see “define” on

page 242.

redirect
version 1

modified v5

redirect(inURL {; inIsPermanent})

Parameter Type Description

inURL Text  Destination URL

inIsPermament Boolean  True to generate 301 status

require version 1

require(inPath)

Parameter Type Description

inPath Text  Path of file to include
Chapter 11 Command Reference 253

Active4D v6.3 Language
Discussion

This command performs the same function as the RESOLVE POINTER command in 4D.

Unlike 4D however, if inPointer points to an interprocess variable, outName will always be

prefixed with “<>”, even on Mac OS X.

Discussion

This command is equivalent to:

The difference is that it will actually delay, whereas the equivalent 4D code, when

executed from a web process, will do nothing.

RESOLVE POINTER
version 1

modified v5

RESOLVE POINTER(inPointer; outName; outTableNum; outFieldNum)

Parameter Type Description

inPointer Pointer  Pointer to resolve

outName Text  Receives referent name

outTableNum Number  Receives table number/array index

outFieldNum Number  Receives field number

sleep version 1

sleep(inTicks)

Parameter Type Description

inTicks Number  Ticks to delay

delay process(current process; $inTicks)
254 Chapter 11 Command Reference

Language Active4D v6.3
Discussion

This command generates an Active4D runtime error with the given error code and

message, which will trigger the normal error handling mechanism and execute an error

page if one has been set.

The first parameter may be either a code or a message. If it is a code, then a message may

be passed in the second parameter.

Within an error handler, the code and message passed to throw can be retrieved with

get throw code and get throw message.

Discussion

This command converts a Time value into a Longint value.

Unless you use a compiler declaration, Active4D’s variables are variant in their type. To

assign a Time to a variant variable as a Longint you must use this command. This is

specially useful when you are storing Times in a Longint array and you want to set the

elements as Times.

throw
version 3.0

modified v6.0

throw(inMessage | inCode {; inMessage})

Parameter Type Description

inMessage Text  Error message

inCode Longint  Error code

time to longint version 1

time to longint(inTime) Longint

Parameter Type Description

inTime Time  Value to convert to a Longint

Result Longint  Converted value

Note: You could also use C_LONGINT to fix a variable’s type to Longint and assign a

Time to it. This would do type conversion for you.
Chapter 11 Command Reference 255

Active4D v6.3 Math
Math

Active4D adds several utility commands that solve simple but common math problems

with a minimum of code.
256 Chapter 11 Command Reference

Math Active4D v6.3
Discussion

This command compares inValue1 to inValue2. The greater of the two values is returned.

Discussion

This command compares inValue1 to inValue2. The lesser of the two values is returned.

Discussion

This command returns a random number between inMin and inMax inclusive. If inMin >

inMax the result is undefined. Both inMin and inMax may be numbers in the full range of

a 4D Real.

max of version 1

max of(inValue1; inValue2) Number

Parameter Type Description

inValue1 Number  Number to compare

inValue2 Number  Number to compare

Result Number  Greater of the two values

min of version 1

min of(inValue1; inValue2) Number

Parameter Type Description

inValue1 Number  Number to compare

inValue2 Number  Number to compare

Result Number  Lesser of the two values

random between version 1 (modified v2)

random between(inMin; inMax) Number

Parameter Type Description

inMin Number  Minimum number to return

inMax Number  Maximum number to return

Result Number  Random number between inMin and

inMax inclusive
Chapter 11 Command Reference 257

Active4D v6.3 ObjectTools
ObjectTools

Active4D allows you to convert ObjectTools objects to Active4D collections and vice

versa. In addition, you can clear an ObjectTools object within Active4D.

Note: ObjectTools support in Active4D requires ObjectTools v4.0 or later.
258 Chapter 11 Command Reference

ObjectTools Active4D v6.3
Discussion

This command is the equivalent of the OT Clear command in ObjectTools. After using

this command the object can no longer be used by ObjectTools.

Discussion

This command converts the collection inCollection to a new ObjectTools object and

returns the handle to the object. You may then use the object handle with any

ObjectTools command.

Embedded collections within inCollection (whether in longints or longint arrays) are

recursively converted to embedded objects.

Discussion

This command converts the object inObject to a new Active4D collection and returns the

handle to the collection. Embedded objects within inObject are recursively converted to

embedded collections within the collection.

clear object v6.0

clear object(inObject)

Parameter Type Description

inObject Number  ObjectTools handle

collection to object v6.0

collection to object(inCollection) Longint

Parameter Type Description

inCollection Longint  Collection to convert

Result Longint  ObjectTools object handle

object to collection v6.0

object to collection(inObject) Longint

Parameter Type Description

inObject Longint  Object to convert

Result Longint  Collection handle
Chapter 11 Command Reference 259

Active4D v6.3 Pictures
Pictures

Active4D allows you to read, manipulate, convert and write pictures to disk and to the

response buffer. Using this capability, you can programmatically create and serve

graphics on the fly.

The following 4D picture commands are supported in Active4D:

Picture size

PICTURE PROPERTIES

READ PICTURE FILE

WRITE PICTURE FILE

GET PICTURE FROM LIBRARY

As with all document commands, READ PICTURE FILE and WRITE PICTURE FILE have

their paths checked against the list of safe document directories.

In addition to these commands, you may also use the following operators on pictures:

Here’s an example of using the picture operators:

Using the image.a4d Script

In addition to the image commands and operators, there is a standard script file called

image.a4d which you can use to load images dynamically, as well as to generate

thumbnails from images. For documentation on this script, see below.

+ horizontal concatenation

/ vertical concatenation

+= horizontally concatenate and assign

/= vertically concatenate and assign

get picture from library(2000; $pict)
$pict := $pict + $pict
get picture from library(2001; $pict)
$pict += $pict // this is equivalent to the assignment above
260 Chapter 11 Command Reference

Pictures Active4D v6.3
This is not actually a command, but rather a script file that acts like a method. It is

designed to be “called” by making it the image source in an HTML tag. You pass

parameters to the script through the query string.

This script can dynamically load images from four different sources:

3 Picture library

3 Database

3 Disk file

3 Active4D method call

3 4D method call

In addition, you may request that the image be turned into a thumbnail of a given size,

and you may request the image in PNG, JPEG or GIF format. These two features are

controlled by two optional query string parameters:

If size, width or height is passed, the image will be scaled proportionally to the given size.

If format is passed, the default format will be overridden and the image will be returned

in the requested format.

Loading from the 4D picture library

To load an image from the 4D picture library, pass the following query parameter:

If this query parameter is passed, the picture with the given numeric id (if the first

character is a digit) or name will be returned if it exists. By default the picture will be

converted to PNG.

image.a4d (script file)
version 4.0

modified v5

image.a4d

Parameter Description

size Desired pixel width/height

width Desired pixel width

height Desired pixel height

format “png” , “jpg” or “gif”

Parameter Description

id Numeric id or name of picture
Chapter 11 Command Reference 261

Active4D v6.3 Pictures
Loading from the database via query

To load an image from a database field via a query, pass the following query parameters:

If these three query parameters are passed, a query is done on qry_field for qry_value,

and if one or more records results, the value of img_field from the first record is used. The

field referenced by qry_field must be either Alpha or Longint (it’s supposed to be an id

field). By default the picture will be converted to JPEG.

Loading from the database via record number

To load an image from a database field via a record number, pass the following query

parameters:

If these two query parameters are passed, the record with the given number is loaded,

and if such a record exists, the value of img_field is used. By default the picture will be

converted to JPEG.

Loading from a file

To load an image from a disk file, pass the following query parameter:

If this query parameter is passed, the image at the given location will be returned. By

default the image will take the format of the original, depending on the filename

extension. If the filename extension is not “.png” or “.gif”, it defaults to JPEG format.

This use of image.a4d is primarily useful if you want to create a thumbnail, because

otherwise it would be much more efficient to reference the image directly.

Loading from an Active4D method call

To load an image via an Active4D method call, pass the following query parameters:

Parameter Description

img_field Full [table]field reference to image field

qry_field Field name of field to query

qry_value Value to query qry_field for

Parameter Description

img_field Full [table]field reference to image field

recnum Record number of record to use

Parameter Description

file Web root-relative URL path

Parameter Description

method Name of an Active4D method to call

param Optional parameters to pass to the method
262 Chapter 11 Command Reference

Pictures Active4D v6.3
If the “method” query parameter is passed, the Active4D method with the given name

will be called. The method should have the following signature:

Of course you may change “getImage” to whatever you like. If you need to pass multiple

parameters to the method, you can pack them together with concat (do not use “;” as

the separator, use a character such as “|”),and then unpack them with slice string or

split string in the method.

Loading from a 4D method call

To load an image via a 4D method call, pass the following query parameters:

If the “method4d” query parameter is passed, the 4D method with the given name will

be called. The method should have the following signature:

Of course the name of the method may be whatever you like. If you need to pass

multiple parameters to the method, you can pack them together with concat and then

unpack them in the 4D method.

Examples

Get a picture from the picture library in JPEG format:

method "getImage"($inParams; &$ioFormat)
 // Get a picture into $pict. You can optionally
 // set the format by setting $ioFormat.
 return ($pict)
end method

Parameter Description

method4d Name of a 4D method to call

param Optional parameters to pass to the method

`getImage($inParams)
C_TEXT($1)
C_PICTURE($0)

`Get a picture somehow, assign to $0

Chapter 11 Command Reference 263

Active4D v6.3 Pictures
Get an image from a table via a query, making a thumbnail 48 pixels in size:

Get an image from a table via a record number:

Get an image from a file, making a thumbnail 128 pixels in size:

Get an image from a method call, passing the value 100:

Discussion

This command does the following:

3 Scales inPicture according to inWidth/inHeight if passed

3 Converts inPicture into a GIF graphic

<%
$qry := build query string(""; "img_field"; "[images]image"; \\
 "qry_field"; "id"; \\
 "qry_value"; 100; \\
 "size"; 48)
%>
<img src="/image.a4d<%=$qry%>" alt="image" />

<%
$qry := build query string(""; "img_field"; "[images]image"; \\
 "recnum"; 27)
%>
<img src="/image.a4d<%=$qry%>" alt="image" />

<% $qry := build query string(""; "file"; "img/myimage.jpg"; \\
 "size"; 128)
%>
<img src="/image.a4d<%=$qry%> alt="image" />

<% $qry := build query string(""; "method"; "img.getImage"; \\
 "param"; 100)
<img src="/image.a4d<%=$qry%>" alt="image" />

write gif
version 2

modified v4.0

write gif(inPicture {; inWidth {; inHeight}})

Parameter Type Description

inPicture Picture  Picture to convert to GIF format

inWidth Number  Pixel width or scaling percentage

inHeight Number  Pixel height or scaling percentage
264 Chapter 11 Command Reference

Pictures Active4D v6.3
3 Replaces the current contents of the response buffer with the graphic

3 Sets the content type of the response to “image/gif”

If inWidth is nonzero and inHeight is zero or is omitted, the height will be scaled

proportionally to inWidth. If inWidth is zero and inHeight is nonzero, the width will be

scaled proportionally to inHeight.

If inWidth or inHeight is a positive number, it is treated as an absolute pixel size. If inWidth

or inHeight or negative, they are treated as scaling factors, where .5=50%, 2=200%, etc.

Discussion

This command does the following:

3 Scales inPicture according to inWidth/inHeight if passed

3 Converts inPicture into a JPEG graphic

3 Replace the current contents of the response buffer with the graphic

3 Set the content type of the response to “image/jpeg”

If inWidth is nonzero and inHeight is zero or is omitted, the height will be scaled

proportionally to inWidth. If inWidth is zero and inHeight is nonzero, the width will be

scaled proportionally to inHeight.

If inWidth or inHeight is a positive number, it is treated as an absolute pixel size. If inWidth

or inHeight or negative, they are treated as scaling factors, where .5=50%, 2=200%, etc.

Note: 4D’s GIF conversion routines are optimized for pictures with 256 colors or less.

Pictures with more colors will be converted with noticeable banding and dithering

artifacts.

write jpeg
version 2

modified v5

write jpeg(inPicture {; inWidth {; inHeight}})

Parameter Type Description

inPicture Picture  Picture to convert to JPEG format

inWidth Number  Pixel width or scaling percentage

inHeight Number  Pixel height or scaling percentage

Note: As of v5, 4D’s built in picture conversion is being used to convert to JPEG, and

the result is lower quality than what Active4D v4.x produced. PNG is recommended

as the picture format for images that are not photographs.
Chapter 11 Command Reference 265

Active4D v6.3 Pictures
Discussion

This command is a synonym for write jpeg.

Discussion

This command does the following:

3 Scales inPicture according to inWidth/inHeight if passed

3 Converts inPicture into a PNG graphic

3 Replace the current contents of the response buffer with the graphic

3 Set the content type of the response to “image/png”

If the original image within inPicture was a PNG image with an alpha channel, the alpha

channel is preserved in the output of this command.

If inWidth is nonzero and inHeight is zero or is omitted, the height will be scaled

proportionally to inWidth. If inWidth is zero and inHeight is nonzero, the width will be

scaled proportionally to inHeight.

If inWidth or inHeight is a positive number, it is treated as an absolute pixel size. If inWidth

or inHeight or negative, they are treated as scaling factors, where .5=50%, 2=200%, etc.

write jpg
version 2

modified v5

write jpg(inPicture {; inWidth {; inHeight}})

Parameter Type Description

inPicture Picture  Picture to convert to JPEG format

inWidth Number  Pixel width or scaling percentage

inHeight Number  Pixel height or scaling percentage

write png
version 4.0

modified v5

write png(inPicture {; inWidth {; inHeight}})

Parameter Type Description

inPicture Picture  Picture to convert to PNG format

inWidth Number  Pixel width or scaling percentage

inHeight Number  Pixel height or scaling percentage
266 Chapter 11 Command Reference

Queries Active4D v6.3
Queries

Active4D implements the extended (but undocumented) syntax of the QUERY, QUERY

SELECTION and ORDER BY commands.
Chapter 11 Command Reference 267

Active4D v6.3 Queries
Discussion

The extended syntax of these commands puts the field, comparator and value into

separate parameters. To dynamically build a query statement, you can build the

statement as a string and then pass the string to the EXECUTE command.

Discussion

Active4D supports “built” sorts using multiple ORDER BY statements, in the same way

that a built query can be executed. To build a sort, add a * parameter at the end of the

statement. This will defer the sort until an ORDER BY statement is executed without a

final * parameter.

As with built queries, once a deferred ORDER BY statement has been executed, the sort

may be executed with the following syntax:

QUERY/QUERY SELECTION version 2

QUERY/QUERY SELECTION(inTable; inConjunction; inField; inComparator; inValue {;*})

Parameter Type Description

inTable Table  Table on which to query

inConjunction Literal string  "|", "&" or "#"

inField Field  Field on which to query

inComparator Literal string  "=", "#", "<", "<=", ">" or ">="

inValue <any>  Value to compare against field

*  To defer query

ORDER BY version 2

ORDER BY

order by([MyTable])
268 Chapter 11 Command Reference

Queries Active4D v6.3
Discussion

If the initial * parameter is not passed, ORDER BY FORMULA executes within 4D’s

context:

3 It executes on the Server, even if initiated from a Remote.

3 You only have access to 4D’s execution context — process/interprocess variables, 4D

methods, etc. You do not have access to Active4D’s context — local variables, built in

collections, libraries, etc.

If the initial * parameter is passed, ORDER BY FORMULA executes within Active4D’s

context:

3 It executes on the Server if initiated from Server, on Remote if initiated from a Remote.

On Remote, this means that potentially every record in the selection will have to be

loaded from the Server.

3 You have full access to Active4D’s context — local variables, built in collections,

libraries, etc.

Examples

ORDER BY FORMULA
version 2

modified v6.0r8

ORDER BY FORMULA({*;} inTable {; inExpression {; > or <}}{; inExpression2 ; > or <2 ; ... ;
inExpressionN ; > or <N}

// Execute in 4D’s context
order by formula([contacts]; length([contacts]last_name))

// Execute in Active4D’s context so we can access the hashName
// method in our textUtils library.
order by formula(*; [contacts]; \\
 textUtils.nameHash([contacts]last_name; [contacts]first_name))
Chapter 11 Command Reference 269

Active4D v6.3 Query Params
Query Params

When a URL is requested which has a query string, Active4D puts the query parameter

names and their associated values into a collection. You can access this collection in your

scripts.

The query params collection is read-only, and follows the same pattern as all read-only

collections.

Query Params Items

Normally, item values in the query params collection are either text or text arrays.

However, if a form is posted which contains raw data (such as XML) and no form

variables, and the “parameter mode” configuration option is set to “query params”,

Active4D creates a single BLOB item in the query params collection with the key “_data_”.

Duplicate Query Parameters

If several query parameters have the same name, Active4D creates a text array to hold

the values of the duplicate items, the key of which is the query parameter name.

Also, if the “parameter mode” configuration option is set to “query params”, multiple-

choice form lists will end up in the query params collection. For more information on the

ramifications of this, see “Multiple-choice Form Fields” on page 201.

Note: If the “parameter mode” configuration option is set to “form variables”, query

parameters will not go into the query params collection, but into the form variables

collection. Likewise, if the “parameter mode” option is set to “query params”, form

variables will go into the query params collection.
270 Chapter 11 Command Reference

Query Params Active4D v6.3
Discussion

This command is an alias for the query params command.

Discussion

This command returns an iterator to the first item in the query params collection.

For more information on iterators, see “Iterators” on page 214.

Discussion

This command searches the query params collection for the item with the key inKey. If *

is passed, inKey may contain 4D wildcard characters and they will be honored in the

search.

If the item is found, True is returned, otherwise False.

_query version 3.0

_query Longint

Parameter Type Description

Result Longint  Iterator reference

query params version 2

query params Longint

Parameter Type Description

Result Longint  Iterator reference

query params has version 2

query params has(inKey {; *}) Boolean

Parameter Type Description

inKey Text  Key of item to test

* *  Perform wildcard search

Result Boolean  True if key is in collection
Chapter 11 Command Reference 271

Active4D v6.3 Query Params
Discussion

This command searches the query param collection for the item with the key inKey.

If the item is found and an index is not specified, the item’s value is returned. If the item

value is an array of multiple choices, the first multiple-choice value is returned. Note that

this behavior is different than using the syntax:

When using the collection indexing syntax, a reference to an array with no index returns

the array itself, which when assigned results in the current element of the array, which is

a longint.

If the item is found and an index is specified, the given multiple choice value is returned.

If the index is out of range, an error is generated and execution is aborted.

If the item is not found, an empty string is returned.

Discussion

This command searches the query params collection for the item with the key inKey.

get query param
version 2

modified v5

get query param(inKey {; inIndex}) Text | BLOB

Parameter Type Description

inKey Text  Key of query param to retrieve

inIndex Longint  Index of multiple-choice list value to

retrieve

Result Text | BLOB  Value of query param or ""

$value := _query{"multiple_choice_value"} // Returns longint

Note: The query param value is URL decoded and converted from UTF-8, so you do

not need to perform any decoding.

get query param choices version 2

get query param choices(inKey; outArray)

Parameter Type Description

inKey Text  Key of query param to retrieve

outArray String/Text Array  Receives the array of choices
272 Chapter 11 Command Reference

Query Params Active4D v6.3
If outArray is defined but is not a string or text array, an error is generated and execution

is aborted. If outArray was not defined, it is created as a text array.

If the item is found and has multiple-choice values in an array, outArray is set to a copy of

the multiple-choice values.

If the item is found and its value is not an array of multiple-choice values, outArray is set

to a single element containing the query param value.

If the item is not found, outArray is resized to zero elements.

Discussion

You use this command to check how many values were selected in a multiple-choice list

on a form.

This command searches the query params collection for the item with the key inKey.

If the item is found and has multiple-choice values in an array, the size of the array is

returned.

If the item is found and its value is not an array of multiple-choice values, 1 is returned.

If the item is not found, zero is returned.

get query param count version 2

get query param count(inKey) Longint

Parameter Type Description

inKey Text  Key of query param to check

Result Longint  Size of array
Chapter 11 Command Reference 273

Active4D v6.3 Query Params
Discussion

This command has two forms. The first form fills outKeys and outValues with all of the

keys and values in the query params collection.

If outKeys was not defined, it is created as a string array. If outValues was not defined, it is

created as a text array.

If outKeys is defined but is not a string or text array, an error is generated an execution is

aborted.

The second form of the command returns a concatenation of the form variables in the

form “key1=value1;key2=value2”, suitable for use as a query string. If a form variable is a

multiple-choice array, all of the array values are included in the concatenation.

The keys and values are converted to UTF-8 and URL encoded.

You may optionally pass in a string which will be matched against items whose key

matches the string. Wildcards are allowed in the filter string. To include items that match

the filter, prefix it with ‘+’. To exclude items that match the filter, prefix it with ‘-’. If there is

no prefix, it is assumed to be an inclusion filter.

get query params
version 2

modified v5

get query params(outKeys {; outValues})
get query params{(*; inKeyFilter)} Text

Parameter Type Description

outKeys String/Text Array  Receives the collection keys

outValues String/Text Array  Receives the collection values

*  Indicates a filter is being used

inKeyFilter Text  Keys are matched against this

Result Text  Concatenation of keys and values

Note: The keys and values are URL decoded and converted from UTF-8 to Unicode,

so you do not need to perform any decoding.
274 Chapter 11 Command Reference

Query Params Active4D v6.3
Discussion

This command returns the number of items in the query params collection.

Discussion

This command is extremely useful for building a query string to add to a URL. It adds the

given name/value pairs to inQuery, automatically converting the keys and values to UTF-

8 and then URL encoding.

As of HTML 4.0, the recommended practice for delimiting query parameters is to use a

semicolon, not an ampersand (&). Accordingly this is what build query string does.

If inQuery is empty, the result will begin with “?”. If inQuery starts with “-”, it can be

followed by one or more of the following switches:

3 “e” - External reference mode: Use this mode if you are passing a query string to a

non-Active4D server that may not understand semicolons as query parameter

delimiters. If this switch is set, by default query parameters will be delimited with

"&" as required by HTML 4+ for URLs embedded in HTML. If you are building a query

string for use in an external redirect, be sure to set the “r” switch as well.

3 “r” - Redirect mode: This switch has no effect unless the “e” switch is set as well, in

which case the query parameter separator will be "&" instead of "&".

3 “u” - URL encoded mode: It is assumed the query parameter names and values are

already URL encoded, so no encoding is done.

3 “p” - No-prefix mode: No leading “?” or query parameter delimiter will be added.

This switch overrides the “a” switch.

count query params version 2

count query params Longint

Parameter Type Description

Result Longint  Number of items in collection

build query string version 3.0

build query string({*;} inQuery; inName; inValue {…; inNameN; inValueN}) Text

Parameter Type Description

* *  If passed, don’t suppress empty values

inQuery Text  Existing query string to build on

inName Text  Query param name

inValue <any>  Query param value

Result Text  New query string
Chapter 11 Command Reference 275

Active4D v6.3 Query Params
3 “a” - Append mode: Whether or not inQuery is empty (not including the switches), it

will be considered non-empty. Use this switch to append the results of this command to

an existing query string.

If text follows the switches, there should be another “-” between the switches and the

text.

If there are no switches set and inQuery is not empty, the name/value pairs will be

appended to inQuery.

If the * parameter is not passed, name/value pairs with an empty value will be skipped. If

the * parameter is passed, all name/value pairs will be appended to the query string.

Examples

Note: You do not need to use the “a” switch when creating a query to pass to

fusebox.makeURL or fusebox.handleError.

$query := build query string(""; \\
 "rec"; record number([employees]); \\
 "action"; _form{"f_action"})
// $query = "?rec=123;action=edit"
redirect("edit_emp.a4d" + $query)

// using the e and r switches

$query := build query string("-e"; "foo"; 7; "bar"; 13)
// $query = "?foo=7&bar=13"

$query := build query string("-er"; "foo"; 7; "bar"; 13)
// $query = "?foo=7&bar=13"

$barValue := url encode query("this is a test")
$query := build query string("-u"; "foo"; 7; "bar"; $barValue)
// $query = "?foo=7;bar=this+is+a+test"

$query := build query string("-p"; "foo"; 7; "bar"; 13)
// $query = "foo=7;bar=13"
redirect("foobar.a4d?" + $query)

$query := build query string("-a"; "foo"; 7; "bar"; 13)
// $query = ";foo=7;bar=13"
redirect(fusebox.makeURL("foobar.main"; $query))
276 Chapter 11 Command Reference

Regular Expressions Active4D v6.3
Regular Expressions

Active4D implements a powerful suite of regular expression commands that allow you

to perform complex searches and manipulations on text.

Regular expressions are in fact a compact programming language, and as such allow you

to perform text manipulations that would take many lines of code to implement.

Pattern Syntax

Regular expressions follow the ICU syntax, which is described here:

http://userguide.icu-project.org/strings/regexp

Regular expressions in Active4D fully support Unicode.

Regular expression patterns must be enclosed in delimiters, for example a forward slash

(/). Any non-alphanumeric Unicode character in the Basic Multilingual Plane (other than

backslash) can be used as the delimiter. If the delimiter character is used in the

expression itself, it needs to be escaped by a backslash.

The ending delimiter may be followed by various modifiers that affect the matching. The

pattern modifiers are discussed in detail here (see “Flag Options”):

http://userguide.icu-project.org/strings/regexp#TOC-Flag-Options

For examples of the pattern syntax, see the example code for the commands in this

chapter.

Using Regular Expressions

Entire books can be (and have been) written about regular expressions. It is not within

the scope of this document to give any kind of tutorial on their usage. A web search will

turn up lots of resources for learning all of the amazing uses of regular expressions.

Note: Versions of Active4D previous to v5 used the PCRE library for regular

expression matching. Although the pattern syntax of PCRE and ICU and very similar,

there are some differences, so you should carefully check your regular expression

patterns if you are upgrading from v3/v4.x to v6.
Chapter 11 Command Reference 277

Active4D v6.3 Regular Expressions
Discussion

This command is almost identical to regex replace, except that instead of replacement

parameter, you specify the name of a callback method that will be called once for each

match.

The method must be an Active4D method which takes a single reference array

parameter. The array will contain the matched elements in the subject string, with the

entire matched string in element zero and captured subpatterns in subsequent

elements. The callback should return the entire replacement string.

regex callback replace version 3.0

regex callback replace(inPattern; inSubject; inCallback; outResults {; inLimit})

Parameter Type Description

inPattern Text |

String/Text Array

 Search pattern(s)

inSubject Text/BLOB |

String/Text Array

 Subject(s) to search

inCallback Text  Name of method to call

outResults Text |

String/Text Array

 Receives the replaced text

inLimit Number  Limit on number of matches

Note: Internally this command creates a local array called

$__a4d_regex_callback_array__, which is passed to the callback method. Be sure not

to give any of your local variables this name.
278 Chapter 11 Command Reference

Regular Expressions Active4D v6.3
Example

Let’s say you want to add one year to a bunch of dates.

Discussion

This command searches inArray for the all elements that match the pattern inPattern. The

index of the first matching element is returned, or -1 if no elements match the pattern.

The indexes of all matching elements are put in the array outIndexes.

outMatches does not have to be defined before using this command.

method "addOneYear"(&$inArray)
 c_longint($year; $month; $day)
 $month := num($inArray{1})
 $day := num($inArray{2})
 $year := num($inArray{3})
 $date := add to date(!00/00/00!; $year + 1; $month; $day)
 return (string($date; MM DD YYYY Forced))
end method

/*
 The pattern looks for the digit 0 or 1,
 followed by any digit,
 followed by a forward slash,
 followed by the digits 0-3,
 followed by any digit,
 followed by a forward slash,
 followed by four digits.
*/
$pattern := "|([01]\d)/([0-3]\d)/(\d{4})|"
array text($dates; 0)
set array($dates; "08/27/2003"; "03/30/2003")
regex callback replace($pattern; $dates; "AddOneYear"; $results)
writebr(join array($results; "
\n"))

// Output is:
08/27/2004
03/30/2004

regex find all in array version 3.0

regex find all in array(inArray; inPattern; outIndexes {; inStartIndex}) Longint

Parameter Type Description

inArray String/Text Array  Array to search

inPattern Text  What to match in the array

outIndexes Longint Array  Receives the match indexes

inStartIndex Longint  Where to start searching

Result Longint  Index of first matching element
Chapter 11 Command Reference 279

Active4D v6.3 Regular Expressions
Example

Discussion

This

command searches inArray for the first element that matches the pattern inPattern. The

index of the first matching element is returned, or -1 if no elements match the pattern.

Example

// Find all elements that start with "foo" or end with "bar"
array text($array; 0)
set array($array; "one foo"; "two bar"; "fool"; "bart")
$index := regex find all in array($array; "/^foo|bar$/"; \\
 $matches)
writebr(join array($matches; "
\n"))

// Output is:
2
3

regex find in array version 3.0

regex find in array(inArray; inPattern {; inStartIndex}) Longint

Parameter Type Description

inArray String/Text Array  Array to search

inPattern Text  What to match in the array

inStartIndex Longint  Where to start searching

Result Longint  Index of first matching element

// Find the first element that starts with "foo"
// or ends with "bar"
array text($array; 0)
set array($array; "one foo"; "two bar"; "fool"; "bart")
$index := regex find in array($array; "/^foo|bar$/")
writebr($index)

// Output is:
2

280 Chapter 11 Command Reference

Regular Expressions Active4D v6.3
Discussion

This command searches inSubject for the first match to the regular expression given in

inPattern. If a matches are found, True is returned, otherwise False.

If inSubject is a BLOB, it is assumed to be in the format UTF8 Text without length.

If outMatches is provided, it is filled with the results of the search. $outMatches{0} will

contain the text that matched the full pattern, $outMatches{1} will contain the text that

matched the first captured parenthesized subpattern, and so on.

If outMatches is a local variable (or collection item) and was not defined, it is created as a

text array.

Example

Splitting a URL into constituent parts:

regex match
version 3.0

modified v5

regex match(inPattern; inSubject {; outMatches}) Boolean

Parameter Type Description

inPattern Text  What to match in the subject

inSubject Text/BLOB  The text to search

outMatches String/Text Array  Receives the matches

Result Boolean  True if any matches were found

/*
 The following pattern will split a URL into six parts:
 1) "http://" if present
 2) hostname
 3) "/4dcgi" if present
 4) resource path
 5) "?" at start of query string if present
 6) query string if present
*/
$pattern := "|^(http://)?([^/]+)(/4dcgi)?([^?]+)(\?)?(.*)|i"
$url := "http://www.myserver.com/4dcgi/index.a4d?foo=bar"
$found := regex match($pattern; $url; $matches)
writebr(join array($matches; "
\n"; 0))

// Output is:
http://www.myserver.com/4dcgi/index.a4d?foo=bar
http://
www.myserver.com
/4dcgi
/index.a4d
?
foo=bar
Chapter 11 Command Reference 281

Active4D v6.3 Regular Expressions
Notice in the above example that $matches{0} contains the full URL, because that is what

matched the full pattern.

Discussion

This command searches inSubject for the all matches to the regular expression given in

inPattern. After the first match, subsequent matches are made starting from the end of

the previous match. The number of matches made is returned.

If inSubject is a BLOB, it is assumed to be in the format UTF8 Text without length.

outMatches is filled with the results of the search. The collection will contain one item for

each match, with the keys named from “00001” to the number of matches made.

The contents of each collection item is an array which contains what a call to

regex match would return, i.e. $outMatches{$key}{0} will contain the text that matched

the full pattern, $outMatches{$key}{1} will contain the text that matched the first

captured parenthesized subpattern, and so on.

Example

Find matching HTML tags:

regex match all version 3.0

regex match all(inPattern; inSubject; outMatches) Longint

Parameter Type Description

inPattern Text  What to match in the subject

inSubject Text/BLOB  The text to search

outMatches Collection  Receives the matches

Result Longint  The number of matches made

Note: Obviously because of the naming scheme you are limited to 99,999 matches.

$pattern := "|(<([\w]+)[^>]*>)(.*)(</\\2>)|"
$html := "example: <p>this is a test</p>"
regex match all($pattern; $html; $matches)

for each($matches; $key)
 $html := join array($matches{$key}; ", "; 0; false; true)
 writebr($html; ""; A4D Encoding All)
end for each

// Output is:
"example: ", "", "b", "example: ", ""
"<p>this is a test</p>", "<p>", "p", "this is a test", "</p>"
282 Chapter 11 Command Reference

Regular Expressions Active4D v6.3
Discussion

This command puts a backslash in front of every character in inString that is part of the

regular expression syntax. This is useful if you have a dynamically generated string that

you need to match in some text and the string may contain special regex characters.

If inDelimiter is specified, it will also be escaped. This is useful for escaping the delimiter

that is used in your regex patterns, such as “/”.

The special regular expression characters are:

Example

Let’s say you are going to do a regex match on a string entered by the user in the form

field “f_find”. You would need to do something like this:

regex quote pattern version 3.0

regex quote pattern(inPattern {; inDelimiter}) Text

Parameter Type Description

inString Text  Text to quote

inDelimiter Char  Additional character to quote

Result Text  Quoted text

. \ + * ? [^] $ () { } = ! < > | : .

selection to array([Contacts]Last; $lastNames)
$pattern := "/" + regex quote pattern(_form{"f_find"}; "/") + "/i"
$index := regex find in array($lastNames; $pattern)
Chapter 11 Command Reference 283

Active4D v6.3 Regular Expressions
Discussion

This command searches inSubject for matches to inPattern and replaces them with

inReplacement. If inLimit is specified, only inLimit matches will be replaced. If inLimit is

omitted or is <= 0, all matches are replaced.

If matches are found, the new subject(s) will be returned in outResult, otherwise the

subject(s) will be returned unchanged. inSubject and outResult may be the same variable.

If inSubject is a BLOB, then outResult must also be a BLOB, and they are both assumed to

be in the format UTF8 Text without length. Note that outResult may not be an element of a

BLOB array.

Every parameter to regex replace (except inLimit) can be an array.

If inSubject is an array, the search and replace is performed on every element of inSubject,

and outResult will be an array with the same number of elements.

If inPattern and inReplacement are arrays, then regex replace walks through the arrays in

parallel and uses the corresponding elements to do a search and replace on inSubject. If

inReplacement has fewer elements than inPattern, an empty string is used for the

remaining replacement values.

If inPattern is an array and inReplacement is a string, regex replace searches inSubject for

each pattern and replaces with the replacement string.

If inPattern is a string and inReplacement is an array, it is an error, as this does not make

sense.

Replacement Syntax

The real power in regex replace lies in the replacement syntax. In addition to

referencing matched strings, you may also manipulate the case of the result.

In the case of the \N notation, \0 returns the entire matched pattern, \1 returns the first

captured subpattern, and so on. Thus \0 and & are equivalent.

regex replace
version 3.0

modified v5

regex replace(inPattern; inSubject; inReplacement; outResult {; inLimit})

Parameter Type Description

inPattern Text |

String/Text Array

 Search pattern(s)

inSubject Text/BLOB |

String/Text Array

 Source text to search

inReplacement Text |

String/Text Array

 Replacement text

outResult Text/BLOB |

String/Text Array

 Receives replaced text

inLimit Number  Limit on number of matches
284 Chapter 11 Command Reference

Regular Expressions Active4D v6.3
If you are using the \N notation and it is directly followed by a number, you must use the

\{N} form to separate the pattern number from the number that follows. For example, if

you want to replace a match with the first captured subpattern followed by the number

1, you must do it this way:

If your replacement pattern contains the character ’&’ and you do not intend it to be

replaced with the entire matched pattern, it must be preceeded with a backslash.

The \U and \L markers begin a case-changing run. Every character between these

markers and either a \E marker or the end of the replacement has its case changed

accordingly. Pattern and subpattern substitutions are done before case changes so you

can change the case of matched patterns.

For example, the replacement text:

would uppercase the entire matched pattern and lowercase the first captured

subpattern.

The \u and \l markers are similar, but they change the case of the next character only. So

the replacement syntax:

would uppercase the first character of the entire matched pattern and lowercase the first

character of the first matched subpattern.

The /e Pattern Option

If the search pattern included the /e option, after all replacements are done, the

replacement text is executed as Active4D code and the result is used as the replacement

text.

Notation Action

\N Returns the Nth captured subpattern

\{N} Returns the Nth captured subpattern

\<pattern> Returns the named subpattern

& Returns the entired matched pattern

\U Starts an uppercase run

\L Starts a lowercase run

\E Ends an uppercase or lowercase run

\u Uppercases the next letter

\l (lowercase L) Lowercases the next letter

\{1}1

\U&\E \L\1\E

\u& \l\1
Chapter 11 Command Reference 285

Active4D v6.3 Regular Expressions
For example, this replacement text would return the first two characters of the entire

matched pattern:

If the entire matched pattern is “John Doe”, this expression would first resolve to:

Then this text would be executed, which would return “JO” as the replacement text.

Note a few important things in this example:

3 You must use return to return the value to regex replace

3 When using a match pattern in an expression, be sure to enclose it in double quotes.

3 When you specify the replacement text, it is usually enclosed in double quotes, so you

must escape double quotes within the replacement text like this:

Because the replacement text is executed as Active4D code within the context of the

current execution, you may do anything you wish, including:

3 Use any supported commands.

3 Call Active4D and 4D methods.

3 Access any local variables that were available within the scope of the regex replace

command.

3 Access any of the built-in collections such as form variables and query params.

3 Execute more than one line of code by separating the lines by “\r”, as long as the last

line executes a return statement.

Examples

This example uses the /e pattern modifier to lowercase HTML tags in the subject:

return (substring("\U&\E"; 1; 2))

return (substring("JOHN DOE"; 1; 2))

$replace := "return (substring(\"\U&\E\"; 1; 2))"

$pattern := "/(<\/?)(\w+)([^>]*>)/e"
$replace := "return (\"\1\" + lowercase(\"\2\") + \"\3\")"
regex replace($pattern; "test"; $replace; $result)
writebr($result; ""; A4D Encoding All)

// Output is:
test
286 Chapter 11 Command Reference

Regular Expressions Active4D v6.3
This example replaces all occurrences of “foo” at the beginning of the subject with “bar”,

and replaces all occurrences of “bar” at the end of the subject with “foobar”:

Discussion

This command is similar to the split string command, but inSubject is split along the

boundaries matched by inPattern.

If inLimit is specified, then only substrings up to inLimit are returned, and if inLimit is <= 0,

it actually means “no limit”, which is useful when you want to pass inFlags as well.

inFlags can be any combination of the following flags, which may be combined with

bitwise | operator:

array text($patterns; 0)
set array($patterns; "/^foo(\w*)/"; "/(\w*)bar$/")
array text($subjects; 0)
set array($subjects; "foo is bar"; "fool's gold"; \\
 "raise the bar"; "rebar")
array text($replacements; 0)
set array($replacements; "bar"; "foobar")
regex replace($patterns; $subjects; $replacements; $results)
writebr(join array($results; "
\n"))

// Output is:
bar is foobar
bar's gold
raise the foobar
foobar

// using named subpatterns
$pattern := "/(?P<area>\d{3})-?(?P<exch>\d{3})-?(?P<num>\d{4})/"
$replace := "(\<area>) \<exch>-\<num>"
regex replace($pattern; "5551234567"; $replace; $result)

// $result = "(555) 123-4567"

regex split version 3.0

regex split(inPattern; inSubject; outResults {; inLimit {; inFlags}})  Number

Parameter Type Description

inPattern Text  Delimiter pattern

inSubject Text/BLOB  Source text to split

outResults String/Text Array  Receives split strings

inLimit Number  Limit on number of matches

inFlags Number  Controls behavior of split

Result Number  Number of split strings
Chapter 11 Command Reference 287

Active4D v6.3 Regular Expressions
Example

This example will split a string into its characters:

Flag Effect

A4D Regex Split No Empty Only non-empty pieces will be returned

A4D Regex Split Capture Delims Parenthesized expressions in the delimiter

pattern will be captured and returned

$str := "string"
regex split("//"; $str; $chars; 0; A4D Regex Split No Empty)
writebr(join array($chars; "/"))

// Output is:
s/t/r/i/n/g
288 Chapter 11 Command Reference

Request Cookies Active4D v6.3
Request Cookies

Active4D puts client cookies and their associated values into a collection. You can access

this collection in your scripts.

The keys in the request cookies collection are text. The official specification for cookie

keys says that they must be all ASCII with no whitespace; however, in practice this may

not be the case, so Active4D performs the following transforms on cookie keys to make

them compliant:

3 The text is URL decoded to UTF-8. For example, “%20” becomes a space.

3 Diacriticals are removed. For example, “côte” becomes “cote”.

3 Non-ASCII Latin characters are transformed to ASCII equivalents. For example, “æ”

becomes “ae”.

3 The text is converted to ASCII. All non-ASCII characters are converted to “?”.

3 Whitespace is replaced with “_”.

For example, the cookie key “côte ægis¥” is transformed to “cote_aegis?”. Note that the

transforms are only done when the cookie is received; the sender’s cookie remains

unaffected.

The values in the request cookies collection are all text. Note that no character set

conversions are done on this text other than URL decoding to UTF-8; it is considered

opaque by Active4D. It is up to you to properly encode cookie values when you set them.

The request cookies collection is read-only, and follows the same pattern as all read-only

collections.
Chapter 11 Command Reference 289

Active4D v6.3 Request Cookies
Discussion

This command returns an iterator to the first item in the request cookies collection.

For more information on iterators, see “Iterators” on page 214.

Discussion

This command searches the request cookie collection for the item with the key inKey.

If the item is found, the item’s value is returned.

If the item is not found, an empty string is returned.

request cookies version 2

request cookies Longint

Parameter Type Description

Result Longint  Iterator reference

get request cookie
version 2

modified v5

get request cookie(inKey) Text

Parameter Type Description

inKey Text  Key of request cookie to retrieve

Result Text  Value of request cookie or ""

Note: The cookie value is URL decoded and converted from UTF-8 to Unicode, so

you do not need to perform any decoding.
290 Chapter 11 Command Reference

Request Cookies Active4D v6.3
Discussion

This command fills outKeys and outValues with all of the keys and values in the request

cookies collection.

If outKeys was not defined, it is created as a string array. If outValues was not defined, it is

created as a text array.

If outKeys is defined but is not a string or text array, an error is generated an execution is

aborted.

Discussion

This command returns the number of items in the request infos collection.

get request cookies
version 2

modified v5

get request cookies(outKeys {; outValues})

Parameter Type Description

outKeys String/Text Array  Receives the collection keys

outValues String/Text Array  Receives the collection values

Note: The cookie keys and values are URL decoded and converted from UTF-8 to

Unicode, so you do not need to perform any decoding.

count request cookies version 2

count request cookies Longint

Parameter Type Description

Result Longint  Number of items in collection
Chapter 11 Command Reference 291

Active4D v6.3 Request Info
Request Info

Every time Active4D receives an HTTP request, a number of headers are passed as part of

the request, such as the content length and user agent identifier.

Some of this information is commonly used, such as cookies, and is placed in specialized

collections for easy access. All of the headers are put in the request info collection, which

is accessible from your scripts. For more information on HTTP headers, see RFC 2616 at

http://www.w3.org/Protocols/.

In addition to all of the HTTP headers, all of the information put into the request info

array (see “A4D Execute <type> request” on page 66) is also put into the request info

collection. The request info array elements appear in the request info collection as the

following items:

The request info collection is read-only, and follows the same pattern as all read-only

collections. All of the values in the request info collection are text.

Key Value

*doctype “doctype” option from Active4D.ini, either “html” or “xhtml”

*host Hostname used in request without port

*host address As set in 4D

*host port As set in 4D, usually “80” for HTTP or “443” for SSL

*http version "1.0" or "1.1"

*remote address As set in 4D

*request method The method used in the request (“GET”, “POST”, etc.)

*secure As set in 4D, should be “1” for secure, “0” if not

*virtual host Virtual host configured in VirtualHosts.ini
292 Chapter 11 Command Reference

Request Info Active4D v6.3
Discussion

This command returns an iterator to the first item in the request info collection.

For more information on iterators, see “Iterators” on page 214.

Discussion

This command searches the request info collection for the item with the key inKey.

If the item is found, the item’s value is returned.

If the item is not found, an empty string is returned.

Discussion

This command fills outKeys and outValues with all of the keys and values in the request

infos collection.

If outKeys was not defined, it is created as a string array. If outValues was not defined, it is

created as a text array.

request info version 2

request info Longint

Parameter Type Description

Result Longint  Iterator reference

get request info version 2

get request info(inKey) Text

Parameter Type Description

inKey Text  Key of request info to retrieve

Result Text  Value of request info or ""

get request infos version 2

get request infos(outKeys {; outValues})

Parameter Type Description

outKeys String/Text Array  Receives the collection keys

outValues String/Text Array  Receives the collection values
Chapter 11 Command Reference 293

Active4D v6.3 Request Info
If outKeys is defined but is not a string or text array, an error is generated an execution is

aborted.

Discussion

This command returns the number of items in the request cookies collection.

count request infos version 2

count request cookies Longint

Parameter Type Description

Result Longint  Number of items in collection
294 Chapter 11 Command Reference

Request Value Active4D v6.3
Request Value

Occasionally you may not know which collection a value is in or you don’t care which

collection it is in, you just know that it was part of the request. In such cases you can use

this command.
Chapter 11 Command Reference 295

Active4D v6.3 Request Value
Discussion

This command searches these collections in order: query params, form variables, request

cookies, request info.

If the item is found, the item’s value is returned.

If the item is not found, an empty string is returned.

get request value version 2

get request value(inKey) <any>

Parameter Type Description

inKey Text  Key of item to retrieve

Result <any>  Value of item or ""
296 Chapter 11 Command Reference

Resources Active4D v6.3
Resources

Active4D enhances the Get indexed string and STRING LIST TO ARRAY commands to

allow you to work with other resource types (such as 4DK#) that are in STR# format..
Chapter 11 Command Reference 297

Active4D v6.3 Resources
Discussion

This command works just like the 4D version of the command, but it also allows you to

retrieve strings from resources such as 4DK# which are in STR# format.

Get indexed string
(modified 4D) version 6

modified v4.5

Get indexed string({*; inResType; } inResID; inIndex) Text

Parameter Type Description

* *  Indicates a resource type is passed

inResType Text  Four-character resource type

inResID Number  ID of resource

inIndex Number  Index of string to get

Result Text  Requested string

$s := get indexed string(*; "4DK*"; 10; 1)

// $s now contains something like "January:1:L".
// We want only the name.

$s := slice string($s; ":")
298 Chapter 11 Command Reference

Resources Active4D v6.3
Discussion

This command works just like the 4D version of the command, but it also allows you to

retrieve strings from resources such as 4DK# which are in STR# format.

STRING LIST TO ARRAY
(modified 4D) version 6

modified v4.5

STRING LIST TO ARRAY({*; inResType; } inResID; outStrings)

Parameter Type Description

* *  Indicates a resource type is passed

inResType Text  Four-character resource type

inResID Number  ID of resource

outStrings String/Text Array  All strings in resource

array string(15; $list; 0)
string list to array(*; "4DK*"; 10; $list)

// $s now contains strings like "January:1:L".
// We want only the name.

for ($i; 1; size of array($list))
 $list{$i} := slice string($list{$i}; ":")
end for
Chapter 11 Command Reference 299

Active4D v6.3 Response Buffer
Response Buffer

When you want to return data to the client, you do so by appending text to the response

buffer. This buffer becomes the body of the HTTP response.

The commands in this section allow you to write text and graphics to the response

buffer, to get information about the size of the response buffer, and to control the

character set conversion and encoding performed on text written to the response buffer.
300 Chapter 11 Command Reference

Response Buffer Active4D v6.3
Discussion

This command has been replaced by response buffer size and is no longer supported.

Discussion

This command the current size of the response buffer in bytes.

Discussion

This command has been replaced by clear response buffer and is no longer supported.

Discussion

This command completely clears the contents of the response buffer. Ordinarily you

would have no need to use this command.

buffer size
version 2

deprecated v5

buffer size Longint

Parameter Type Description

Result Longint  Byte size of response buffer

response buffer size version 3.0

response buffer size Longint

Parameter Type Description

Result Longint  Byte size of response buffer

clear buffer
version 2

deprecated v5

clear buffer

clear response buffer version 3.0

clear response buffer
Chapter 11 Command Reference 301

Active4D v6.3 Response Buffer
Discussion

This command returns the current contents of the response buffer in outBuffer.

If get response buffer is used with a BLOB, the BLOB receives UTF-8 encoded text, as if

you had executed TEXT TO BLOB(buffer; outBlob; UTF8 Text without length).

Discussion

This command works the same as write blob but replaces the contents of the response

buffer for text types instead of appending.

If set response buffer is used with a BLOB, the BLOB is assumed to contain text stored in

the format UTF8 Text without length.

It is designed for use in post-processing the response in the On Execute End event

handler. For example, you could use get response buffer to get the response,

regex replace to process the buffer, and then set response buffer to use the processed

buffer.

get response buffer
version 3.0

modified v5

get response buffer(outBuffer)

Parameter Type Description

outBuffer Text or BLOB  Contents of response buffer

Note: Because execution is immediately terminated when binary data is written to

the response buffer (e.g. with write gif), it is guaranteed that the result of this

command will be text.

set response buffer
version 3.0

modified v5

set response buffer(inValue; inContentType)

Parameter Type Description

inValue Text or BLOB  Value to write to the response buffer

inContentType Text  Type of inValue’s contents
302 Chapter 11 Command Reference

Response Buffer Active4D v6.3
Discussion

This command sets outBuffer as the response buffer. All output that would normally end

up going back to the browser (i.e. HTML and the output of the various write commands)

will instead be appended to outBuffer. outBuffer must be either a variant value (such as a

local variable or collection item) or an element of a string/text array.

Calls to save output must be balanced with a call to end save output, and the balancing

call to end save output must be within the same scope as the corresponding call to

save output.

You may nest calls to save output. This allows you to construct complex nested output,

like this:

The output from the code above is:

At each level, we save the output to $buffer, then write it once we have restored the

buffer.

save output version 3.0

save output(outBuffer)

Parameter Type Description

outBuffer <variant>  Value that receives output

writebr("---> level 1")
save output($buffer)
 writebr("---> level 2")
 save output($buffer)
 writebr("---> level 3")
 writebr("<--- level 3")
 end save output
 write($buffer)
 writebr("<--- level 2")
end save output
write($buffer)
writebr("<--- level 1")

---> level 1
---> level 2
---> level 3
<--- level 3
<--- level 2
<--- level 1

Note: Output is not available in outBuffer until after end save output is executed.
Chapter 11 Command Reference 303

Active4D v6.3 Response Buffer
Discussion

This command restores the output buffer that was current before the most recent call to

save output and places the contents of the current output buffer into the target value

specified in save output.

For more information, see “save output” on page 303.

Discussion

This command determines what character set conversion, if any, Active4D applies to text

written to the response buffer in the current request. This conversion is applied after

output character set encoding.

You may either pass one of the character set constants below or an IANA character set

name. The output character set constants supported by Active4D are:

If you pass a name, it must be a valid IANA character set name. If the name is empty, it

will default to “mac”. If it is invalid an error will be generated and execution will abort.

end save output version 3.0

end save output

set output charset
version 2

modified v5

set output charset(inCharset)

Parameter Type Description

inCharset Number | Text  Character set constant or name

Character Set Constant

UTF-8 A4D Charset UTF8

Macintosh Roman A4D Charset None

Macintosh Roman A4D Charset Mac

Windows Latin A4D Charset Win

ISO-8859-1 (Latin1) A4D Charset ISO Latin1
304 Chapter 11 Command Reference

Response Buffer Active4D v6.3
For more information on the output charset, see “Working with Character Sets” on

page 104.

Discussion

This command returns the name of the current output character set, which determines

the character set to convert to when the response buffer is sent to the browser.

The name returned by this command is the internal, canonical name used by ICU, and

thus may not be the same name you used either in Active4D.ini or with the set output

charset command. For a complete list of charset names, see:

http://demo.icu-project.org/icu-bin/convexp?s=IANA&s=ALL

For more information on the output charset, see “Working with Character Sets” on

page 104.

Discussion

This command determines what HTML character encoding, if any, Active4D applies to

text written to the response buffer in the current request. This encoding is applied before

output character set conversion.

The inEncoding parameter is a set of bit flags which specify the characters to encode.

Each bit flag has a named constants defined. The constants (and their values) are:

Note: For compatibility with previous versions, A4D Charset None is now effectively

the same as A4D Charset Mac, because Unicode always has to be converted to a

different encoding before being sent to the browser.

get output charset
version 2

modified v5

get output charset Text

Parameter Type Description

Result Text  Character set name

set output encoding version 2

set output encoding(inEncoding)

Parameter Type Description

inEncoding Number  How to encode special characters

written to the response buffer
Chapter 11 Command Reference 305

Active4D v6.3 Response Buffer
3 A4D Encoding None (0): No encoding is performed. You are responsible for manually

encoding reserved characters, either by using the equivalent character entities directly

or by using the html encode command.

3 A4D Encoding Quotes (1) : Single and double quotes are encoded.

3 A4D Encoding Tags (2) : The characters ‘<’ and ‘>’ are encoded.

3 A4D Encoding Ampersand (4): The ampersand character (‘&’) is encoded.

3 A4D Encoding Extended (8) : All characters with an ASCII value >= 127 (non-

breaking space and international characters) are encoded.

3 A4D Encoding HTML (8) : A synonym for A4D Encoding Extended. This is the default.

3 A4D Encoding All (65535) : All characters that have HTML character entities defined

are encoded.

The default for Chinese and Japanese language systems is A4D Encoding None. The

default for all other systems is A4D Encoding HTML, which encodes only non-breaking

space and international characters. This allows you to use the write command to create

HTML tags, while converting international characters.

For example, the following statement:

Would result in this output:

You can change the default output encoding with the “output encoding” option in

Active4D.ini. For more information on output encoding, see “Output Encoding” on

page 106.

Discussion

This command returns the current set of bit flags which determine which characters to

encode when writing to the response buffer. For more information on output encoding,

see “Output Encoding” on page 106.

<% write("<td>Quelle bêtise!</td><td> </td>") %>

<td>Quelle bêtise!</td><td> </td>

get output encoding version 2

get output encoding Number

Parameter Type Description

Result Number  Set of bit flags
306 Chapter 11 Command Reference

Response Buffer Active4D v6.3
Discussion

This command works like the String command, but after converting inValue to text it

appends the converted text to the response buffer. This is the primary method of

generating dynamic HTML within Active4D code.

If you pass a Boolean value without a format, it will automatically output ‘“True” or

“False”, depending on the value passed in.

If a BLOB is passed to the write command, it is assumed to be text. You can specify the

text format within the BLOB by passing the relevant constant (such as UTF8 Text without

length) in the inFormat parameter. If no format is passed, the text format is assumed to be

UTF8 Text without length.

If inOutputEncoding is passed, the text being written will be encoded according to the

encoding style specified. This is a more convenient way of specifying a special encoding

than bracketing a call to write with calls to set output encoding. You may pass * as a

shortcut for A4D Encoding All. For more information on the value of this parameter, see

“set output encoding” on page 305.

Discussion

This command does the following:

write
version 1

modified v5

write(inValue {; inFormat {; inOutputEncoding}})

Parameter Type Description

inValue <any>  Value to write to the response buffer

inFormat Text | Number  Format to use when converting to text

inOutputEncoding Number  Character encoding of HTML special

characters and

write blob
version 2

modified version v5

write blob(inBlob; inContentType {; * | inCharset})

Parameter Type Description

inBlob BLOB  BLOB to write to the response buffer

inContentType Text  Type of inBlob’s contents

* *  If passed, forces binary type

inCharset Text  Character set of BLOB text
Chapter 11 Command Reference 307

Active4D v6.3 Response Buffer
3 Completely replaces the contents of the response buffer with the contents of inBlob if *

is passed or if the content type does not begin with “text/”.

3 Sets the content type of the response based on inContentType, which may be either a

MIME type or a file extension. If inContentType is a file extension (with or without

leading dot), the corresponding MIME type is looked up from ExtensionMap.ini.

In either case, if the MIME type is not recognized, an error is generated and execution is

aborted.

3 Stops execution of the script if the MIME type is binary, i.e. if * is passed or if the type

does not begin with “text/”.

3 If inContentType begins with “text/”, it is assumed that the entire BLOB contains text

stored in the format Mac Text without length or UTF8 Text without length.

3 If inContentType begins with “text/” and * is not passed, inCharset can be an IANA

character set name which indicates the charset of inBlob’s text. If inCharset is not

passed, it defaults to UTF-8.

This command is designed to allow you to return binary data which you have created

outside of Active4D. For example, you may create a JPEG thumbnail on the fly which you

want to return as the response.

Previous to Active4D v5, write blob could also be used to write text greater than 32K in

length.This is still possible in v6, but completely unnecessary, as string and text variables

in v6 are capable of holding up to 2GB of text.

query([pictures];[pictures]name = $f_name)
$blob := MyCreateThumbnail([pictures]pict)
write blob($blob; "image/jpeg")

Note: It is up to you to ensure that inContentType matches the actual content type of

inBlob.
308 Chapter 11 Command Reference

Response Buffer Active4D v6.3
Discussion

This command is a convenience routine for writing a value followed by an HTML line

break and a line ending for the current platform (CR on Mac, CRLF on Windows). It is

exactly equivalent to the following code:

Discussion

This command is a convenience routine for writing a value followed by a line ending for

the current platform (CR on Mac, CRLF on Windows). It is exactly equivalent to the

following code:

writebr version 1

writebr(inValue {; inFormat {; inOutputEncoding}})

Parameter Type Description

inValue <any>  Value to write to the response buffer

inFormat Text | Number  Format to use when converting to text

inOutputEncoding Number  Character encoding of HTML special

characters

write($inValue + "
" + $lineEnding; $inFormat)

writeln version 1

writeln(inValue {; inFormat {; inOutputEncoding}})

Parameter Type Description

inValue <any>  Value to write to the response buffer

inFormat Text | Number  Format to use when converting to text

inOutputEncoding Number  Character encoding of HTML special

characters

write($inValue + $lineEnding; $inFormat)
Chapter 11 Command Reference 309

Active4D v6.3 Response Buffer
Discussion

This command is a convenience routine for writing a value followed by an HTML

paragraph break and a line ending for the current platform (CR on Mac, CRLF on

Windows). It is exactly equivalent to the following code:

Discussion

This command is equivalent to the write command, but it temporarily disables the

current output encoding, thus the output encoding parameter is not available.

For example, if the current output encoding is A4D Encoding All, using the command

would not work as expected, because the output encoding would convert the HTML

tags into HTML character entities, resulting in the following output: This would appear in

the browser as the literal string passed in, not as bold text as intended.

writep version 1

writep(inValue {; inFormat {; inOutputEncoding}})

Parameter Type Description

inValue <any>  Value to write to the response buffer

inFormat Text | Number  Format to use when converting to text

inOutputEncoding Number  Character encoding of HTML special

characters

write($inValue + "<p>" + $lineEnding; $inFormat)

Note: This command is not recommended, because it uses a form of HTML that is no

longer compliant with current HTML standards.

write raw version 2

write raw(inValue {; inFormat})

Parameter Type Description

inValue <any>  Value to write to the response buffer

inFormat Text | Number  Format to use when converting to text

write("This is bold")

This is bold
310 Chapter 11 Command Reference

Response Buffer Active4D v6.3
One could get the current output encoding, temporarily turn it off, then restore it, but

that would quickly become cumbersome. By simply replacing write with write raw in

the statement above, this problem can be quickly and easily avoided.

Discussion

The = operator, followed by an expression, may be used at the beginning of the first line

of an Active4D code block as a synonym for the write command. When used in this

manner, the code block will exit after the first line of code executes.

Like the write command, the = operator will automatically convert the expression to text

(using a format if you supply one); you do not have to explicitly use the String command

where the write command would not require it.

This operator is very handy when using small Active4D code blocks embedded in a

bunch of HTML. For example:

=
version 2

modified v6.0r4

=inExpression {; inFormat}

Parameter Type Description

inExpression <any>  Expression to append to the response

buffer

inFormat <any>  Format to use with inExpression

It is now <%= current time; hh mm am pm %> on <%=current date%>
Chapter 11 Command Reference 311

Active4D v6.3 Response Cookies
Response Cookies

Active4D allows you to send cookies to the client browser. A cookie is basically a name

and associated value which is stored on the client’s machine. Cookies allow you to retain

persistent information about a user across requests and sessions.

You send cookies to the client browser by adding them to the response cookies

collection. This collection is read-write, and follows the same pattern as all read-write

collections. All of the values in the response cookies collection are text and are

considered opaque by Active4D. It is up to you to do any necessary URL encoding or

character set conversion.

Cookie Fields

In addition to a name and a value, cookies can optionally have other attributes, including

domain, path, and expires. The complete Netscape cookie specification can be found at:

http://developer.netscape.com/docs/manuals/js/client/jsref/cookies.htm

The only cookie attribute you will usually be concerned with is expires. If this attribute is

not specified, a cookie expires when the browser is closed. To create a cookie that is

retained across browser sessions, you must set the expires attribute to some date in the

future. Active4D provides commands to do this.
312 Chapter 11 Command Reference

Response Cookies Active4D v6.3
Discussion

This command returns an iterator to the first item in the response cookies collection.

For more information on iterators, see “Iterators” on page 214.

Discussion

This command searches the response cookie collection for the item with the name

inName.

If the item is found, the item’s value is returned.

If the item is not found, an empty string is returned.

response cookies version 2

response cookies Longint

Parameter Type Description

Result Longint  Iterator reference

get response cookie
version 2

modified v5

get response cookie(inName) Text

Parameter Type Description

inName Text  Name of response cookie to retrieve

Result Text  Value of response cookie or ""

Note: The cookie name and value are URL decoded and converted from UTF-8 to

Unicode, so you do not need to perform any decoding.
Chapter 11 Command Reference 313

Active4D v6.3 Response Cookies
Discussion

This command fills outNames and outValues with all of the names and values/attributes

in the response cookies collection. Note that cookie attributes are stored along with the

cookie value, as outlined in the Netscape cookie specification.

If outNames was not defined, it is created as a Text array. If outValues was not defined, it is

created as a Text array.

If outNames is defined but is not a Text array, an error is generated an execution is

aborted.

Discussion

This command sets a response cookie with the given attributes. inValue may be of any

type; it is converted to text automatically. Because cookies must have a non-empty

value, if the value is an empty string, it defaults to “null”.

If the cookie already exists, its value and attributes are reset to those given.

get response cookies
version 2

modified v5

get response cookies(outNames {; outValues})

Parameter Type Description

outNames Text Array  Receives the cookie names

outValues Text Array  Receives the cookie values/attributes

Note: The cookie names and values are URL decoded and converted from UTF-8 to

Unicode, so you do not need to perform any decoding.

set response cookie
version 2

modified v6.1

set response cookie(inName; inValue {; inExpires {; inDomain {; inPath {; inSecure
 {; inHttpOnly}}}}})

Parameter Type Description

inName Text  Name of cookie to set

inValue <any>  Value to set

inExpires Date/Timestamp  Expiration date/time of cookie

inDomain Text  Cookie domain

inPath Text  Cookie path

inSecure Boolean  True to set Secure attribute

inHttpOnly Boolean  True to set HttpOnly attribute
314 Chapter 11 Command Reference

Response Cookies Active4D v6.3
If the item is not found, a new response cookie is added with the given name, value and

attributes.

If inExpires is a date, the cookie will expire at the current time on that date. If inExpires is

text which is a properly formatted timestamp, the cookie will expire at the date and time

given in the timestamp. If inExpires is an empty string, it is ignored.

If inPath is not given or is empty, it defaults to “/”.

If inSecure is True and the current request is secure (https), the Secure attribute of the

cookie will be set.

If inHttpOnly is True, the HttpOnly attribute of the cookie will be set.

For more information on the Secure and HttpOnly attributes, see

http://en.wikipedia.org/wiki/Http_cookies#Secure_and_HttpOnly.

Discussion

This command sets the domain of the cookie with the given name.

You must create the cookie with set response cookie before using this command. If no

cookie exists with the given name, an error is generated and execution is aborted.

Note: Both inName and inValue are converted to UTF-8 and URL encoded, so you do

not need to perform any encoding.

set response cookie domain version 2

set response cookie domain(inName; inDomain)

Parameter Type Description

inName Text  Name of cookie to set

inDomain Text  Cookie domain
Chapter 11 Command Reference 315

Active4D v6.3 Response Cookies
Discussion

This command returns the current domain of the cookie with the name inName. If no

such cookie exists or the domain has not been set, an empty string is returned.

Discussion

This command sets the expires date of the cookie with the name inName.

You must create the cookie with set response cookie before using this command. If no

cookie exists with the given name, an error is generated and execution is aborted.

Discussion

This command returns the current expires date of the cookie with the name inName. If

no such cookie exists or the expires date has not been set, a null date is returned.

get response cookie domain version 2

get response cookie domain(inName) Text

Parameter Type Description

inName Text  Name of cookie to retrieve

Result Text  Domain of cookie

set response cookie expires version 2

set response cookie expires(inName; inDate)

Parameter Type Description

inName Text  Name of cookie to set

inDate Date  Expiration date of cookie

get response cookie expires version 2

get response cookie expires(inName) Date

Parameter Type Description

inName Text  Name of cookie to retrieve

Result Date  Expiration date of cookie
316 Chapter 11 Command Reference

Response Cookies Active4D v6.3
Discussion

This command sets the HttpOnly attribute of the cookie with the given name.

You must create the cookie with set response cookie before using this command. If no

cookie exists with the given name, an error is generated and execution is aborted.

Discussion

This command returns whether the HttpOnly attribute has been set for the cookie with

the name inName. If no such cookie exists or the attribute has not been set, False is

returned.

Discussion

This command sets the path of the cookie with the given name.

You must create a cookie with set response cookie before using this command. If no

cookie exists with the given name, an error is generated and execution is aborted.

set response cookie http only v6.1

set response cookie http only(inName; inHttpOnly)

Parameter Type Description

inName Text  Name of cookie to set

inHttpOnly Boolean  True to set HttpOnly attribute

get response cookie http only v6.1

get response cookie http only(inName) Boolean

Parameter Type Description

inName Text  Name of cookie to retrieve

Result Boolean  HttpOnly attribute of cookie

set response cookie path version 2

set response cookie path(inName; inPath)

Parameter Type Description

inName Text  Name of cookie to set

inPath Text  Cookie path
Chapter 11 Command Reference 317

Active4D v6.3 Response Cookies
Discussion

This command returns the current path of the cookie with the name inName. If no such

cookie exists or the path has not been set, an empty string is returned.

Discussion

This command sets the Secure attribute of the cookie with the given name, but only if

the current request is a secure (https) request.

You must create the cookie with set response cookie before using this command. If no

cookie exists with the given name, an error is generated and execution is aborted.

Discussion

This command returns whether the Secure attribute has been set for the cookie with the

name inName. If no such cookie exists or the attribute has not been set, False is returned.

get response cookie path version 2

get response cookie path(inName) Text

Parameter Type Description

inName Text  Name of cookie to retrieve

Result Text  Path of cookie

set response cookie secure v6.1

set response cookie secure(inName; inSecure)

Parameter Type Description

inName Text  Name of cookie to set

inSecure Boolean  True to set Secure attribute

get response cookie secure v6.1

get response cookie secure(inName) Boolean

Parameter Type Description

inName Text  Name of cookie to retrieve

Result Boolean  Secure attribute of cookie
318 Chapter 11 Command Reference

Response Cookies Active4D v6.3
Discussion

This command returns the number of items in the response cookies collection.

Discussion

This command searches the response cookies collection for the item with the name

inName. To delete more than one item, you may use a wildcard in the name. All items

that match will be removed from the collection, not from the client.

Discussion

To delete a cookie from the client browser, you actually need to send a cookie with an

expires date of !00/00/00!. This command is a convenience routine which does that for

you.

If you change the expires attribute to something other than !00/00/00! after calling this

command, the cookie will not be deleted from the client browser.

If the cookie to be abandoned was set with a domain and/or path, you must provide the

same domain and/or path to successfully abandon it.

count response cookies version 2

count response cookies Longint

Parameter Type Description

Result Longint  Number of items in collection

delete response cookie version 2

delete response cookie(inName)

Parameter Type Description

inName Text  Name of cookie to delete

abandon response cookie version 2

abandon response cookie(inName {; inDomain {; inPath}})

Parameter Type Description

inName Text  Name of cookie to abandon

inDomain Text  Cookie domain

inPath Text  Cookie path
Chapter 11 Command Reference 319

Active4D v6.3 Response Headers
Response Headers

Active4D takes care of setting all of the response headers required by the HTTP protocol.

In addition, it provides commands for setting various response properties that get

turned into response headers (see “Response Properties” on page 324).

If you need to set your own custom headers, you can do so by putting them in the

response header collection.

The response headers collection is read-write, and follows the same pattern as all read-

write collections. All of the values in the response headers collection are text and are

considered opaque by Active4D. It is up to you to do any necessary URL encoding or

character set conversion.
320 Chapter 11 Command Reference

Response Headers Active4D v6.3
Discussion

This command returns an iterator to the first item in the response headers collection.

For more information on iterators, see “Iterators” on page 214.

Discussion

This command searches the response header collection for the item with the name

inName.

If the item is found, the item’s value is returned.

If the item is not found, an empty string is returned.

Discussion

This command fills outNames and outValues with all of the names and values in the

response headers collection.

If outNames was not defined, it is created as a string array. If outValues was not defined, it

is created as a text array.

response headers version 2

response headers Longint

Parameter Type Description

Result Longint  Iterator reference

get response header version 2

get response header(inName) Text

Parameter Type Description

inName Text  Name of response header to retrieve

Result Text  Value of response header or ""

get response headers version 2

get response headers(outNames {; outValues})

Parameter Type Description

outNames String/Text Array  Receives the header names

outValues String/Text Array  Receives the header values
Chapter 11 Command Reference 321

Active4D v6.3 Response Headers
If outNames is defined but is not a string or text array, an error is generated an execution

is aborted.

Discussion

This command searches the response headers collection for the item with the name

inName. inValue may be of any type; it is converted to text automatically.

If the item is found, its value is set to inValue.

If the item is not found, a new item is added to the collection with the given name and

value.

Discussion

This command returns the number of items in the response headers collection.

set response header version 2

set response header(inName; inValue)

Parameter Type Description

inName Text  Name of header to set

inValue <any>  Value to set

count response headers version 2

count response headers Longint

Parameter Type Description

Result Longint  Number of items in collection
322 Chapter 11 Command Reference

Response Headers Active4D v6.3
Discussion

This command searches the response headers collection for the item with the name

inName. To delete more than one item, you may use a wildcard in the name. All items

that match will be removed from the collection.

delete response header version 2

delete response header(inName)

Parameter Type Description

inName Text  Name of header to delete
Chapter 11 Command Reference 323

Active4D v6.3 Response Properties
Response Properties

Most of the standard HTTP response headers generated by Active4D can be controlled

through the commands in this group.
324 Chapter 11 Command Reference

Response Properties Active4D v6.3
Discussion

This command returns the cache-control header setting.

Discussion

This command controls the “cache-control” response header. The default value for the

cache-control response header is set by the “cache control” configuration option in

Active4D.ini.

The value of inOption should conform to the HTTP caching protocol as outlined in RFC

2616. Since HTTP 1.0 clients do not recognize the cache-control header, if inOption is “no-

cache”, Active4D also sends a “pragma: no-cache” header and an “expires” header with a

time of now.

Discussion

This command returns the minutes until the response should expire.

get cache control version 2

get cache control Text

Parameter Type Description

Result Text  Current cache control setting

set cache control version 2

set cache control(inOption)

Parameter Type Description

inOption Text  Cache control directive

get expires version 2

get expires Longint

Parameter Type Description

Result Longint  Minutes till expiration
Chapter 11 Command Reference 325

Active4D v6.3 Response Properties
Discussion

This command controls the “expires” response header, which is used by HTTP clients to

control caching of web pages. The default value for the expires response header is set by

the “expires” configuration option in Active4D.ini.

inMinutes is the number of minutes before the response should expire. A value of zero

forces the response to expire immediately. A negative value will cause this value to be

ignored by Active4D. Positive values are clipped to one year (in minutes).

Discussion

This command returns the date and time at which the response should expire.

Discussion

As an alternative to setting the number of minutes till expiration, you may also specify

the exact date and time at which the response should expire. The date/time specified is

clipped to one year from now.

set expires version 2

set expires(inMinutes)

Parameter Type Description

inMinutes Longint  Minutes till expiration

get expires date version 2

get expires date(outDate {; outTime})

Parameter Type Description

outDate Date  Expiration date

outTime Time  Expiration time

set expires date version 2

set expires date(inDate {; inTime})

Parameter Type Description

inDate Date  Expiration date

inTime Time  Expiration time
326 Chapter 11 Command Reference

Response Properties Active4D v6.3
Discussion

This command returns the current MIME type of the response.

Discussion

This command sets the “Content-Type” header of the response, which should be a valid

MIME type.

The default content type is “text/html”. Ordinarily you would have no need to change

this, unless for example you are sending a plain text file, in which case you would set the

content type to “text/plain”.

Discussion

This command is deprecated and is now an alias for the get output charset command.

get content type version 2

get content type Text

Parameter Type Description

Result Text  MIME type of response

set content type version 2

set content type(inType)

Parameter Type Description

inType Text  MIME type of response

get content charset
version 2

deprecated v5

get content charset Text

Parameter Type Description

Result Text  Charset name
Chapter 11 Command Reference 327

Active4D v6.3 Response Properties
Discussion

This command is deprecated and is now an alias for the set output charset command.

Discussion

This command returns the current HTTP status. Ordinarily the status is 200 (OK), unless

you have changed it with the set response status command.

Within the context of an error handler, the response status is set to 200 (OK). If an error

handler needs to get the response status that triggered it, use the get error status

command.

Discussion

This command changes the status code that will be returned with the response. Named

constants for the most common status codes can be found in Appendix B.

set content charset
version 2

deprecated v5

set content charset(inCharset)

Parameter Type Description

inCharset Text | Number  Charset name

get response status v6.0

get response status Longint

Parameter Type Description

Result Longint  HTTP status

set response status version 2

set response status(inStatus)

Parameter Type Description

inStatus Number  HTTP status code
328 Chapter 11 Command Reference

Script Environment Active4D v6.3
Script Environment

There are several configuration options that apply to Active4D’s scripting environment

as a whole. Many of those options can be changed at runtime with the commands in this

section.

This section also contains utility commands for getting information about the host

environment.
Chapter 11 Command Reference 329

Active4D v6.3 Script Environment
Discussion

This command returns an iterator to a special built in collection which is automatically

created with each executable request and then is automatically cleared at the end of the

request.

If you need to store data that is accessible globally, but only within a given request — as

opposed to the globals collection, which is global to all requests — the _request

collection is the perfect place to store that data.

Discussion

This command returns everything after the hostname{:port} that was part of the

requested URL.

Discussion

This command returns a number representing the platform under which Active4D is

running. The number will either be 2 or 3, which can be tested with the named constants

Power Macintosh and Windows respectively.

_request version 4.0

_request Longint

Parameter Type Description

Result Longint  Request collection iterator

full requested url version 4.0

full requested url Text

Parameter Type Description

Result Text  Full path plus any query

current platform version 2

current platform Number

Parameter Type Description

Result Number  Current platform code
330 Chapter 11 Command Reference

Script Environment Active4D v6.3
In case you hadn’t noticed, this is a convenient replacement for the standard 4D

incantation:

Discussion

This command returns license information from the key file of the machine on which

Active4D is running. The license types are as follows:

If no key file is found, outLicenseType is 0 (Trial) and outExpirationDate is 00/00/00.

If outLicenseType is 3 (OEM), outExpirationDate is 00/00/00.

If outKeyFilePath is passed in, it receives the full URL path to the key file if it was found

during startup.

C_LONGINT($platform)
PLATFORM PROPERTIES($platform)
$0:=$platform

get license info version 2

get license info(outUserName; outCompany; outLicenseType; outLicenseVersion;
 outServerIP; outExpirationDate; outPlatform {; outKeyFilePath})

Parameter Type Description

outUserName Text  The licensed user

outCompany Text  The licensed company

outLicenseType Longint  The type of license

outLicenseVersion Text  Active4D version licensed for

outServerIP Text  IP address for a regular deployment

license, empty otherwise

outExpirationDate Date  Date a deployment license expires

outPlatform Longint  Always 3 (Mac and Windows)

outKeyFilePath Text  Full path to key file

Type License

0 Trial

1 Developer

2 Deployment

3 OEM

4 Special

5 Expired
Chapter 11 Command Reference 331

Active4D v6.3 Script Environment
Discussion

This command returns the number of seconds remaining until the current license times

out.

If the license provides unlimited time, zero is returned. If the license has already timed

out, -1 is returned.

Discussion

This command returns the following information about the instance of Active4D that is

running:

For example, the 6.0r1 release version of Active4D running on Mac OS X would display

the following version string:

get time remaining version 2

get time remaining Longint

Parameter Type Description

Result Real  Seconds till license timeout

get version
version 1

modified v5

get version Text

Parameter Type Description

Result Text  Current Active4D version

Item Values

version Active4D 6.XrXX

architecture Macintosh/Intel, Windows/x86

build type debug, release

Active4D 6.0r1 [Macintosh/Intel, release]

Note: The network layer, 4D host and build flags are no longer returned in v5+.

These values can now be found in the Active4D log file, along with complete 4D and

system information.
332 Chapter 11 Command Reference

Script Environment Active4D v6.3
Discussion

This command returns an iterator to a read-only collection that contains the complete

set of configuration information read from Active4D.ini, VirtualHosts.ini, Realms.ini, and

ExtensionMap.ini.

The items of the collection are:

So, for example, if you want to retrieve the current set of virtual hosts, you would use this:

To dump the configuration to a web page, the easiest way is to use the a4d.debug.dump

configuration method.

Discussion

This command returns the current setting of the “parameter mode” option in

Active4D.ini, which will be either “none”, “form variables” or “query params”.

configuration v6.0

configuration Iterator

Parameter Type Description

Result Iterator  Configuration info collection

Item Contents

cors Array of collections, one for each entry in Cors.ini

extension map Collection, key = extension, value = mime type

options Collection, key = option name, value = option value

realms Collection, key = realm name, value = match string

virtual hosts Array of collections, one for each virtual host entry in

VirtualHosts.ini

configuration{"virtual hosts"}

parameter mode version 2

parameter mode Text

Parameter Type Description

Result Text  Current parameter mode setting
Chapter 11 Command Reference 333

Active4D v6.3 Script Environment
Discussion

This command returns the query string portion of the requested URL, if any (without the

leading “?”).

Discussion

This command sets the character set from which executable source files are converted to

Unicode in the current request.

You may either pass one of the character set constants below or an IANA character set

name. The output character set constants supported by Active4D are:

If you pass a name, it must be a valid IANA character set name. If the name is empty, it

will default to “mac”. If it is invalid an error will be generated and execution will abort.

For more information on the platform charset, see “Working with Character Sets” on

page 104.

request query version 4.0

request query Text

Parameter Type Description

Result Text  Query string

set platform charset
version 2

modified v5

set platform charset(inCharset)

Parameter Type Description

inCharset Number | Text  Charset to use when converting

executable source files

Character Set Constant

UTF-8 A4D Charset UTF8

Macintosh Roman A4D Charset Mac

Windows Latin A4D Charset Win

ISO-8859-1 (Latin1) A4D Charset ISO Latin1

Shift_JIS A4D Charset Shift_JIS

GB2312 A4D Charset GB2312
334 Chapter 11 Command Reference

Script Environment Active4D v6.3
Discussion

This command returns the current platform charset, which determines how Active4D

converts executable source files to Unicode.

The name returned by this command is the internal, canonical name used by ICU, and

thus may not be the same name you used either in Active4D.ini or with the set platform

charset command. For a complete list of charset names, see:

http://demo.icu-project.org/icu-bin/convexp?s=IANA&s=ALL

For more information on the platform charset, see “Working with Character Sets” on

page 104.

Discussion

You use the script timeout to ensure that an errant script doesn’t go into an infinite loop

and tie up server resources indefinitely. Active4D checks the timeout before executing

each line of code. If the script has been running more than <script timeout> seconds, an

error is generated and execution is aborted.

This command sets the script timeout for the next execution of Active4D, not the one in

which the command is used. In no case can the timeout be set lower than the “script

timeout” setting in Active4D.ini.

get platform charset
version 2

modified v5

get platform charset Text

Parameter Type Description

Result Text  Name of the charset from which

executable source files are converted

set script timeout version 2

set script timeout(inSeconds)

Parameter Type Description

inSeconds Longint  Seconds script may run
Chapter 11 Command Reference 335

Active4D v6.3 Script Environment
Discussion

This command returns the script timeout in seconds.

Discussion

You use the script timeout to ensure that an errant script doesn’t go into an infinite loop

and tie up server resources indefinitely. Active4D checks the timeout before executing

each line of code. If the script has been running more than <script timeout> seconds, an

error is generated and execution is aborted.

This command sets the script timeout only for the current execution of Active4D. In no

case can the timeout be set lower than the “script timeout” setting in Active4D.ini or the

most recent execution of the script timeout command.

Discussion

This command returns the timeout of the currently executing script in seconds.

get script timeout version 2

get script timeout Longint

Parameter Type Description

Result Longint  Seconds script may run

set current script timeout version 2

set current script timeout(inSeconds)

Parameter Type Description

inSeconds Longint  Seconds current script may run

get current script timeout version 2

get current script timeout Longint

Parameter Type Description

Result Longint  Seconds script may run
336 Chapter 11 Command Reference

Selecting Records Active4D v6.3
Selecting Records

The commands in this section are enhanced versions of the standard 4D selection

navigation commands. These commands are:

ALL RECORDS

FIRST RECORD

LAST RECORD

NEXT RECORD

PREVIOUS RECORD

GOTO RECORD

GOTO SELECTED RECORD

In addition to these commands, the SELECTION TO ARRAY and SELECTION RANGE TO

ARRAY commands have been similarly enhanced. They are discussed in

“SELECTION/SELECTION RANGE TO ARRAY” on page 150.

Loading Related Records

Each of the above commands has been enhanced to allow related records to be

automatically loaded — after the record is selected — as if you had implicitly called the

RELATE ONE or RELATE MANY commands. This feature will work only with automatic

relations. More importantly, this feature is implemented directly by 4D, so it is very fast.

Configuring Related Record Auto-loading

There are three ways in which related records may be auto-loaded:

3 Globally: Active4D.ini has a pair of settings called “auto relate one” and “auto relate

many”. These settings determine the default behavior for the commands listed above.

If you do not specify a value for these settings, the default is False. Setting them to True

causes related one or related many records to be loaded whenever one of the

commands above is executed, unless you override that behavior through one of the

two techniques outlined below.

3 Per execution: There is a new command, auto relate(inRelateOne; inRelateMany),

which sets auto-relating of records in the currently executing script. Whatever values

you pass to this command will override the global setting from that point to the end of

the script’s execution.

3 Per command: Each of the commands listed above adds two optional boolean

parameters, inRelateOne and inRelateMany. Specifying a value for these parameters

overrides both the global default and the default for the currently executing script, if it

was set by the auto relate command.

Note: The loading of related records spoken of here is distinct from the effects of the

AUTOMATIC RELATIONS command, which only affects queries and order bys.
Chapter 11 Command Reference 337

Active4D v6.3 Selecting Records
Compatibility with Active4D 2.0.x

Active4D 2.0.x always loaded related one and related many records for each of the

commands above. Not only was this behavior in contradiction to standard 4D behavior, it

could have adversely affected performance.

Beginning with version 3.0, the default behavior is the same as 4D’s behavior: related one

and related many records are not loaded when using the commands above. You must be

sure that your code takes this into account.

Examples

Let’s say you are looping through a selection of [ingredients] records and you want to

display [vendor]name, which is related by a many to one relation from the

[ingredients]vendor_id field to the [vendors]id field.

Here’s how you would ordinarily do it in Active4D:

If the global “auto relate one” setting is not set or is set to False, and you do not use the

auto relate command, and you do not use the optional flags in the GOTO SELECTED

RECORD command, this is how you must do it.

Now let’s assume you want the convenience of always loading the related one records

for all tables in your database. In that case you would change Active4D.ini:

By doing this, the code above could be written without using RELATE ONE:

Then you realize that there are many tables for which you don’t want to load the related

one record, so you change the “auto relate one” setting in Active4D.ini to be False. This

Warning: It is quite possible that scripts in version 2.0.x relied on the undocumented

behavior of the commands above and referenced values in related tables without

using RELATE ONE or RELATE MANY. If such is the case, they must either add

RELATE ONE or RELATE MANY commands or use one of the three techniques

outlined above to automatically load related records.

for ($i; 1; records in selection([ingredients]))
 goto selected record([ingredients]; $i)
 relate one([ingredients])
 writebr([ingredients]name + " comes from " + [vendors]name)
end for

auto relate one = true

for ($i; 1; records in selection([ingredients]))
 goto selected record([ingredients]; $i)
 writebr([ingredients]name + " comes from " + [vendors]name)
end for
338 Chapter 11 Command Reference

Selecting Records Active4D v6.3
leaves you with two ways of loading the related [vendor] records without using RELATE

ONE:

As you can see, there are many different ways to accomplish what you want. It is all a

matter of how much control vs. convenience you want.

Here’s one thing to watch out for:

In this example, the first record in the selection resulting from the query would not have

the related one record from [vendors] loaded, because no selection navigation

commands were executed. To make this work correctly you would have to do this:

auto relate(true; false)
// From this point on auto-load related one

for ($i; 1; records in selection([ingredients]))
 goto selected record([ingredients]; $i)
 writebr([ingredients]name + " comes from " + [vendors]name)
end for

for ($i; 1; Records in selection([ingredients]))
 // passing extra argument
 goto selected record([ingredients]; $i; true)
 writebr([ingredients]name + " comes from " + [vendors]name)
end for

auto relate(true)
query([ingredients]; [ingredients]name = "b@")
// First record is loaded but no auto relate happens

while(not(end selection([ingredients])))
 writebr([ingredients]name + " comes from " + [vendors]name)
end while

auto relate(true)
query([ingredients]; [ingredients]name = "b@")
first record([ingredients])
Chapter 11 Command Reference 339

Active4D v6.3 Selecting Records
Discussion

This command sets the auto-loading of related one and related many records for the

currently executing script. The settings specified here will override whatever the “auto

relate one” and “auto relate many” settings are in Active4D.ini. The settings in this

command will in turn be overridden by the extra parameters passed to the selection

navigation commands as outlined below.

For a complete discussion of auto-loading of related records, see “Configuring Related

Record Auto-loading” on page 337.

Discussion

These commands act on the current record of inTable exactly as they do in 4D. In

addition, if inRelateOne and/or inRelateMany are passed, they do the following:

3 inRelateOne: After the current record in inTable has been changed, if this parameter

evaluates to True, the related one record is loaded for each many to one relation in

inTable. The relations must be automatic for this to work.

If this parameter evaluates to False, the related one records will not be loaded. If this

parameter is not passed, the behavior is specified by the auto relate command or the

“auto relate one” setting in Active4D.ini.

auto relate version 3.0

auto relate(inRelateOne {; inRelateMany})

Parameter Type Description

inRelateOne Boolean  Sets auto-load of related one records

inRelateMany Boolean  Sets auto-load of related many records

ALL RECORDS, FIRST/LAST/NEXT/PREVIOUS RECORD
version 3.0

modified v5

ALL RECORDS([inTable] {; inRelateOne {; inRelateMany}})
FIRST RECORD([inTable] {; inRelateOne {; inRelateMany}})
LAST RECORD([inTable] {; inRelateOne {; inRelateMany}})
NEXT RECORD([inTable] {; inRelateOne {; inRelateMany}})
PREVIOUS RECORD([inTable] {; inRelateOne {; inRelateMany}})

Parameter Type Description

inTable Table  Table on which to act

inRelateOne Boolean  Auto-load related one

records

inRelateMany Boolean  Auto-load related many

records
340 Chapter 11 Command Reference

Selecting Records Active4D v6.3
3 inRelateMany: The same as inRelateOne, but this controls the loading of related

many records. If not passed the default behavior is specified by the auto relate command

or the “auto relate many” setting in Active4D.ini.

Discussion

This command gets the current state of auto-loading of related one and related many

records for the currently executing script.

For a complete discussion of auto-loading of related records, see the command “auto

relate” on page 340 and “Configuring Related Record Auto-loading” on page 337.

Discussion

This command acts on the current selection and current record of inTable exactly as it

does in 4D. In addition, the inRelateOne and inRelateMany parameters act as they do in

the FIRST RECORD command, as described above.

get auto relations version 3.0

get auto relations(outRelateOne; outRelateMany)

Parameter Type Description

outRelateOne Boolean  Auto-loading of related one records

outRelateMany Boolean  Auto-loading of related many records

GOTO RECORD (modified 4D) version 3.0

GOTO RECORD([inTable]; inRecordNum {; inRelateOne {; inRelateMany}})

Parameter Type Description

inTable Table  Table on which to act

inRecordNum Number  Number of record to load

inRelateOne Boolean  Auto-load related one records

inRelateMany Boolean  Auto-load related many records
Chapter 11 Command Reference 341

Active4D v6.3 Selecting Records
Discussion

This command acts on the current record of inTable exactly as it does in 4D. In addition,

the inRelateOne and inRelateMany parameters act as they do in the FIRST RECORD

command, as described above.

GOTO SELECTED RECORD (modified 4D) version 3.0

GOTO SELECTED RECORD([inTable]; inOffset {; inRelateOne {; inRelateMany}})

Parameter Type Description

inTable Table  Table on which to act

inOffset Number  Offset within selection to make

current

inRelateOne Boolean  Auto-load related one records

inRelateMany Boolean  Auto-load related many records
342 Chapter 11 Command Reference

Sessions Active4D v6.3
Sessions

In 4D, between the time you start a process and the time the process dies, you can

maintain the state of the process by using process variables.

The HTTP protocol, on the other hand, is completely stateless. Between the time a client

requests one page and another, the HTTP protocol provides no way of maintaining

persistent state information about the client.

Client-side cookies are one way of storing persistent information, but they are

cumbersome and inefficient for storing much more than a few pieces of information.

Thus the need arises for providing a persistent state mechanism.

The solution which is widely accepted by web scripting environments is called a session.

A session is a read-write collection which is maintained on the server and can be used to

store and retrieve any number of values pertaining to a client’s state, much as you would

use process variables. Active4D transparently does all the work of creating and

maintaining sessions.

If you have never programmed for the web before, you will quickly discover that good

session support is worth its weight in gold. If you have already programmed for the web,

you know that good session support is very difficult — meaning very expensive — to

implement. If you ask anyone who has ever tried to implement session support

themselves, they will tell you that Active4D’s session support alone makes it worth the

price!

Active4D’s session implementation follows the session architecture used in industry-

leading web scripting engines such as PHP, JSP, and ASP. This relieves you of the

considerable burden of implementing world-class session support yourself.

Session Lifetime

Active4D maintains a client’s session data for the lifetime of the session. The lifetime of a

session is defined by two factors:

3 Your scripts may specifically use the abandon session command to expire a session.

Typically you would do this when a client logs out of your system.

3 If you do not specifically abandon the session, the session’s lifetime is defined by its

timeout, which is the maximum amount of time between requests that a session will

stay alive.

A session is still valid in code that is executed within the request in which it is abandoned

or expires, however any changes made to the session will be lost. In subsequent requests

the session’s id is no longer valid.

What happens to a session after it is abandoned or expires depends on which session

handler is in use. For more information on session handlers, see “Session Handlers” on

page 348.

3 Built-in (memory): An abandoned or expired session is not immediately deleted

from memory. Its time remaining is set to zero so that it will be deleted in the next cycle

of the session purger.
Chapter 11 Command Reference 343

Active4D v6.3 Sessions
3 Custom: At the end of the request, the “delete” method is called if it is defined, and

that method should delete the session’s storage. Expired sessions should be deleted in

the “purge” method if it is defined.

A background process periodically checks all sessions to see if they have timed out and

purges those that have. If you are using the built-in memory-based session handler, the

On Session End event handler is called for each session that is about to be purged.

Within the context of that handler, the about-to-be-purged session is current and you

can access all of its data.

By default the timeout for a session is 10 minutes. This means that if a user logs in to your

site, does some operations, and then leaves your site without logging out, their session

will remain in memory for an additional 10 minutes before being deleted by the session

purger.

Session ID

When a client visits your web site, Active4D looks for a cookie called

“ACTIVE4D_SESSIONID”. If the cookie is not there, Active4D assumes this is the first time

the client has visited your site since they launched their browser.

Active4D then generates a new internal session ID and public session ID. Since you only

work with the public session ID, it is simply called the session ID. Internal and public

session IDs have the following characteristics:

3 Internal session IDs are 32-bit unsigned longints.

3 Public session IDs are 16-character strings.

3 If you are using the built-in memory-based session handler, each time 4D is started, a

random internal session ID starting value is selected. Then for each Active4D session

that is created, the internal session ID is incremented.

3 If you are using a custom session handler, the handler is responsible for generating

unique internal session IDs.

3 The 32-bit internal session ID is mixed with random data and encrypted to generate a

16-character cookie string.

3 The encryption key is randomly selected each time the 4D is restarted.

The client never sees the internal session ID, only the encrypted session ID, unless you

specifically include the internal ID on your page with the session internal id command.

Session Events

When Active4D generates a new session ID, it checks to see if an On Session Start event

handler has been defined in the Active4D library. If such an event handler is defined, it is

executed.

Note: If you are using a custom session handler, On Session End is not called.

Note: For your internal use, you should always use the internal session id.
344 Chapter 11 Command Reference

Sessions Active4D v6.3
If you are using the built-in memory-based session handler, when the session is deleted

Active4D executes the On Session End event handler if one exists. For more information

on event handlers, see Chapter 10, “Event Handlers.”

When Active4D Sends Session Cookies

Even though Active4D generates a session ID when a client accesses your site, it does not

create the session in memory or send a session cookie to the client unless when one of

the following happens:

3 The On Session Start event handler is defined (it need not set any session data)

3 A script sets some session data using a set session command or by assigning a value

to a session item

3 A script uses the session command without referencing an item

If one of these conditions is not met, the next time that client browser accesses the

server, a new session ID will be generated because there will be no session cookie.

On the other hand, if the On Session Start event handler is defined or a session item is

set, Active4D will send a cookie called “ACTIVE4D_SESSIONID” (by default) back to the

client. The cookie’s value is the 16-character session ID.

Each subsequent request by that browser — until the client restarts the browser — will

include the session cookie with the session ID. Active4D decrypts the session ID into the

internal session ID and restores the corresponding session collection. All of the data

stored in the session during previous requests is then available to the current script.

The session cookie sent by Active4D does not have an expiration. Cookies with no

expiration are deleted when the browser closes, so a session is only valid as long as the

originating browser remains open.

Cookieless Sessions

If you decide to forgo cookies as a means of storing the session ID, it is your responsibility

to ensure that the session ID is always passed from one page to another, either through a

hidden form field or through a query string parameter. If you fail to do so, you will lose

track of the session.

Active4D automatically creates a local variable which contains the session ID. The name

of this variable is “sid” by default; you can change it with the “session var name” option in

Active4D.ini.

Note: If the session cookie secure configuration option is true and the request is not

secure, the session cookie will not be sent even if one of the above conditions is met.

Note: Active4D uses session cookies by default. You may disable session cookies

(and session management as well) through the config options in Active4D.ini. For

more information, see “Session Configuration” on page 347.
Chapter 11 Command Reference 345

Active4D v6.3 Sessions
If Active4D is configured to use session cookies and it cannot find the cookie, or if it is

configured not to use cookies, it automatically looks for the session variable either in the

query params or in the form variables and then retrieves the session ID from the contents

of that variable.

When you want to pass the session ID as a hidden field, use the hide session field

command. To pass the session ID in a query string, use the session query command to

get a properly formatted query parameter.

Memory Caching of Sessions

By default, Active4D caches sessions in memory. Sessions use a minimum of 260 bytes of

memory per item. Thus if you have on average a session with 20 items, that means you

will use somewhere in the neighborhood of 5K. If you expect to have 100 sessions alive

at any given time, that means the session cache will occupy 500K of memory. This will

give you a rule of thumb in terms of how much memory usage to allocate for.

Because of the amount of memory sessions use, you should use sessions judiciously in

your application if you are not using a custom session handler. You would not want to

store huge numbers of items in a session, nor store huge amounts of text in a session

item. If this is necessary, consider either caching sessions in the database or storing some

info in the database and some in the session.

Session Timeout and Memory Usage

If you are not using a custom session handler, the maximum amount of memory sessions

will use in your web site can be expressed with the formula

M = V x T x S

where M is the total memory usage, V is the number of unique visitors per minute, T is

the session timeout, and S is the average memory usage per session.

So, for example, if you have a session timeout of 10 minutes, 10 unique visitors per

minute, and an average of 5K per session, your maximum memory usage will be 500K.

You can use this formula to tune the session timeout. Remember that the whole purpose

of sessions is to provide continuity in the user’s state while using your site. Therefore you

typically do not want the timeout to be less than 5 minutes, as the user will lose their

session if they stop to get a cup of coffee! On the other hand, you don’t want the session

timeout to be too high because you will unnecessarily be wasting server memory. At

some point you have to assume the user has stopped using your site.

Monitoring Memory Usage

Active4D provides a 4D-based session monitor that displays the total memory usage for

all sessions. Using this during a typical load on your server can help you to tune your

timeout and the amount of memory your give to your server.
346 Chapter 11 Command Reference

Sessions Active4D v6.3
For more information on the session monitor, see “The Session Monitor” on page 604.

Session Configuration

Active4D lets you configure every aspect of session management through options in

Active4D.ini.

session handler

If set, a custom session handler will be used instead of the built-in memory-based

session handler. For more information, see “Session Handlers” on page 348.

session cookie domain

HTTP cookies have a domain associated with them. The browser uses the domain and

path to determine whether to send a cookie to the server.

You may set the default session domain with this option. Ordinarily you would have no

need to do so.

The default value for this option is to have no domain.

session cookie name

This option determines the name of the cookie which Active4D looks for to find a session

ID when the user makes a request. It must contain only alphanumeric characters or

underscores with no spaces.

The default value for this option is “ACTIVE4D_SESSIONID”.

session cookie path

HTTP cookies have a virtual path associated with them. The browser uses the domain

and path to determine whether to send a cookie to the server.

You may set the default session path with this option. Ordinarily you would have no

need to do so.

The default value for this option is to have no path.

session cookie secure

If you want session cookies to be sent only when the request is secure (https), set this

option to true.

The default value for this option is false.

session purge interval

This option determines the minimum time in seconds between attempts to purge

expired sessions. In actual fact the interval may be something greater, since Active4D

waits for all requests to finish before purging. Valid values for this option are between 5

and 60 inclusive.

The default value for this option is 10.

Note: If you are using a custom session handler, the session monitor will show any
sessions.
Chapter 11 Command Reference 347

Active4D v6.3 Sessions
session timeout

The length of time in minutes that a session can live without any user interaction. Values

less than 1 will be ignored. The session timeout can be changed at runtime with the set

session timeout command. To set the timeout to a value less than one minute, use a

fraction. For example, a value of 0.5 would be 30 seconds.

The default value for this option is 10.

session var name

The name of the local variable to automatically set to the current session ID (with or

without the leading ‘$’). It must contain only alphanumeric characters or underscores

with no spaces.

The default value for this option is “sid”.

use session cookies

This option determines whether Active4D should store session IDs in cookies or look for

the session variable. Setting this option to “true” or “yes” will turn cookies on, “false” or

“no” will turn them off.

The default value for this option is “true”.

use sessions

This option is a global switch for session management. If you are using sessions for your

application, specify “true” or “yes”. If you do not need session management at all, specify

“false” or “no”.

The default value for this option is “true”.

Session Handlers

By default, all sessions are kept in server memory. This is fast and convenient, but if you

are using multiple servers with a load balancer, you will need to keep the sessions in

globally accessible persistent storage, such as the database. The easiest way to do so is to

install the database session handler Active4D provides. For information on how to install

it, see “Installing the Predefined Session Handler” on page 35.

A session handler is either a group of 4D methods with a common name prefix, or an

Active4D library. Session handlers contain the following methods:

3 nextId: Returns the next internal id for new sessions.

3 read: Returns session data from persistent storage given an id and expire time.

3 write: Writes session data to persistent storage.

3 delete: Deletes persistent storage for a session given an id.

3 purge: Deletes all sessions in persistent storage which expired before a given time.

Of these methods, nextId, read, and write are mandatory. If one or more of them are not

defined, the session handler is considered invalid and session support is turned off. The

delete and purge methods are optional in case you wish to implement your own

garbage collection mechanism.
348 Chapter 11 Command Reference

Sessions Active4D v6.3
For more information on session handler methods, see “SessionHandler” on page 594.

A custom session handler is activated by setting the “session handler” configuration

option. To use 4D methods for the session handler methods, specify the base name of

the 4D methods in the “session handler” configuration option. For example, if you

specify “sessionHandler” (without the quotes), Active4D will check for the following

methods:

sessionHandlerNextId

sessionHandlerRead

sessionHandlerWrite

sessionHandlerDelete

sessionHandlerPurge

To use an Active4D library as the session handler, specify the library name (without

extension) in the “session handler” configuration option, prefixed with “*”. For example, if

you specify “*sessionHandler” (without the quotes), Active4D will attempt to load the

“sessionHandler” library and then check the library for the following methods:

nextId

read

write

delete

purge

Active4D does not check the session handler methods until all of your configuration

options have been read. This ensures in particular that the “lib dirs” option is active when

searching for a session handler library, which enables you to put it in one of the “lib dirs”

directories.

Note: For either type of session handler, case is ignored both in the configuration

option and in the method names.
Chapter 11 Command Reference 349

Active4D v6.3 Sessions
Discussion

This command returns an iterator to the first item in the current session.

For more information on iterators, see “Iterators” on page 214.

Discussion

This command serializes the data in the current session. If ioBlob is passed, the serialized

data is appended to ioBlob and nothing is returned. If ioBlob is not passed, the serialized

data is returned as a new BLOB. In either case, you can store the BLOB somewhere for

later restoral via blob to session.

For an example of how to serialize and deserialize a session with embedded collections,

see “collection to blob” on page 156.

session
version 2

modified v6.0

session Longint

Parameter Type Description

Result Longint  Iterator reference

Note: If used by itself without referencing an item, this command will create a
session if one does not exist.

session to blob
version 3.0

modified v5.0

session to blob{(ioBlob)} BLOB | <none>

Parameter Type Description

ioBlob BLOB  BLOB to append data to

Result BLOB  Serialized session data
350 Chapter 11 Command Reference

Sessions Active4D v6.3
Discussion

This command sets the current session from the serialized collection data contained in

inBLOB. If ioOffset is passed, the serialized data must begin at that byte offset within

inBLOB. After the session is successfully deserialized, ioOffset will point to the first byte

beyond the serialized data.

If inBLOB was not created with session to blob, an error will be generated and execution

will be aborted.

Note that this command will run the On Session End event handler on the old session,

but the On Session Start event handler will not be run for the restored session, since

you don’t want to initialize it. Depending on what you do in On Session Start, you may

have to factor out some code into a separate method and then call that method both

from On Session Start and after calling blob to session.

For an example of how to serialize and deserialize a session with embedded collections,

see “collection to blob” on page 156.

Discussion

This command searches the current session for the item with the key inKey.

If the item is found and inIndex is not specified, the item’s value is returned. If the item

value is an array, an empty string is returned.

If the item is found and an index is specified, the given array element is returned. If the

index is out of range, an error is generated and execution is aborted.

blob to session
version 3.0

modified v5.0

blob to session(inBLOB {; ioOffset})

Parameter Type Description

inBLOB BLOB  BLOB with serialized collection data

ioOffset Number  Offset within BLOB to get data

get session version 2

get session(inKey {; inIndex}) <any>

Parameter Type Description

inKey Text  Key of session item to retrieve

inIndex Number  Array element to retrieve

Result <any>  Value of session item or ""
Chapter 11 Command Reference 351

Active4D v6.3 Sessions
If the item is not found, an empty string is returned.

Discussion

This command searches the current session for the item with the key inKey.

If outArray is not an array, an error is generated and execution is aborted.

If the item is found and its value is an array, outArray receives a copy. If outArray has not

yet been defined, it is created with the same type as the source array.

If the item is found and its value is not an array, an error is generated and execution is

aborted.

If the item is not found, outArray is resized to zero. If outArray has not yet been defined, it

is created as a text array.

Discussion

This command searches the current session for the item with the key inKey.

If the item is found and its value is an array, the size of the array is returned.

Note: This command has been superceded by the simpler syntax:

 session{inKey} or session{inKey}{inIndex}

get session array version 2

get session array(inKey; outArray)

Parameter Type Description

inKey Text  Key of session item to retrieve

outArray Array  Receives the array

Note: Because you can reference arrays directly with the syntax session{"key"}, you

may apply any array commands directly to the array within the session. Thus there is

no longer any need for this command. It is kept only for backward compatibility.

get session array size version 2

get session array size(inKey) Longint

Parameter Type Description

inKey Text  Key of session item to check

Result Longint  Size of array
352 Chapter 11 Command Reference

Sessions Active4D v6.3
If the item is found and its value is not an array, an error is generated and execution is

aborted.

If the item is not found, zero is returned.

Discussion

This command searches the current session for the item with the key inKey.

If the item is found, an iterator reference for the item is returned.

If the item is not found, an empty iterator is returned. For information on empty iterators,

see “Iterating Over a Collection” on page 102.

Discussion

This command fills outKeys with all of the keys in the session. If outKeys has not yet been

defined, it is created as a string array.

If outKeys is defined but is not a string or text array, an error is generated an execution is

aborted.

Note: This command has been superceded by the simpler syntax:

 size of array(session{inKey})

get session item version 2

get session item(inKey) Longint

Parameter Type Description

inKey Text  Key of session item to retrieve

Result Longint  Iterator for session

get session keys version 2

get session keys(outKeys)

Parameter Type Description

outKeys String/Text Array  Receives the session keys
Chapter 11 Command Reference 353

Active4D v6.3 Sessions
Discussion

This command searches the current session for the item with the key inKey.

If the item is found and its value is not an array, you may pass more than one key/value

pair to set multiple items at once. If the item is found and its value is an array, you may

pass an index to set an element of the array.

If the item is found and an index is not specified, the item’s value is replaced with inValue.

If the item is found, its value is an array, and an index is specified, the given array element

is set. If the index is out of range or the type of inValue is not assignment-compatible

with the array, an error is generated and execution is aborted.

If the item is not found and an index is not specified, a new item is added to the session

with the given keys and values.

If the item is not found and an index is specified, an error is generated and execution is

aborted.

Here is an example of set session using multiple items:

set session version 2

set session(inKey; inValue {; inKeyN; inValueN | inIndex})

Parameter Type Description

inKey Text  Key of session item to store

inValue <any>  Value to set for the given item

inIndex Longint  Index of array element to set

Note: This command has been superceded by the simpler syntax:

 session{inKey} := inValue or session{inKey}{inIndex} := inValue

set session("name"; "Aparajita"; "age"; 40)
// session now contains two items
354 Chapter 11 Command Reference

Sessions Active4D v6.3
Discussion

This command searches the current session for the item with the key inKey.

If inArray is not an array, an error is generated and execution is aborted.

If the item is found, its value is replaced with inArray.

If the item is not found, a new item is added to the session with the given key and array.

Discussion

This command searches the current session for the item with the key inKey. If * is passed,

inKey may contain 4D wildcard characters and they will be honored in the search.

If the item is found, True is returned, otherwise False.

set session array version 2

set session array(inKey; inArray)

Parameter Type Description

inKey Text  Key of session item to store

inArray Array  Array to set for the given item

Note: You may directly declare an array within a session using the syntax:

array <type>(session{"key"})

However, before using this syntax you must make sure to either:

3 Assign a value to a session item

3 Use the session command by itself

3 Use one of the set session commands

session has version 2

session has(inKey {; *}) Boolean

Parameter Type Description

inKey Text  Key of session item to test

* *  Perform wildcard search

Result Boolean  True if key is in session
Chapter 11 Command Reference 355

Active4D v6.3 Sessions
Because a session value can be of any type, it is not sufficient to use session{item} and

check for an empty string being returned. You should always use this command to test

for the existence of a session item, as shown here:

Discussion

This command returns the number of items in the current session.

Discussion

This command searches the current session for the item with the key inKey. To delete

more than one item, you may use a wildcard in the key. All items that match will be

removed from the session.

if (session{"test"} # "")
 // The test above would break if the item "test" existed
 // and was a number
end if

// The correct way
if (session has("test"))
 $test := session{"test"}
else
 session{"test"} := "this is a test"
end if

count session items version 2

count session items Longint

Parameter Type Description

Result Longint  Number of items in session

delete session item version 2

delete session item(inKey)

Parameter Type Description

inKey Text  Key of session item to delete
356 Chapter 11 Command Reference

Sessions Active4D v6.3
Discussion

This command marks the current session to be expired when the current script finishes

executing. After this command is executed, any changes made to the session are

effectively lost.

An abandoned session is not removed from memory and the On Session End handler is

not run until the next session purge cycle.

Discussion

This command returns the 16-character encrypted public session ID, not the internal

session ID.

Discussion

Active4D never directly uses the internal session ID. This command is here primarily

because the Active4D Session Monitor (see “The Session Monitor” on page 604) displays

internal session IDs. By using this command you can identify which session is active for a

given browser and then view it in the Session Monitor.

abandon session version 2

abandon session

session id version 2

session id Text

Parameter Type Description

Result Text  Encrypted public session ID

session internal id version 2

session internal id Longint

Parameter Type Description

Result Longint  Internal session ID
Chapter 11 Command Reference 357

Active4D v6.3 Sessions
Discussion

This command returns the name of the session ID local variable set by the “session var

name” option in Active4D.ini.

Discussion

This command is a convenience routine that returns the equivalent of:

If you are using cookie-based sessions, you would ordinarily have no use for this

command. But if you are not using cookie-based sessions, it is your responsibility to pass

the session ID in every form and every link.

This command makes it easy to generate the correct query string parameter when

building your links.

session local version 2

session local Text

Parameter Type Description

Result Text  Name of the session local variable

session query version 2

session query Text

Parameter Type Description

Result Text  String suitable for using in a query

string

session local + "=" + session id
358 Chapter 11 Command Reference

Sessions Active4D v6.3
Discussion

This command is a convenience routine that performs the equivalent of:

If you are using cookie-based sessions, you would ordinarily have no use for this

command. But if you are not using cookie-based sessions, it is your responsibility to pass

the session ID in every form and every link.

This command makes it easy to generate the correct hidden field within a form.

Discussion

This command sets the timeout of the current session in minutes. You can pass a fraction

to set the timeout to less than one minute. For example, a value of 0.5 means 30 seconds.

hide session field version 2

hide session field

write("<input type="hidden" name=\"%1%\" id=\"%1%\"
 value=\"%2%\" />" % (session local; session id))

Note: Make sure this command is called inside a form, otherwise it will have no

effect.

set session timeout version 2

set session timeout(inMinutes)

Parameter Type Description

inMinutes Real  Maximum time to live between

requests
Chapter 11 Command Reference 359

Active4D v6.3 Sessions
Discussion

This command returns the timeout of the current session in minutes.

Discussion

This command retrieves information about all current sessions. You can use this

information to create an interactive web-based monitor of all current sessions.

The arrays need not have been declared before calling this command, as they will be

created on the fly with the specified type. If the array does exist, its type will be changed

to the specified type.

Sessions which have expired but have not yet been purged will be returned with a

remaining time of zero.

get session timeout version 2

get session timeout Real

Parameter Type Description

Result Real  Maximum time to live between

requests

get session stats version 3.0

get session stats(outIDs; outTimeouts; outRemainTimes; outSizes)

Parameter Type Description

outIDs Longint Array  Receives internal session IDs

outTimeouts Real Array  Receives session timeouts in minutes

outRemainTimes Longint Array  Receives seconds remaining till

sessions timeout

outSizes Longint Array  Receives the memory used by the

sessions in bytes

Note: This command is used by the a4d.debug library method dump session stats.

For more on this method, see “dump session stats” on page 444.
360 Chapter 11 Command Reference

Strings Active4D v6.3
Strings

Many, many new and incredibly useful string utilities have been added in Active4D.

Learn them and you will save enormous amounts of time. Many of the most important

additions to string handling are not in the form of commands but in the form of

enhancements to the language. These are covered in the “Interpreter” chapter .

URL Encoding/Decoding

Internet standards dictate that URLs passed to web servers contain only a certain subset

of the US-ASCII character set. All other characters are to be encoded in the form %NN,

where NN is the hexidecimal value of the character in the US-ASCII character set.

Active4D automatically decodes the standard HTTP request elements such as header

names, form variables, query string parameters, etc., and converts them from UTF-8 to

Unicode. However, there are some request elements, such as cookie values, that are

considered opaque and are not decoded.

Active4D provides a set of commands that facilitate the encoding and decoding of such

opaque data:

url decode

url decode path

url decode query

url encode

url encode path

url encode query

The “query” commands differ from the “path” commands in that:

3 The “path” commands pass through more characters unencoded (such as ‘/’) and

convert spaces to and from %20.

3 The “query” commands encode everything but -_.~!*'() and convert spaces to and

from ‘+’.

You should use the “path” commands on the path portion of a URL, and the “query”

commands on the query string portion of a URL.

When encoding, Unicode text is converted to UTF-8 and then encoded.

String Commands and Unicode

Internally Unicode text is stored using 16-bit (2-byte) code units. A single Unicode code

point (what we would usually call a character) may require two code units (four bytes).

However, almost all modern languages are in the Unicode Basic Multilingual Plane (or

BMP), which can be represented by a single 16-bit code unit. When referring to strings in

Active4D (and in 4D v11+), all indexes, lengths, etc. are in terms of 16-bit code units.

Since any language you are likely to use will be in 16-bit code units, you should not have

to worry about a character index falling in the middle of a 32-bit code point.
Chapter 11 Command Reference 361

Active4D v6.3 Strings
If the preceding paragraph made no sense to you, don’t worry. It is unlikely you will ever

have to understand what it means.
362 Chapter 11 Command Reference

Strings Active4D v6.3
Discussion

This operator takes a format string and applies one or more arguments to it. The format

string can be any mixture of literal text and formatting directives which indicate the

format and type of the argument that it applies to.

Note that parameter numbers are one-based with the % operator.

The full syntax of the format string is beyond the scope of this document. You can read

its documentation here:

http://www.boost.org/libs/format/doc/format.html#syntax

Example

There are many, many online examples of how to use this type of formatting. Just enter

“printf examples” or “printf tutorial” into your favorite search engine.

% (formatting operator)
version 4.0

modified v5

<format> % (arg1 {; ... argN}) Text

Parameter Type Description

format Text  Format string

arg1...N <any>  Format arguments

Operator result Text  Formatted text

Note: A BLOB argument is treated as raw text stored as UTF8 Text without length.

// $cart is a RowSet
$i := 1
$format := "%1%. %2% $%3$4.2f"

while ($cart->next)
 $item := $cart->getRow
 writebr($format % ($i++; $item{"desc"}; $item{"price"}))
end while

// output
1. Acme Jet-pack $123.45
2. Spacely sprocket $27.95
3. Cogswell cog $7.99

Note: In general the %% operator should be preferred over % because it works

directly with Unicode, whereas the % operator has to convert all arguments to UTF-8,

perform the formatting, then convert the result back to Unicode.
Chapter 11 Command Reference 363

Active4D v6.3 Strings
Discussion

This operator takes a format string and applies one or more arguments to it. The format

string can be any mixture of literal text and formatting directives which indicate the

format and type of the argument that it applies to.

Active4D uses Internet Components for Unicode (ICU) to do formatting. There are many

options available; ICU formatting is extremely powerful. The full syntax of the format

string is beyond the scope of this document. To find out more, read the “Detailed

Description” section of this page:

http://icu-project.org/apiref/icu4c/classMessageFormat.html

Active4D supports longints, doubles, strings, times, booleans, dates and collections as

format values.

Booleans are converted to the number 1 or 0, which is useful with choice formats.

Using a collection as a format value allows you to refer to a collection value by name in

the format string, where the name is one of the collection key. You may freely mix

positional format values (non-collections) and named format values (collections) in the

format value list. See the example below for an idea of how this works.

Format placeholders without any type specifier (such as “{0}” or “{name”}) convert their

values by effectively using the String command. Thus the formatting will follow 4D’s

default formatting, which is locale aware. Format placeholders with a type specifier (such

as “{0,number}” or “{birthdate,date,long}”) are converted using the default formatting of

the ICU locale, which is set to the system locale. Note that ICU’s locale formatting may

not match 4D ‘s formatting exactly.

With the %% operator, unlike with the % operator, parameter numbers are zero-based.

The format string command is the equivalent of the %% operator in command form.

%% (formatting operator)
v5

modified v6.0r10

<format> %% (arg0 {; ... argN}) Text

Parameter Type Description

format Text  Format string

arg0...N <any>  Format arguments

Operator result Text  Formatted text

Note: A BLOB argument is treated as raw text stored as UTF8 Text without length.

Note: In general the %% operator should be preferred over % because it works

directly with Unicode, whereas the % operator has to convert all arguments to UTF-8,

perform the formatting, then convert the result back to Unicode.
364 Chapter 11 Command Reference

Strings Active4D v6.3
Example

Discussion

This command capitalizes the first letter of each word it finds in inText. Word boundaries

are defined by punctuation, control characters and whitespace, excluding single quotes

(they are treated as apostrophes) and underscores.

If * is not passed in, letters after the first letter are lowercased. If * is passed in, they are

skipped. This allows you to maintain capitalization of words like “ID”.

// ¤ is the ICU format character for the localized currency symbol
$format := "{0}. {desc} {price, number, ¤###0.00}{2}"
$i := 1

// $cart is a RowSet with “desc” and “price” items.
// getRow() returns a collection with the current row’s values.
$row := $cart->getRow

while ($cart->next)
 $special := choose($i = 2; " Special!"; "")
 writebr($format %% ($i++; $row; $special))
 // note that $special is used in the format as argument 2
end while

// output
1. Acme Jet-pack $123.45
2. Spacely sprocket $27.95 Special!
3. Cogswell cog $7.99

capitalize version 3.0

capitalize(inText {; *}) Text

Parameter Type Description

inText Text  Text to capitalize

* *  Affect first letter only

Result Text  Capitalized text

write(capitalize("THIS IS ALL CAPS"))
// output is "This Is All Caps"

write(capitalize("name, ID"; *))
// output is "Name, ID"
Chapter 11 Command Reference 365

Active4D v6.3 Strings
Discussion

Because some browsers (notably Navigator 4.x) do not properly draw cells if they have

no contents, it is best to fill empty cells with non-breaking spaces. You can use the cell

command to quickly and easily take care of this without having to check for empty

contents yourself.

This command attempts to convert inValue to text according to the rules used by the

String command. If inValue can successfully be converted to text, the length of the

resulting text is checked.

If the length is zero, the command returns the HTML non-breaking space for the current

output charset, suitable for placing in the cell of an HTML table.

cell version 3.0

cell(inValue) Text

Parameter Type Description

inValue <any>  Value to convert to text

Result Text  Converted value or “ ”
366 Chapter 11 Command Reference

Strings Active4D v6.3
If the length is non-zero, the converted text is returned.

Example

Discussion

This command performs a bitwise comparison of the bytes in two strings. If inSource is

bitwise greater than inCompare, a positive number is returned. If inSource and inCompare

are bitwise equal, zero is returned. If inSource is bitwise less than inCompare, a negative

number is returned.

<tr>
 <td><% =cell([People]Fax) %></td>
</tr>

Note: This command is not necessary in modern browsers. The same effect can be

achieved at a global level by putting the following style declaration in your main style

sheet:

 table: { border-collapse: collapse }

 td, th: { empty-cells: show }

compare strings version 2

compare strings(inSource; inCompare) Longint

Parameter Type Description

inSource Text  Text to compare with

inCompare Text  Text to compare against

Result Longint  Relative result of comparison
Chapter 11 Command Reference 367

Active4D v6.3 Strings
Discussion

This command concatenates two or more strings together, placing inDelimiter between

them. If a string is empty, no delimiter is inserted.

This is basically a convenience routine that makes it easy to build full names, addresses,

etc. without inserting extra spaces.

For example:

Discussion

The Active4D version of the Delete string command differs from 4D’s version in that you

can pass a negative number for inFirstChar and inNumChars, which is converted to the

index of the Nth Unicode code unit from the end of inString.

When a negative number is passed for inNumChars, note that it signifies an index relative

to the end of the string, not a number of characters relative to inFirstChar.

concat version 2

concat(inDelimiter; inString1; inString2 {; ...inStringN}) Text

Parameter Type Description

inDelimiter Text  Text to put between strings

inString1 Text  First string

inString2 Text  Second string

Result Text  Concatenation of all strings

writebr("[" + concat(" "; "John"; "J."; "Smith") + "]")
writebr("[" + concat(" "; "John"; ""; "Smith") + "]")

// output
[John J. Smith]
[John Smith]

Delete string
version 1

modified version 4.0

Delete string(inString; inFirstChar {; inNumChars}) Text

Parameter Type Description

inString Text  String from which to delete

inFirstChar Number  Position of first character to delete

inNumChars Number  Number of characters to delete

Result Text  Remaining string
368 Chapter 11 Command Reference

Strings Active4D v6.3
Examples

Discussion

This command is a convenience for the common case when a value (usually a string)

needs to be enclosed in some characters, such as double quotes.

The command first attempts to convert inValue to text according to the default

formatting for its type. If inValue is not of a type that can be converted to text , an error is

generated and execution is aborted.

If inEnclosures is not specified, the opening and closing enclosure characters default to

double quotes (Char(34)).

If inEnclosures is specified and is a single character, the opening enclosure character is set

to that character. The closing enclosure character is set according to the following table:

If inEnclosures is specified and is more than one character, the opening enclosure

character is set to the first character and the closing enclosure character is set to the

second character.

Some examples:

// Using negative number for inFirstChar
$sub := Delete string("foobar.a4d"; -4; MAXTEXTLEN)
// $sub = "foobar"

// Using negative number for inNumChars
// -2 means to delete through the 2nd to last char
$sub := Delete string("12345"; 2; -2)
// $sub = "15"

enclose version 2

enclose(inValue {; inEnclosures}) Text

Parameter Type Description

inValue <any>  Value to enclose

inEnclosures Text  Characters to use for enclosure

Result Text  Enclosed text

Opening enclosure Closing enclosure

()

[]

{ }

< >

Any other character opening enclosure
Chapter 11 Command Reference 369

Active4D v6.3 Strings
Discussion

This command searches inSource for the first character that does not match any of the

characters in inMatchChars and returns its position. If no match is found, zero is returned.

If * is not passed, the search is case and diacritical-insensitive (the backwards-compatible

default). However, unlike the Position command, composed characters like “ß” will not

be matched with non-composed equivalents like “ss”.

If * is passed, the comparison is a strict bitwise comparison, which means case and

diacriticals are significant.

Command Output

enclose("test") "test"

enclose(13) "13"

enclose("test"; "(") (test)

enclose("test"; "*") *test*

enclose("test"; "&;") &test;

first not of
version 2

modified v5

first not of(inSource; inMatchChars {; *}) Longint

Parameter Type Description

inSource Text  Text to search

inMatchChars Text  Characters to search for

* *  Perform a bitwise search

Result Longint  Position of first matching character
370 Chapter 11 Command Reference

Strings Active4D v6.3
Discussion

This command searches inSource for the first character that matches any of the

characters in inMatchChars and returns its position. If no match is found, zero is returned.

If * is not passed, the search is case and diacritical-insensitive (the backwards-compatible

default). However, unlike the Position command, composed characters like “ß” will not

be matched with non-composed equivalents like “ss”.

If * is passed, the comparison is a strict bitwise comparison, which means case and

diacriticals are significant.

Discussion

This command is the equivalent of:

For more information, see “%% (formatting operator)” on page 364.

first of
version 2

modified v5

first of(inSource; inMatchChars {; *}) Longint

Parameter Type Description

inSource Text  Text to search

inMatchChars Text  Characters to search for

* *  Perform a bitwise search

Result Longint  Position of first matching character

format string v5

format string(inFormat; inArg0 {; ... argN}) Text

Parameter Type Description

inFormat Text  Format string

inArg0..inArgN <any>  Format arguments

Result Text  Formatted text

inFormat %% (inArg0 {; inArg1 {; inArgN}})
Chapter 11 Command Reference 371

Active4D v6.3 Strings
Discussion

This command does a strict case- and diacritical-sensitive comparison of the two strings

and returns True if they are identical. This is very useful when comparing passwords.

Discussion

The Active4D version of the Insert string command differs from 4D’s version in that you

can pass a negative number for inWhere, which is converted to the index of the Nth

Unicode code unit from the end of inSource.

For example, to insert 4 characters from the end of a string, you could use:

identical strings version 2

identical strings(inString1; inString2) Boolean

Parameter Type Description

inString1 Text  Text to compare

inString2 Text  Text to compare

Result Boolean  True if completely identical

Insert string v5 (enhanced 4D)

Insert string(inSource; inWhat; inWhere) Text

Parameter Type Description

inSource Text  String in which to insert

inWhat Text  String to insert

inWhere Number  Position at which to insert

Result Text  New string

$s := insert string("foobar.a4d"; ".0"; -4)
// $s = "foobar.0.a4d"
372 Chapter 11 Command Reference

Strings Active4D v6.3
Discussion

This command interpolates inString according the rules for string interpolation as

documented in “String Interpolation” on page 84.

Ordinarily you don’t need to use this command, because you can implicitly interpolate

strings by using string literals with single-quotes. However, if you are dynamically

building a string without string literals which you want to interpolate, you can use this

command to do so.

Discussion

This command searches inSource for the last character that does not match any of the

characters in inMatchChars and returns its position. If no match is found, zero is returned.

If * is not passed, the search is case and diacritical-insensitive (the backwards-compatible

default). However, unlike the Position command, composed characters like “ß” will not

be matched with non-composed equivalents like “ss”.

If * is passed, the comparison is a strict bitwise comparison, which means case and

diacriticals are significant.

interpolate string version 4.0

interpolate string(inString) Text

Parameter Type Description

inString Text  Text to interpolate

Result Text  Interpolated text

last not of
version 2

modified v5

last not of(inSource; inMatchChars {; *}) Longint

Parameter Type Description

inSource Text  Text to search

inMatchChars Text  Characters to search for

* *  Perform a bitwise search

Result Longint  Position of first matching character
Chapter 11 Command Reference 373

Active4D v6.3 Strings
Discussion

This command searches inSource for the last character that matches any of the

characters in inMatchChars and returns its position. If no match is found, zero is returned.

If * is not passed, the search is case and diacritical-insensitive (the backwards-compatible

default). However, unlike the Position command, composed characters like “ß” will not

be matched with non-composed equivalents like “ss”.

If * is passed, the comparison is a strict bitwise comparison, which means case and

diacriticals are significant.

Discussion

This command trims control characters and whitespace from the beginning of inString

and returns the result.

last of
version 2

modified v5

last of(inSource; inMatchChars {; *}) Longint

Parameter Type Description

inSource Text  Text to search

inMatchChars Text  Characters to search for

* *  Perform a bitwise search

Result Longint  Position of first matching character

left trim version 2

left trim(inString) Text

Parameter Type Description

inString Text  Text to trim

Result Text  Trimmed text
374 Chapter 11 Command Reference

Strings Active4D v6.3
Discussion

This command encodes HTML special characters (like "&") to ISO HTML character entities

(like “&”), according to inMode and the current output charset.

If inMode is not passed in, the conversion mode defaults to A4D Encoding HTML.

If inMode is an asterisk, the conversion mode is A4D Encoding All.

Otherwise you may pass a set of bit flags as you would to the set output encoding

command. For more information on output encoding, see “set output encoding” on

page 305.

Discussion

This command has been deprecated in favor of the renamed command html encode. It

has been kept for backwards compatibility, but will be removed in a future version.

html encode v5

html encode(inString {; inMode}) Text

Parameter Type Description

inString Text  Text to convert

inMode Longint  How to convert

Result Text  Converted text

Note: html encode will only convert non-ASCII characters if the output charset is

ISO-8859-1 or ISO-8859-15.

mac to html
version 1

deprecated v5

mac to html(inString {; inMode}) Text

Parameter Type Description

inString Text  Text to convert

inMode Longint  How to convert

Result Text  Converted text
Chapter 11 Command Reference 375

Active4D v6.3 Strings
Discussion

As of v5, this command is deprecated and does nothing, since all text within Active4D is

Unicode. It has been kept for backwards compatibility, but will be removed in a future

version.

Discussion

This little beauty is in actuality a powerful little string processor with an embedded

language.

At the simplest level, param text can be used to do multiple string replacements in one

shot. All parameter placeholders indicated by “^N” in the source text are replaced with

the corresponding replacement parameters, where N is the relative number of the

replacement parameter. Replacement parameters are automatically converted to text.

For example:

mac to utf8
version 4.5

deprecated v5

mac to utf8(inText) Text

Parameter Type Description

inString Text  Text

Result Text  Original text

param text version 2

param text({*; inDelimiters} inSource; inReplaceParam {; ...inReplaceParamN})Text

Parameter Type Description

* *  Indicates delimiters passed

inDelimiters Text  Delimiters for parsing inSource

inSource Text  Text to parse

inReplaceParam <any>  Replacement parameter

Result Text  Transmogrified text

// Current record of [Contacts] has Firstname="Buffalo",
// Lastname="Bill"

write(param text("Hello, ^1 ^2! How are you?"; \\
 [Contacts]Firstname; \\
 [Contacts]Lastname))

// output
Hello Buffalo Bill! How are you?
376 Chapter 11 Command Reference

Strings Active4D v6.3
In addition to simple parameter replacement, you can specify alternate subsections of

the source string to be used depending on the value of the replacement parameters.

Alternate subsections are marked in the form:

<delim>N<delim>T1<delim>T2<delim>

where <delim> is a delimiter character, N is a parameter number (one-based), T1 is the

first choice, and T2 is the second choice. The delimiter characters are taken from the first

two characters of inDelimiters. The default delimiters string is “#|”, which is used if

inDelimiters is less than two characters.

Three passes are made over the source string.

3 First the delimiter inDelimiters[[1]] is used, and if the value of parameter N evaluates to

zero, T1 is used, else T2 is used. A parameter is considered zero if it contains only

numeric characters and converts to the number zero, or if its length = 0.

3 The second pass uses the delimiter inDelimiters[[2]], and if the value of parameter N

evaluates to 1, T1 is used, else T2 is used.

3 Finally, any occurrence of ^N, where N is a replacement parameter number, is replaced

with the corresponding replacement parameter.

Subsections with the same delimiter may not be nested.

The point of all this is to allow you to encode linguistic rules in your strings, rather than in

your code. For example, here is a common problem:

Multiply this by a hundred messages, and you can see why no one bothers to be

grammatically correct with such messages.

Using param text, you can easily handle such a situation like this:

Okay, now we need to decode the source string.

$recs := records in selection([contact])

case of
 :($recs = 0)
 $msg := "There are no contacts available."
 :($recs = 1)
 $msg := "There is 1 contact available."
 else
 $msg:= "There are " + string($recs) + "contacts available"
end case

$recs := records in selection([contacts])
$msg := "There |1|is|are| #1#no#^1# ^2|1||s| available."
$msg := param text($msg; "#|"; $recs; "contact")
// This code does the same as the case statement above.
Chapter 11 Command Reference 377

Active4D v6.3 Strings
It takes some getting used to, but once you master this mini-language you can eliminate

a lot of code by programming your strings!

Discussion

Active4D extends this 4D command by allowing you to do a reverse search.

If inStart is not passed, it defaults to 1. If inStart is passed and is positive, the search starts

at inSource[[inStart]]. If inStart is passed and is negative, the search starts inStart

Element Description

There literal text

| start a singular/non-singular selector

1 use replacement parameter #1, $recs, as the selector

|is|are| insert “is” if $recs evaluates to 1, “are” otherwise

start a zero/non-zero selector

1 use replacement parameter #1, $recs, as the selector

#no#^1# insert “no” if $recs evaluates to zero, replacement parameter #1

($recs) if not

^2 insert replacement parameter #2, “contact”

| start a singular/non-singular selector

1 use replacement parameter #1, $recs, as the selector

||s| do nothing if $recs evaluates to 1, insert “s” otherwise

Note: One useful technique is to use a boolean flag as a selector between alternate

text. Simply pass a replacement parameter of String(Num($myBool)) and use a

zero/non-zero selector.

Position
version 2 (enhanced 4D)

modified v5

Position(inFind; inSource {; inStart {; { *; } { outLengthFound {; * }}}}) Longint

Parameter Type Description

inFind Text  Text to search for

inSource Text  Text in which to search

inStart Longint  Starting position for search

* *  Search in reverse

outLengthFound Longint  Length of matched text

* *  Use bitwise comparison

Result Longint  Position of first match
378 Chapter 11 Command Reference

Strings Active4D v6.3
characters from the end of inSource, so inStart of -1 would mean to start searching from

the last character of inSource.

If a reverse search is performed, inStart defaults to the end of inSource if it is not passed.

Reverse searches begin at inSource[[inStart]] and proceed towards inSource[[1]]. Note

that when searching in reverse, the start position marks the end of the portion of

inSource that is searched. In other words, it is as if you are looking for the last occurrence

of inFind within Substring(inSource; 1; inStart).

outLengthFound and the final * have the same function as the last two parameters of the

Position command in 4D.

Example

Discussion

This command trims control characters and whitespace from the end of inString and

returns the result.

$source := "test123test"
$pos := position("test"; $source)
// forward search, $pos = 1

$pos := position("test"; $source; *)
// reverse search from end, $pos = 8

$pos := position("test"; $source; 2)
// forward search starting at 2nd char, $pos = 8

$pos := position("test"; $source; 7; *)
// reverse search starting at 7th char, $pos = 1

$pos := position("test"; $source; -2)
// forward search starting at 2nd char from end, $pos = 0

$pos := position("test"; $source; -1; *)
// reverse search starting at 1st char from end, $pos = 8

$pos := position("test"; $source; -5; *)
// reverse search starting at 5th char from end, $pos = 1

right trim version 2

right trim(inString) Text

Parameter Type Description

inString Text  Text to trim

Result Text  Trimmed text
Chapter 11 Command Reference 379

Active4D v6.3 Strings
Discussion

This command slices a string into two parts that are separated by delimiter. If inDelimiter

is found in inString, the text before the delimiter is returned. If outRemainder is passed, it

is set to the text after the delimiter.

If * is passed, delimiter matching is bitwise (case and diacritical sensitive). Otherwise the

default (backward-compatible) behavior is to ignore case and diacriticals, and composed

characters will be matched. For example, if the delimiter is “ae”, the composed character

“æ” will be matched.

If inDelimiter is not found, inString is returned whole and outRemainder is set to an empty

string if it is passed.

slice string
version 4.0

modified v5

slice string(inString; inDelimiter {; outRemainder {; *}}) Text

Parameter Type Description

inString Text  Text to slice

inDelimiter Text  Where to slice

outRemainder Text  Text after delimiter

* *  Bitwise matching

Result Text  Text before delimiter
380 Chapter 11 Command Reference

Strings Active4D v6.3
Discussion

This command splits inSource into chunks and puts the chunks into outArray, according

to the string inPattern.

If inPatternIsChars is True (the default if not passed), the command splits the source string

at any of the characters in inPattern. Pattern characters at the beginning and end of the

source are stripped out, and empty elements are ignored.

If inPatternIsChars is False, the command splits the source string at any occurrence of the

entire pattern. Empty elements anywhere in the source are maintained.

Case-sensitivity of pattern matching is set by inCaseSensitive. If not passed, matching is

case sensitive by default. If inPatternIsChars is False and inCaseSensitive is False, split

string will match composed characters. For example, if the pattern is “ae”, the composed

character “æ” will be matched.

inLimit limits the number of chunks that are created. Once the limit is reached, one more

chunk is created with the rest of the string, whether or not it contains the pattern.

split string
version 2

modified v5

split string(inSource; inPattern; outArray {inPatternIsChars
{; inCaseSensitive {; inLimit}}}) Longint

Parameter Type Description

inSource Text  Text to split

inPattern Text  Provides splitting boundaries

outArray String/Text Array  Receives chunks of inSource

inPatternIsChars Boolean  True if inPattern should be treated as

an array of characters to match

inCaseSensitive Boolean  How to match inPattern

inLimit Number  Total number of splits that may be

created

Result Longint  Number of splits made
Chapter 11 Command Reference 381

Active4D v6.3 Strings
This command is especially useful for splitting formatted text such as tab-delimited

strings.

Discussion

The Active4D version of the String command differs from 4D’s version in that:

3 If you pass a Boolean value with a format, it will be converted to 1 or 0, which allows

you to use formats like “Yes;;No”.

3 If a BLOB is passed in, it is assumed to be text. You can specify the text format within

the BLOB by passing the relevant constant (such as UTF8 Text without length) in the

inFormat parameter. If no format is passed, the text format is assumed to be UTF8 Text

without length.

$source := "This is a test"
split string($source; " "; $chunks)
// $chunks now contains 4 elements: "This", "is", "a", "test"

split string($source; " "; $chunks; true; true; 2)
// $chunks now contains 2 elements: "This", "is a test"

split string("1||3|"; "|"; $params)
// $params contains 2 elements: "1", "3"

split string("1||3|"; "|"; $params)
// $params contains 4 elements: "1", "", "3", ""

String
version 1 (enhanced 4D)

modified v5

String(inValue {; inFormat}) Text

Parameter Type Description

inValue <any>  Value to write to the response buffer

inFormat Text | Number  Format to use when converting to text

Result Text  Converted value
382 Chapter 11 Command Reference

Strings Active4D v6.3
Discussion

The Active4D version of the Substring command differs from 4D’s version in that you

can pass a negative number for inFirstChar and inNumChars, which is converted to the

index of the Nth Unicode code unit from the end of inString.

When a negative number is passed for inNumChars, note that it signifies an index relative

to the end of the string, not a number of characters relative to inFirstChar.

Examples

Discussion

This command trims control characters and whitespace from the beginning and end of

inString and returns the result.

Substring version 1 (enhanced 4D)

Subtring(inString; inFirstChar {; inNumChars}) Text

Parameter Type Description

inString Text  String from which to get substring

inFirstChar Number  Position of first character of substring

inNumChars Number  Size of substring

Result Text  Substring

// Using negative number for inFirstChar
$sub := substring("foobar.a4d"; -3)
// $sub = "a4d"

// Using negative number for inNumChars
// -2 means to extract through the 2nd to last char
$sub := substring("12345"; 2; -2)
// $sub = "234"

trim version 2

trim(inString) Text

Parameter Type Description

inString Text  Text to trim

Result Text  Trimmed text
Chapter 11 Command Reference 383

Active4D v6.3 Strings
Discussion

This command is a synonym for url decode query.

Discussion

This command decodes a URL-encoded string as a URL-encoded path. For more

information on URL encoding and decoding, see “URL Encoding/Decoding” on page 361.

Discussion

This command decodes a URL-encoded string as a URL-encoded query string. For more

information on URL encoding and decoding, see “URL Encoding/Decoding” on page 361.

url decode version 2

url decode(inString) Text

Parameter Type Description

inString Text  Text to decode

Result Text  Decoded text

url decode path version 2

url decode path(inString) Text

Parameter Type Description

inString Text  Text to decode

Result Text  Decoded text

url decode query version 2

url decode query(inString) Text

Parameter Type Description

inString Text  Text to decode

Result Text  Decoded text
384 Chapter 11 Command Reference

Strings Active4D v6.3
Discussion

This command is a synonym for url encode query.

Discussion

This command encodes inString into a URL-encoded path. For more information on URL

encoding and decoding, see “URL Encoding/Decoding” on page 361.

Discussion

This command encodes inString into a URL-encoded query parameter name or value. For

more information on URL encoding and decoding, see “URL Encoding/Decoding” on

page 361.

url encode version 2

url encode(inString) Text

Parameter Type Description

inString Text  Text to encode

Result Text  Encoded text

url encode path version 2

url encode path(inString) Text

Parameter Type Description

inString Text  Text to encode

Result Text  Encoded text

url encode query version 2

url encode query(inString) Text

Parameter Type Description

inString Text  Text to encode

Result Text  Encoded text
Chapter 11 Command Reference 385

Active4D v6.3 Strings
Discussion

This command is deprecated and does nothing, since all text is Unicode within Active4D.

It has been kept for backward compatibility, but will be removed in a future version.

utf8 to mac
version 4.5

deprecated v5

utf8 to mac(inString) Text

Parameter Type Description

inString Text  Text to convert

Result Text  Converted text
386 Chapter 11 Command Reference

System Documents Active4D v6.3
System Documents

Active4D implements the most important document commands from 4D. In addition, it

adds many new commands for manipulating files and directories and working with URL-

style paths.

Document Paths

As in 4D, a path passed to a document command may be full or partial, also known as

absolute and relative. In addition, the path may be native or URL-style.

If a path is native, it is considered a full path if it begins with a drive name and ends with

either a directory name (for commands that take a directory) or a filename (for

commands that take a filename). If the path is URL-style, it is considered a full path if it

begins with ‘/’.

If a path is native, it is considered a partial path if it does not begin with a drive name. If a

path is URL-style, it is considered a partial path if it does not begin with ‘/’.

A partial path is relative to the default directory (see “The Default Directory” on page 42).

The last element of a full or partial path, whether a directory or filename, may be an alias

(also known as a “shortcut” on Windows). Directories within a path may not be aliases.

Document Command Enhancements

There are several important enhancements to document commands that Active4D

implements:

3 For security reasons, all paths are checked to ensure they are either within the web

root directory or within one of the directories specified by the “safe doc dirs” option in

Active4D.ini. Aliases are resolved prior to checking.

If you want to use document commands on files outside of the root directory, you

must add the directory path to the “safe doc dirs” path list in Active4D.ini. For

information on Active4D.ini, see Chapter 3, “Configuration.”

3 You may pass a URL-style path (using ‘/’ as the directory separator) instead of a native

path. If no ‘/’ is in a path, it is assumed to be a native path.

3 To ensure proper functioning of your scripts, Active4D closes all documents that have

been opened with document commands when the script finishes executing. This

prevents the situation where a script error leaves a file open and thus prevents other

scripts from writing to the file.

Affected Commands

The document commands affected by the enhancements mentioned above are:

The file upload command copy upload is also affected by these enhancements. See

“copy upload” on page 196 for more information.
Chapter 11 Command Reference 387

Active4D v6.3 System Documents
Error Codes

All document-related commands set the Error variable to zero on success and an error

code on failure. OK is set for commands that perform an operation and do not return an

error code.

If a document command returns an error number -70001 or lower, it is a standard C

library error code and not a Macintosh error code. The actual C error code is:

So, for example, -70001 is 1, -70002 is 2, etc. C library error codes can be found here:

http://www.virtsync.com/c-error-codes-include-errno

Working With Large Files

Active4D’s document commands can work with files larger than 2GB. However, since text

and BLOBs are limited to 2GB in length, you cannot read or write more than 2GB at a

time.

Append document

COPY DOCUMENT

Create document

DELETE DOCUMENT

DELETE FOLDER

DOCUMENT LIST

FOLDER LIST

MOVE DOCUMENT

Open document

READ PICTURE FILE

Test path name

WRITE PICTURE FILE

abs(error) - 70000
388 Chapter 11 Command Reference

System Documents Active4D v6.3
Discussion

The Active4D version of this command differs from the 4D version in that:

3 Passing an empty string for inPath will do nothing other than set OK to zero.

3 inType is ignored. The filename extension must be part of inPath.

Discussion

The Active4D version of this command differs from the 4D version in that:

3 Passing an empty string for inPath will do nothing other than set OK to zero.

3 inType is ignored. The filename extension must be part of inPath.

Append document
(modified 4D) version 2

modified v5

Append document(inPath {; inType}) DocRef

Warning: Active4D maintains its own list of open documents, and the document

references returned by this command in Active4D are not interchangeable with the

document references returned by document commands within 4D methods.

Create document
(modified 4D) version 2

modified v5

Create document(inPath {; inType}) DocRef

Warning: Active4D maintains its own list of open documents, and the document

references returned by this command in Active4D are not interchangeable with the

document references returned by document commands within 4D methods.
Chapter 11 Command Reference 389

Active4D v6.3 System Documents
Discussion

This command returns the filename of the currently executing script. It is exactly

equivalent to filename of(current path).

Discussion

This command returns the path of the currently executing script in URL format. Unlike

requested url, if this command is executed within an include file, the path of the include

file is returned.

If executed within a library, the path to the library is returned, unless inWantLibraryPath is

passed and is False, in which case the path to the nearest script file in the source stack (if

any) is returned.

If executed within a text block, the path to the nearest script file in the source stack (if

any) is returned.

If the * is passed, the path returned is an absolute web root-relative path.

Example

Let us assume we are using the default web root, “web”, whose path is the following (as

returned by get root:

current file version 2

current file Text

Parameter Type Description

Result Text  Filename of currently executing script

current path
version 2

modified version 4.0

current path {({inWantLibraryPath}{*})} Text

Parameter Type Description

inWantLibraryPath Boolean  Return path to library

* *  Return web root-relative path

Result Text  Path of currently executing script

Note: If this command is executed within a library and inWantLibraryPath is not

passed or is passed and is True, the * option is not supported.

/HD/WebApps/MyApp/web/
390 Chapter 11 Command Reference

System Documents Active4D v6.3
If a script called “act_mailReminder.a4d” within the “login” directory within the web root

executes current path. The result will be:

If the same script executes current path(*), the result will be:

Discussion

This command returns a full path to the “default” directory. For information on the

default directory, see “The Default Directory” on page 42.

If the * is not passed, a native path is returned with a native directory separator at the

end. Passing * returns the path in URL format with ‘/’ at the end.

Discussion

If * is not passed, this command works exactly as its 4D counterpart does, in that only

empty directories may be deleted. If * is passed, this command recursively deletes the

directory and all of its contents.

/HD/WebApps/MyApp/web/login/act_mailReminder.a4d

/login/act_mailReminder.a4d

default directory version 2

default directory{(*)} Text

Parameter Type Description

* *  Use URL format for path

Result Text  Path to “default” directory

DELETE FOLDER version 2

DELETE FOLDER(inPath {; *})

Parameter Type Description

inPath Text  Path of folder to delete

* *  Recursively delete contents

Warning: Using the DELETE FOLDER command in recursive mode is of course

extremely dangerous. Be absolutely sure you know what you are deleting before

using the recursive mode of this command.
Chapter 11 Command Reference 391

Active4D v6.3 System Documents
Discussion

This command is the equivalent of:

In other words, it will return True if the entity described by inPath exists and is a directory.

Discussion

This command returns the directory portion of the given path with a trailing directory

separator, unless * is passed, in which case the trailing separator is suppressed.

If inPath contains a forward slash (‘/’), it is assumed to be a URL-style path.

Discussion

This command returns the native directory separator for the currently running platform,

which is “:” on Macintosh and “\” on Windows.

directory exists version 4.0

directory exists(inPath) Boolean

Parameter Type Description

inPath Text  URL or native path

Result Boolean  True if is an existing directory

test path name(inPath) = Is a directory

directory of version 2

directory of(inPath {; *}) Text

Parameter Type Description

inPath Text  URL or native path

* *  Suppress trailing separator

Result Text  Directory portion of given path

directory separator version 2

directory separator Text

Parameter Type Description

Result Text  Native directory separator
392 Chapter 11 Command Reference

System Documents Active4D v6.3
Discussion

This command returns the filename extension, including the dot, of the given path. If the

path ends in a directory, an empty string is returned.

Discussion

This command is the equivalent of:

In other words, it will return True if the entity described by inPath exists and is a file.

Discussion

This command returns the filename portion of the given path. If inPath contains a

forward slash (‘/’), it is assumed to be a URL-style path.

extension of version 2

extension of(inPath) Text

Parameter Type Description

inPath Text  URL or native path

Result Text  Filename extension of given path

file exists version 4.0

file exists(inPath) Boolean

Parameter Type Description

inPath Text  URL or native path

Result Boolean  True if is an existing file

test path name(inPath) = Is a document

filename of
version 2

modified v5

filename of(inPath {; *}) Text

Parameter Type Description

inPath Text  URL or native path

* *  Strip extension

Result Text  Filename portion of given path
Chapter 11 Command Reference 393

Active4D v6.3 System Documents
If * is passed, the returned filename is stripped of its extension.

Discussion

This command returns a full URL-style path to the web root directory, with a trailing ‘/’.

If you have defined virtual hosts in VirtualHosts.ini and inVirtualHost is not passed, get

root will return the mapped web root of the current virtual host.

If inVirtualHost is passed and such a named virtual host exists in the virtual host table, the

web root directory of that virtual host is returned. If no such named virtual host exists,

the current web root directory is returned.

This command is especially useful when building a path for use with the document

commands, as in:

Discussion

This command concatenates one or more path segments together intelligently. If any

path segment is an absolute path, all previous segments are thrown away, and joining

continues. The return value is the concatenation of the segments, with exactly one

directory separator inserted between segments.

If the optional * is not passed, the resulting path is in URL (Unix) format. If it is passed, the

resulting path is in native format.

get root
version 1

modified v5

get root({inVirtualHost}) Text

Parameter Type Description

inVirtualHost Text  Virtual host name

Result Text  Full path of web root

$path := join paths(get root; "templates/invoice.txt")
$docRef := open document($path)

join paths version 4.0

join paths({*; } inPathSegment1 {; …inPathSegmentN}) Text

Parameter Type Description

* * Force result to native path

inPathSegmentN Text  Path to convert

Result Text  Joined path
394 Chapter 11 Command Reference

System Documents Active4D v6.3
This command is designed to relieve of the burden of checking whether or not directory

path segments have a trailing directory separator, as in this example:

Discussion

The Active4D version of this command differs from the 4D version in that:

3 If the optional * parameter is passed, the move is forced, even if a document exists at

the destination path.

3 Folders may be renamed in addition to documents.

Discussion

This command converts a native path for URL-style path to a native path for the currently

running platform.

$docName := "2005-08-27.txt"
open document(join paths(get root; "news"; $docName))

// result of join paths:
/HD/Users/Homer/Documents/site/web/news/2005-08-27.txt

MOVE DOCUMENT
(modified 4D) version 2

modified v5

MOVE DOCUMENT(inSourePath; inDestPath {; *})

Parameter Type Description

inSourcePath Text  Path to existing document/folder

inDestPath Text  Destination path

* *  Force move

native to url path version 2

native to url path(inPath) Text

Parameter Type Description

inPath Text  Native path to convert

Result Text  Full path of web root
Chapter 11 Command Reference 395

Active4D v6.3 System Documents
Discussion

The Active4D version of this command differs from the 4D version in that:

3 Passing an empty string for inPath will do nothing other than set OK to zero.

3 inType is ignored. The filename extension must be part of inPath.

As of v5, the Open document command now conforms more closely to 4D’s behavior. In

particular, an exclusive write lock is acquired on files opened in read/write or write mode.

If no open mode is passed and a file is already open for writing, the file will be opened in

read-only mode.

As of v6.2r1, inType may be omitted as in 4D.

Discussion

This command differs from the 4D version in that it may only be used with documents,

thus the document reference is required.

Open document
(modified 4D) version 2

modified v6.3r1

Open document(inPath {; inType} {; inMode}) DocRef

Warning: Active4D maintains its own list of open documents, and the document

references returned by this command in Active4D are not interchangeable with the

document references returned by document commands within 4D methods.

RECEIVE PACKET (modified 4D) version 2

RECEIVE PACKET(inDocRef; inPacket; inStopChar | inNumChars)
396 Chapter 11 Command Reference

System Documents Active4D v6.3
Discussion

This command returns the path to the script that was requested in the current execution.

If * is not passed, the root-relative virtual path (including /4DCGI) is returned. If * is

passed, the full physical path to the requested script is returned in URL format.

Discussion

This command resolves relative paths, directory movement and aliases or shortcuts in

inPath and returns an absolute full path. The path does not actually have to exist to be

resolved.

If * is not passed, the returned path is in URL (Posix) format. If * is passed, the returned

path is in native 4D format (HFS on Mac OS X).

If an error occurs while resolving the path, Error will contain an appropriate error code.

requested url version 2

requested url{(*)} Text

Parameter Type Description

* *  Pass to return physical path

Result Text  Virtual or physical path

writebr(requested url) // virtual
writebr(requested url(*)) // physical

// output using 4D as network layer
/4DCGI/test.a4d
/Supreme/Users/aparajit/Development/Active4D/web/test.a4d

resolve path v5

resolve path(inPath {; *}) Text

Parameter Type Description

inPath Text  Path to resolve

* *  Return native path

Result Text  Absolute path
Chapter 11 Command Reference 397

Active4D v6.3 System Documents
Discussion

This command differs from the 4D version in that it may only be used with documents,

thus the document reference is required.

Discussion

Named constants have been provided for the inAnchor: Position from start, Position from

end, and Position from current.

Discussion

This command converts splits a path. outDirectory receives the directory portion of the

path and outFilename receives the filename portion of the path.

If inPath has no directory separators, outDirectory will be empty and outFilename will

contain inPath.

If inPath ends with a directory separator, outFilename will be empty.

If * is not passed and inPath has more than one path component, outDirectory will have a

trailing directory separator. If * is passed, the trailing directory separator in outDirectory is

suppressed.

SEND PACKET (modified 4D) version 2

SEND PACKET(inDocRef; inPacket)

SET DOCUMENT POSITION (modified 4D) version 2

SET DOCUMENT POSITION(inDocRef; inOffset {; inAnchor})

split path v5

split path(inPath; outDirectory; outFilename {; *}) Text

Parameter Type Description

inPath Text  Path to split

outDirectory Text  Directory portion of inPath

outFilename Text  Filename portion of inPath

* *  Suppress directory separator
398 Chapter 11 Command Reference

System Documents Active4D v6.3
Discussion

This command converts a URL-style path to a native path for the currently running

platform.

url to native path version 2

url to native path(inPath) Text

Parameter Type Description

inPath Text  URL-style path to convert

Result Text  Full path of web root
Chapter 11 Command Reference 399

Active4D v6.3 Timestamps
Timestamps

A common practice is database design is to define a timestamp field as part of each table.

Timestamps are often used to mark creation date/time, modification date/time, etc.

Timestamp Format

A timestamp combines a date and time together into one Alpha field with a width of 17

characters. The format of a timestamp is as follows:

By using this format, only one field can be used to store both the date and time. More

importantly, a timestamp is formatted such that records can be sorted and compared by

the timestamp, since the elements of the timestamp progress from most significant to

least significant.

Timestamp Time

To ensure consistency in timestamps, timestamps dates and times are converted from

the local time zone to Coordinated Universal Time, also known as UTC or GMT.

When working with timestamps, you always deal with the local time zone. All timestamp

commands which create a timestamp expect a local date and time, and all timestamp

commands that return a portion of the timestamp return a local date and/or time.

Timestamp Normalization

Timestamps are always kept in a normalized state — the date and time always contain

valid numbers. If a timestamp is created with a date or time where an element of the

date or time is beyond the valid range for that element, the extra is factored into the next

most significant element. If that element is then beyond the valid range, the process

continues until all elements are normalized.

For example, suppose you create a timestamp with the time 07:59:121. In this case, 121

seconds would be factored into the minutes, leaving us with two extra minutes and one

second. The two extra minutes would then get factored into the hour, leaving us with

one extra hour and one minute. So the normalized time would be 08:01:01.

YYYYMMDDhhhmmssttt

YYYY = 4-digit year
MM = 2-digit month
DD = 2-digit day
hh = 2-digit hour (0-23)
mm = 2-digit minute
ss = 2-digit second
ttt = 3-digit thousandths of a second (milliseconds)

Note: It is up to you to properly define the timestamp fields in your database.
400 Chapter 11 Command Reference

Timestamps Active4D v6.3
Normalization allows you to do things like creating a timestamp which represents the

270th day of the year, like this:

Using Timestamps with Optimistic Locking

In multiuser databases such as those served on the web, timestamps are especially

valuable in solving the problem of record contention. For example, imagine this

scenario:

1 User A begins editing a record.

2 User B begins editing the same record.

3 User B saves the changes to the record.

4 User A saves the changes to the record.

This is a situation you want to prevent, because User A’s changes will destroy the

changes User B made — changes which could very well be critical. In fact, once User B

saves the changes, User A’s copy of the data is essentially incorrect.

In a Client/Server database, you typically solve this problem by locking a record as soon

as the user begins editing it. This is known as pessimistic locking, which leads to this

scenario:

1 User A begins editing a record, locking that record to others.

2 User B attempts to edit the same record, is told to wait until User A is finished.

3 User A saves the changes and releases the lock.

4 User B is allowed to edit the record.

5 User B saves the changes to the record.

This technique is not without its problems. What if User A goes to lunch in the middle of

editing the record? What if User B just wants to view the record without changing it?

These problems can and have been solved in various ways, but the solutions are often

cumbersome.

Another approach which solves these problems is called optimistic locking. Here’s how it

works:

1 User A begins editing a record. The modification timestamp of the record is saved in

the user’s session for later comparison.

2 User B begins editing the same record. The modification timestamp of the record is

saved in the user’s session for later comparison.

3 User B attempts to save the changes to the record. Since the timestamp of the

record matches the saved timestamp, the save is allowed and the timestamp is

updated to the modification time.

4 User A attempts saves the changes to the record. Because the saved timestamp does

not match the record’s actual timestamp, the save is not allowed and the user is

asked to try editing the record again.

$ts := timestamp(!01/270/01!)
// $ts = "20010927050000000"
Chapter 11 Command Reference 401

Active4D v6.3 Timestamps
This methodology is known as optimistic locking because it assumes that in the majority

of cases there will not be a conflict — which is indeed the case in the majority of

applications.

If you are writing a multiuser web application, you should definitely consider using

timestamps and optimistic locking.
402 Chapter 11 Command Reference

Timestamps Active4D v6.3
Discussion

This command has three forms. The first form has no parameters and returns a

timestamp for the current date and time.

The second form takes a 4D date and time in the local time zone and creates a timestamp

from those values. If inTime is not passed, it is assumed to be midnight in the local time

zone (00:00:00).

The third form specifies the exact values for each element of the timestamp. The values

are in the local time zone.

The result of each form is a 17-character string containing the given date and time,

normalized to valid values and converted from the local time zone to UTC.

timestamp version 2

timestamp Text
timestamp(inDate {; inTime}) Text
timestamp(inYear; inMonth; inDay;

inHour; inMinute; inSecond; inMilliseconds) Text

Parameter Type Description

inDate Date  Local date

inTime Time  Local time

inYear Number  Local year

inMonth Number  Local month

inDay Number  Local day

inHour Number  Local hour

inMinute Number  Local minute

inSeconds Number  Seconds

inMilliseconds Number  Milliseconds

Result Text  Timestamp
Chapter 11 Command Reference 403

Active4D v6.3 Timestamps
Discussion

This command adds the specified number of date or time elements to inTimestamp and

returns the result. Any of the values passed in may be negative.

For example, to get a timestamp from 30 days ago, you would use this code:

If inTimestamp is not 17 characters, all of which are digits, an error is generated and

execution is aborted.

Discussion

This command subtracts inTimestamp2 from inTimestamp1 and returns the difference

between them in seconds.

add to timestamp version 2

add to timestamp(inTimestamp; inYears {; inMonths {; inDays
{; inHours {; inMinutes {; inSeconds {; inMilliseconds}}}}}}) Text

Parameter Type Description

inYear Number  Local year

inMonth Number  Local month

inDay Number  Local day

inHour Number  Local hour

inMinute Number  Local minute

inSeconds Number  Seconds

inMilliseconds Number  Milliseconds

Result Text  Timestamp

$monthAgo := add to timestamp(timestamp; 0; 0; -30)

timestamp difference version 4.0

timestamp difference(inTimestamp1; inTimestamp2) Real

Parameter Type Description

inTimestamp1 Text  A timestamp

inTimestamp2 Text  A timestamp

Result Real  Difference in seconds
404 Chapter 11 Command Reference

Timestamps Active4D v6.3
Discussion

This command formats inTimestamp as a local date and time in the form:

To format a timestamp in another way, use the other timestamp commands to extract

the timestamp elements and format them as necessary.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and

execution is aborted.

Discussion

This command returns the date of the given timestamp, converted from UTC to the local

time zone.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and

execution is aborted.

timestamp string version 2

timestamp string(inTimestamp) Text

Parameter Type Description

inTimestamp Text  A timestamp

Result Text  Formatted timestamp

YYYY-MM-DD hh:mm:ss.ttt

timestamp date version 2

timestamp date(inTimestamp) Date

Parameter Type Description

inTimestamp Text  A timestamp

Result Date  Date of the timestamp
Chapter 11 Command Reference 405

Active4D v6.3 Timestamps
Discussion

This command returns the time of the given timestamp, converted from UTC to the local

time zone.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and

execution is aborted.

Discussion

This command returns the date and time of the given timestamp, converted from UTC to

the local time zone.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and

execution is aborted.

timestamp time version 2

timestamp time(inTimestamp) Time

Parameter Type Description

inTimestamp Text  A timestamp

Result Time  Time of the timestamp

get timestamp datetime version 2

get timestamp datetime(inTimestamp; outDate; outTime)

Parameter Type Description

inTimestamp Text  A timestamp

outDate Date variable  Local date of timestamp

outTime Time variable  Local time of timestamp
406 Chapter 11 Command Reference

Timestamps Active4D v6.3
Discussion

This command returns the year of the given timestamp, converted from UTC to the local

time zone.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and

execution is aborted.

Discussion

This command returns the month of the given timestamp, converted from UTC to the

local time zone.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and

execution is aborted.

Discussion

This command returns the day of the month of the given timestamp, converted from

UTC to the local time zone.

timestamp year version 2

timestamp year(inTimestamp) Number

Parameter Type Description

inTimestamp Text  A timestamp

Result Number  Year of the timestamp

timestamp month version 2

timestamp month(inTimestamp) Number

Parameter Type Description

inTimestamp Text  A timestamp

Result Number  Month of the timestamp

timestamp day version 2

timestamp day(inTimestamp) Number

Parameter Type Description

inTimestamp Text  A timestamp

Result Number  Day of the timestamp
Chapter 11 Command Reference 407

Active4D v6.3 Timestamps
If inTimestamp is not 17 characters, all of which are digits, an error is generated and

execution is aborted.

Discussion

This command returns the hour of the given timestamp, converted from UTC to the local

time zone.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and

execution is aborted.

Discussion

This command returns the minute of the given timestamp, converted from UTC to the

local time zone.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and

execution is aborted.

timestamp hour version 2

timestamp hour(inTimestamp) Number

Parameter Type Description

inTimestamp Text  A timestamp

Result Number  Hour of the timestamp

timestamp minute version 2

timestamp minute(inTimestamp) Number

Parameter Type Description

inTimestamp Text  A timestamp

Result Number  Minute of the timestamp
408 Chapter 11 Command Reference

Timestamps Active4D v6.3
Discussion

This command returns the second of the given timestamp.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and

execution is aborted.

Discussion

This command returns the millisecond of the given timestamp.

If inTimestamp is not 17 characters, all of which are digits, an error is generated and

execution is aborted.

timestamp second version 2

timestamp second(inTimestamp) Number

Parameter Type Description

inTimestamp Text  A timestamp

Result Number  Second of the timestamp

timestamp millisecond version 2

timestamp millisecond(inTimestamp) Number

Parameter Type Description

inTimestamp Text  A timestamp

Result Number  Millisecond of the timestamp
Chapter 11 Command Reference 409

Active4D v6.3 User Authentication
User Authentication

User authentication requires a coordinated effort between the Realms.ini config file

(which defines your security realms), the On Authenticate event handler (which must be

defined to handle authentication), and the commands in this section.

For information on Realms.ini, see “Realms.ini” on page 47. For information on the On

Authenticate event handler, see “On Authenticate” on page 129.
410 Chapter 11 Command Reference

User Authentication Active4D v6.3
Discussion

This command returns the password of the authenticated user for the current realm, if

any.

Discussion

This command returns the type of authentication used. Currently the only

authentication type supported is “Basic”.

Discussion

This command returns the username of the authenticated user for the current realm, if

any. If current realm returns a non-empty string and auth user returns an empty string,

you know that the user has not yet been authenticated.

auth password version 2

auth password Text

Parameter Type Description

Result Text  Password of authenticated user

auth type version 2

auth type Text

Parameter Type Description

Result Text  Type of authentication used

auth user version 2

auth user Text

Parameter Type Description

Result Text  Username of authenticated user
Chapter 11 Command Reference 411

Active4D v6.3 User Authentication
Discussion

This command generates the proper response status and headers to prompt a user

authentication dialog on the client browser. If inRealm is not passed, the current realm as

defined in Realms.ini is automatically passed to the client browser, otherwise inRealm is

used.

Browsers cache the username and password for a given realm until the browser is closed.

This is a potential security risk if the user leaves a publicly accessible browser open. In

addition, if the user logs out or is inactive for a long period without closing the browser,

you may decide that the user must be reauthenticated.

Some old browsers (most notably IE4) may not display an authentication dialog if passed

a realm that has already been authenticated. You can force the browser to authenticate a

user by changing the realm to some unique name, for example by appending the

Tickcount. After the user enters his or her credentials, current realm will still return the

original unadulterated realm name, since it is looked up in Realms.ini.

Discussion

This command returns the name of the current realm, if any. The realm is determined by

the Realms.ini config file.

authenticate version 2

authenticate{(inRealm)}

Parameter Type Description

inRealm Text  Realm to pass to browser

current realm version 2

current realm Text

Parameter Type Description

Result Text  Name of current realm
412 Chapter 11 Command Reference

Variables Active4D v6.3
Variables

Active4D provides a number of commands that extend what you can do with and to

local variables in your scripts.

Many of these commands were created for use with Active4D’s debugging tools.
Chapter 11 Command Reference 413

Active4D v6.3 Variables
Discussion

This command tests the existence of a variable. You may either pass a variable reference

directly, or you may pass * followed by a variable name. Local variable names being

tested should begin with ‘$’.

This command tests whether or not a local variable has been assigned a value yet, and

thus has been defined.

Discussion

Given a local variable name (including the leading ‘$’), this command returns the

variable’s value if it is both defined in the current scope and not an array, or an empty

string if not.

defined version 1 (modified v2)

defined(inVariable | *; inVarName) Boolean

Parameter Type Description

inVariable Variable  Actual variable to test

* *  Check by name

inVarName Text  Name of variable to test

Result Boolean  True if defined in current scope

get local version 2

get local(inName) <any>

Parameter Type Description

inName Text  Name of local variable to lookup

Result <any>  Value of given local variable
414 Chapter 11 Command Reference

Variables Active4D v6.3
Discussion

This command returns an iterator which you can use to iterate over the local variables in

either the current scope, if inScope is not passed, or in a named scope, if inScope is

passed.

If inScope is passed, it must be in the form library.method, except for the top level scope,

which must be called “main”.

The keys of the collection referenced by the iterator are the variables names and the

values are the variable values, which can be of any type.

Discussion

This command searches the local variables in the current scope for the variable with the

name inName, which should include the leading ‘$’.

If the variable is found, the variable’s value is replaced with inValue. Otherwise a new

local variable is created with the given name.

If the value is an array and * is not passed, the current value of the array is used as the

value. If * is passed, the entire array is copied.

local variables
version 2

modified version 3

local variables{(inScope)} Iterator

Parameter Type Description

inScope Text  Name of library.method for which to

retrieve local variables

Result Iterator  Iterator to local variable collection

set local
version 2

modified v6.0

set local(inName; inValue {; *})

Parameter Type Description

inName Text  Name of variable to set

inValue <any>  Value to set for the given variable

* *  If passed, arrays are copied
Chapter 11 Command Reference 415

Active4D v6.3 Variables
Discussion

This command returns a textual description of the variable’s type, exactly as it would

appear in the 4D debugger.

Discussion

This command is exactly equivalent to not(defined(inVariable)).

type descriptor version 2

type descriptor(inVariable) Text

Parameter Type Description

inVariable Variable  Actual variable reference

Result Text  Textual description of variable’s type

undefined version 2

undefined(inVariable | *; inVarName) Boolean

Parameter Type Description

inVariable Variable  Actual variable to test

* *  Check by name

inVarName Text  Name of variable to test

Result Boolean  True if undefined in current scope
416 Chapter 11 Command Reference

Variables Active4D v6.3
Discussion

Given an actual variable reference, this command returns the name of variable, or the

name of the referent if passed a method reference parameter.

If inVariable is not defined, an error is generated and execution is aborted.

variable name version 2

variable name(inVariable) Text

Parameter Type Description

inVariable Variable  Actual variable to get name of

Result Text  Name of the variable

method "test"(&$inReferenceParam)
 $local := 13
 writebr(variable name($local))
 write(variable name($inReferenceParam))
end method

$foo := 7
test($foo) // output is "$local
$foo"
Chapter 11 Command Reference 417

Active4D v6.3 Plugin Commands
Plugin Commands

In addition to the execute plugin commands used to invoke Active4D, Active4D provides

a number of utility plugin commands:

A4D Abandon session

A4D Base64 decode

A4D Base64 encode

A4D Blowfish decrypt

A4D Blowfish encrypt

A4D FLUSH LIBRARY

A4D GET LICENSE INFO

A4D Get root

A4D GET SESSION DATA

A4D GET SESSION STATS

A4D Get time remaining

A4D Get version

A4D Import library

A4D MD5 sum

A4D Native to URL path

A4D RESTART SERVER

A4D SET ROOT

A4D STRIP 4D TAGS

A4D URL decode path

A4D URL decode query

A4D URL encode path

A4D URL encode query

A4D URL to native path
418 Chapter 11 Command Reference

Plugin Commands Active4D v6.3
Discussion

This command is the equivalent of the Active4D abandon session command, but allows

you to abandon any session given its internal id.

If the session is abandoned successfully, zero is returned. If there is an error, 1 is returned

and an error message is logged to the Active4D log.

Discussion

This command is the equivalent of the Active4D base64 decode command.

Discussion

This command is the equivalent of the Active4D base64 encode command.

A4D Abandon session v6.3

A4D Abandon session(inSessionID) Number

Parameter Type Description

inSessionID Number  Session internal ID

A4D Base64 decode version 4.0

A4D Base64 decode(inData {; inCharset}) Text

Parameter Type Description

inData Text  Base64 encoded text

inCharset Text  Charset to convert from

Result Text  Original data

A4D Base64 encode version 4.0

A4D Base64 encode(inData {; inCharset}) Text

Parameter Type Description

inData Text  Original data

inCharset Text  Charset to convert to

Result Text  Encoded text
Chapter 11 Command Reference 419

Active4D v6.3 Plugin Commands
Discussion

This command is the equivalent of the Active4D command blowfish decrypt.

Discussion

This command is the equivalent of the Active4D command blowfish encrypt.

Discussion

This command purges the specified library from memory. The next import of the

specified library will reload the library.

A4D Blowfish decrypt version 4.0

A4D Blowfish decrypt(inBlobData; inPassphrase {; inIV {; inCharset}}) Text

Parameter Type Description

inBlobData BLOB  Encrypted data

inPassphrase Text  Key used to encrypt data

inIV Text  Seed text used to encrypt data

inCharset Text  Charset to convert from

Result Text  Decrypted text

A4D Blowfish encrypt
version 4.0

modified v5

A4D Blowfish encrypt(inText; inPassphrase {; inIV {; inCharset}}) BLOB

Parameter Type Description

inText Text  Text to encrypt

inPassphrase Text  Key used to encrypt text

inIV Text  Seed text used for encryption

inCharset Text  Character set to convert to

Result BLOB  Encrypted data

A4D FLUSH LIBRARY
version 1

modified v5

A4D FLUSH LIBRARY(inLibName)

Parameter Type Description

inLibName Text  The name of the library to flush
420 Chapter 11 Command Reference

Plugin Commands Active4D v6.3
If inLibName is “*”, all libraries are flushed from memory. If inLibName “@”, all libraries

except the Active4D library are flushed from memory.

When you call A4D FLUSH LIBRARY, the library is not flushed immediately, because

libraries cannot be flushed until all Active4D interpreters stop executing. Rather, a

request to flush the given library is passed to the housekeeper process. The next time the

housekeeper runs, it will wait for all interpreters to stop executing, then it will flush the

library (or libraries).

Because of this behavior, if A4D FLUSH LIBRARY is called again before the previous flush

request is fulfilled, the second flush request will replace the first one. Ordinarily this

should not be a problem, since you should not need to call A4D FLUSH LIBRARY at all.

If inLibName is “*” or “Active4D”, the Active4D library will be flushed and immediately

reloaded, but the On Application Start event handler will not be run again. You have to

execute A4D RESTART SERVER to accomplish that.

In general, you should not flush the Active4D library. If you are developing the event

handlers in the Active4D library, you should create an auxiliary library (e.g. _active4D.a4l)

and pass the Active4D event handler calls to that library. When you modify the auxiliary

library, it will be reloaded and the Active4D library will remain unaffected.

Ordinarily you would have no need to use this command. If the “auto refresh libs” option

is on in Active4D.ini, libraries are flushed and reloaded automatically when they are

modified. If the “auto refresh libs” option is off, you must use this command to flush the

library in order to reload it.

Discussion

This command returns the first IP address on the first ethernet interface on the host

machine.

A4D Get IP address v5

A4D Get IP address  Text

Parameter Type Description

Result Text  IP address of host
Chapter 11 Command Reference 421

Active4D v6.3 Plugin Commands
Discussion

This command returns the MAC (Media Access Control) address of the first network

interface on the host machine.

Discussion

This command is the equivalent of the Active4D get root command.

Discussion

This command retrieves information about all of the items in the session with the

internal session ID inSessionID (as returned by the command session internal id). This

command is used by the Active4D Session Monitor dialog.

If the arrays are not of the correct type, OK is set to zero and the arrays are left untouched.

If there is no current session or the session ID is invalid, the arrays are emptied and OK is

set to zero.

A4D Get MAC address v5

A4D Get MAC address  Text

Parameter Type Description

Result Text  MAC address of host

A4D Get root version 1

A4D Get root  Text

Parameter Type Description

Result Text  Full path to the web root folder

A4D GET SESSION DATA version 2

A4D GET SESSION DATA(inSessionID; outKeys; outTypes; outValues)

Parameter Type Description

inSessionID Longint  Internal session ID to query

outKeys String/Text Array  Receives the item keys

outTypes String/Text Array  Receives the item types

outValues Text Array  Receives the item values
422 Chapter 11 Command Reference

Plugin Commands Active4D v6.3
The value of an item is represented in textual form. Picture and BLOB items are returned

as the size of the item in bytes. Arrays are returned as a CR-delimited list of items, as

would be returned by the command join array($array; "\r"; 0; true; true).

Discussion

This command retrieves information about all current sessions. This command is used by

the Active4D Session Monitor dialog.

If any of the arrays are not of the type specified, they are all sized to zero and OK is set to

zero. If the command succeeds, OK is set to 1.

Sessions which have expired but have not yet been purged (zombies) are returned with a

remaining time of zero.

A4D GET SESSION STATS version 2

A4D GET SESSION STATS(outIDs; outTimeouts; outRemainTimes; outSizes)

Parameter Type Description

outIDs Longint Array  Receives internal session IDs

outTimeouts Real Array  Receives session timeouts in minutes

outRemainTimes Longint Array  Receives seconds remaining till

sessions timeout

outSizes Longint Array  Receives the memory used by the

sessions in bytes
Chapter 11 Command Reference 423

Active4D v6.3 Plugin Commands
Discussion

This command is the equivalent of the Active4D command get license info.

Discussion

This command returns the MAC address (ethernet ID) of the first network interface on

the host machine.

Discussion

This command is the equivalent of the Active4D command get time remaining.

A4D GET LICENSE INFO version 2

A4D GET LICENSE INFO(outUserName; outCompany; outLicenseType; outLicenseVersion;
 outServerIP; outExpirationDate; outPlatform {; outKeyFilePath})

Parameter Type Description

outUserName Text  The licensed user

outCompany Text  The licensed company

outLicenseType Longint  The type of license

outLicenseVersion Text  Active4D version licensed for

outServerIP Text  IP address for a regular deployment

license, empty otherwise

outExpirationDate Date  Date a deployment license expires

outPlatform Longint  Always 3 (Mac and Windows)

outKeyFilePath Text  Full path to key file

A4D Get MAC address version 4.5

A4D Get MAC address Text

Parameter Type Description

Result Text  MAC address

A4D Get time remaining version 2

A4D Get time remaining Longint

Parameter Type Description

Result Real  Seconds till license timeout
424 Chapter 11 Command Reference

Plugin Commands Active4D v6.3
Discussion

This command returns a string describing the current version of Active4D.

Discussion

This command is the equivalent of the Active4D import command.

If a parsing error occurs during the loading of the library, a status of 500 (Internal server

error) will be returned, and outErrorMessage will contain information on the error.

If the library loads successfully, a status of 200 (OK) will be returned and outErrorMessage

will be empty.

Discussion

This command is the equivalent of the Active4D log message command.

A4D Get version version 1

A4D Get version Text

Parameter Type Description

Result Text  Current version of Active4D

A4D Import library version 2

A4D Import library(inLibName; outErrorMessage) Longint

Parameter Type Description

inLibName Text  The name of the library to import

outErrorMessage Text  Contains any parsing errors that may

occur

Result Longint  HTTP status code

A4D LOG MESSAGE version 2

A4D LOG MESSAGE(inMessage {; inIsError})

Parameter Type Description

inMessage Text  Message to append to the log file

inIsError Boolean  True to mark as an error message
Chapter 11 Command Reference 425

Active4D v6.3 Plugin Commands
Discussion

This command is the equivalent of the Active4D md5 sum command.

Discussion

This command is the equivalent of the Active4D command native to url path.

Discussion

This command restarts the Active4D HTTP server, flushing all libraries, abandoning all

sessions, and reloading all configuration files.

A4D MD5 version 2

A4D MD5(inData {; inCharset}) Text

Parameter Type Description

inData Text  The data to checksum

inCharset Text  Charset to convert to

Result Text  32-character hex checksum

A4D Native to URL path version 2

A4D Native to URL path(inPath) Text

Parameter Type Description

inPath Text  Path in native format

Result Text  Same path in URL format

A4D RESTART SERVER version 2

A4D RESTART SERVER
426 Chapter 11 Command Reference

Plugin Commands Active4D v6.3
Discussion

When called via On Web Connection, if Active4D receives a POST or PUT request, it calls a

callback method to retrieve the body of the request. This command sets the method that

Active4D calls.

If the callback method is found, 1 is returned. Otherwise zero is returned.

The callback method should have the following code:

Discussion

This command sets the web root directory. inPath may be an absolute or relative path in

either native or URL (Unix) format. If it is a relative path, it is relative to the default 4D

directory. For information on the default directory, see “The Default Directory” on

page 42.

The path may also use any of the directory tokens available to paths in Active4D.ini. For

more information on the directory tokens, see “Path Format” on page 43.

If inPath is a valid path, OK is set to 1. If it is not valid, OK is set to zero.

A4D Set HTTP body callback v5

A4D Set HTTP body callback(inMethod) Number

Parameter Type Description

inMethod Text  Name of callback method

Result Number  1 if method is found

Note: The callback method must be in the host database, not in a component.

C_BLOB($0)
GET HTTP BODY($0)

A4D SET ROOT version 2

A4D SET ROOT(inPath)

Parameter Type Description

inPath Text  Path to web root
Chapter 11 Command Reference 427

Active4D v6.3 Plugin Commands
Discussion

This command is deprecated and does nothing. It was only necessary with 4D 2003.

Discussion

This command is the equivalent of the Active4D command url decode path.

Discussion

This command is the equivalent of the Active4D command url decode query.

A4D STRIP 4D TAGS
version 3.0

deprecated v5

A4D STRIP 4D TAGS(ioBLOB)

Parameter Type Description

ioBLOB BLOB  BLOB to strip

A4D URL decode path version 2

A4D URL decode path(inText) Text

Parameter Type Description

inText Text  Text to decode

Result Text  Decoded text

A4D URL decode query version 2

A4D URL decode query(inText) Text

Parameter Type Description

inText Text  Text to decode

Result Text  Decoded text
428 Chapter 11 Command Reference

Plugin Commands Active4D v6.3
Discussion

This command is the equivalent of the Active4D command url encode path, but it does

not use the inUseAmpEntity parameter.

Discussion

This command is the equivalent of the Active4D command url encode query.

Discussion

This command is the equivalent of the Active4D command url to native path.

A4D URL encode path version 2

A4D URL encode path(inText) Text

Parameter Type Description

inText Text  Text to encode

Result Text  Encoded text

A4D URL encode query version 2

A4D URL encode query(inText) Text

Parameter Type Description

inText Text  Text to encode

Result Text  Encoded text

A4D URL to native path version 2

A4D URL to native path(inPath) Text

Parameter Type Description

inPath Text  Path in URL format

Result Text  Same path in native format
Chapter 11 Command Reference 429

Active4D v6.3 Plugin Commands
430 Chapter 11 Command Reference

. .
CHAPTER 12

Standard Libraries

Active4D extends its native command set by including a number of standard libraries

that provide you which additional power and flexibility when creating your websites.

The standard libraries may be placed in any Active4D folder in the library search path.

Currently, the standard libraries are:

3 a4d.console

3 a4d.debug

3 a4d.json

3 a4d.lists

3 a4d.utils

3 a4d.web

3 Batch

3 Breadcrumbs

3 fusebox

3 fusebox.conf

3 fusebox.head

3 RowSet

3 SessionHandler

Using the Standard Libraries
To use a library, you can either import it and then call its methods or reference its

constants, or simply use the full library.method syntax, in which case the library is

implicitly imported if necessary.

The methods in these libraries are designed to make common programming tasks much

easier. It will pay many times over for you to learn and use them.

Note: The SessionHandler library is imported automatically if you configure it as the
“session handler” option in Active4D.ini.
Chapter 12 Standard Libraries 431

Active4D v6.3 a4d.console
a4d.console

This library is composed of methods that dump various data structures and internal

information to the Active4D debug console. For more information on the debug console,

see “The Active4D Debugging Console” on page 606.

Ordinarily you will want to use the methods in a4d.debug to dump debugging

information, as the formatting is considerably easier to read than what is output by the

methods in a4d.console.

However, there are times when you cannot dump information to a web page via the

methods in a4d.debug. For example, there may be an execution error that is preventing

the page from displaying. In such cases you can replace the method you would normally

use in a4d.debug, such as dump collection, with the same method in a4d.console.
432 Chapter 12 Standard Libraries

a4d.console Active4D v6.3
Discussion

This method clears the debug console.

Discussion

This method writes the contents of the given array to the debug console. The name of

the array referred to by inArray and its type is displayed in the header. If inName is passed

in, that is used instead of the source array name.

If inDisplayInline is passed and is True, the current element of the array is displayed,

followed by the elements of the array on one line, separated by commas.

Otherwise the element number and element value are displayed in two columns. If the

array is a String or Text array, the element values are surrounded by double quotes. If the

array is a Longint or Real array and inDisplayCollections is passed and is True, array

elements that are valid collection handles will be displayed as collections by calling

dump collection. If inShowType is True, the collection items will be displayed with their

type.

If inShowZeroElement is False (the default), the zero element of the array is not displayed.

If the array is a BLOB array and contains text, you may pass the format of the text within

the BLOB (e.g. UTF8 text without length) in inBlobTextFormat. If inBlobTextFormat is passed

and is >= 0, the content of each element is displayed as text. Otherwise the number of

bytes in each element of the array is displayed.

clear v6.0

clear

dump array
version 4.0

modified v6.1r6

dump array(inArray {; inDisplayInline {; inName {; inDisplayCollections {; inShowType
{; inShowZeroElement {; inBlobTextFormat}}}}})

Parameter Type Description

inArray Array  Array to dump

inDisplayInline Boolean  If True, array is displayed on one line

inName Text  Name shown in header of dump

inDisplayCollections Boolean  If True collection handles may be

displayed as collections

inShowType Boolean  True to show type of items in

collections

inShowZeroElement Boolean  If True, show the zero element

inBlobTextFormat Number  Format of text in BLOBs
Chapter 12 Standard Libraries 433

Active4D v6.3 a4d.console
Discussion

This method dumps the contens of the given collection to the debug console. The key

and value of every item in the collection are displayed, and if inShowType is provided and

is True, the value type is displayed after the key.

If inName is passed, it is displayed in the header. If it is not passed, the name of the

variable passed as inCollection is displayed in the header.

If an item value is an array, the array is displayed as if dump array($array; False; ""; True) is

called.

If inFilter is passed and the first character is “-”, the rest of inFilter is used as a regular

expression and matching items are hidden. Otherwise only items matching the regular

expression in inFilter are displayed.

If an item of the collection is a BLOB or BLOB array and contains text, you may pass the

format of the text within the BLOB (e.g. UTF8 text without length) in inBlobTextFormat. If

inBlobTextFormat is passed and is >= 0, the content of each BLOB is displayed as text.

Otherwise the number of bytes in each BLOB is displayed.

dump collection
version 4.0

modified v6.1r6

dump collection(inCollection; { inName {; inShowType {; inFilter {; inBlobTextFormat}}}})

Parameter Type Description

inCollection Collection | Iterator  Iterator or handle of collection to

dump

inName Text  Display name of collection

inShowType Boolean  True to display types of values

inFilter Text  Regexp to filter the results

inBlobTextFormat Number  Format of text in BLOBs

Warning: If an item of a collection is itself a collection reference, this method is

called recursively to display its contents. So if you have any circular collection

references infinite recursion and a crash will result.
434 Chapter 12 Standard Libraries

a4d.console Active4D v6.3
Discussion

This method calls the dump collection method, passing an iterator to the form variables

collection.

Discussion

This method creates a formatted dump of the relevant license information contained in

your current key file, as well as the full path to the key file.

Discussion

This method calls the dump collection method, passing an iterator to the query params

collection.

dump form variables
version 4.0

modified v6.0

dump form variables{(inFilter)}

Parameter Type Description

inFilter Text  Regexp to filter the results

dump license info version 4.5

dump license info

dump query params
version 2

modified v6.0

dump query params{(inFilter)}

Parameter Type Description

inFilter Text  Regexp to filter the results
Chapter 12 Standard Libraries 435

Active4D v6.3 a4d.console
Discussion

This method calls the dump collection method, passing an iterator to the request info

collection.

Discussion

This method calls the dump collection method, passing an iterator to the current

session.

dump request info
version 2

modified v6.0

dump request info{(inFilter)}

Parameter Type Description

inFilter Text  Regexp to filter the results

dump session
version 2

modified v6.1r6

dump session{(inFilter {; inBlobTextFormat})}

Parameter Type Description

inFilter Text  Regexp to filter the results

inBlobTextFormat Number  Format of text in BLOB arrays
436 Chapter 12 Standard Libraries

a4d.debug Active4D v6.3
a4d.debug

This library is composed of methods that create a nicely formatted HTML dump of

various data structures and internal information, suitable for viewing in a web page.

Ordinarily you will want to use the methods in a4d.debug to dump debugging

information, as the formatting is considerably easier to read than what is output by the

methods in a4d.console.

However, there are times when you cannot dump information to a web page via the

methods in a4d.debug. For example, there may be an execution error that is preventing

the page from displaying. In such cases you can replace the method you would normally

use in a4d.debug, such as dump collection, with the same method in a4d.console.
Chapter 12 Standard Libraries 437

Active4D v6.3 a4d.debug
Discussion

This method writes the contents of the given array to the response buffer.

If inName is passed and is not “-”, it is displayed in the header. If it is “-”, the header is not

displayed at all. If it is not passed, the name and type of the variable passed in inArray is

displayed in the header.

If inDisplayInline is passed and is True, the current element of the array is displayed,

followed by the elements of the array on one line, separated by commas.

Otherwise the element number and element value are displayed in two columns. If the

array is a String or Text array, the element values are surrounded by double quotes. If the

array is a Longint or Real array and inDisplayCollections is passed and is True, array

elements that are valid collection handles will be displayed as collections by calling

dump collection. If inShowType is True, the collection items will be displayed with their

type.

If inShowZeroElement is False (the default), the zero element of the array is not displayed.

If the array is a BLOB array and contains text, you may pass the format of the text within

the BLOB (e.g. UTF8 text without length) in inBlobTextFormat. If inBlobTextFormat is passed

and is >= 0, the content of each element is displayed as text. Otherwise the number of

bytes in each element of the array is displayed.

dump array
version 4.0

modified v6.1r6

dump array(inArray {; inDisplayInline {; inName {; inDisplayCollections {; inShowType
{; inShowZeroElement {; inBlobTextFormat}}}}})

Parameter Type Description

inArray Array  Array to dump

inDisplayInline Boolean  If True, array is displayed on one line

inName Text  Name shown in header of dump

inDisplayCollections Boolean  If True collection handles may be

displayed as collections

inShowType Boolean  True to show type of items in

collections

inShowZeroElement Boolean  If True, show the zero element

inBlobTextFormat Number  Format of text in BLOBs
438 Chapter 12 Standard Libraries

a4d.debug Active4D v6.3
Discussion

This method writes a formatted dump of the given collection to the response buffer. The

key and value of every item in the collection are displayed in two columns, and if

inShowType is provided and is True, a third column displays the value type.

If inName is passed and is not “-”, it is displayed in the header. If it is “-”, the header is not

displayed at all. If it is not passed, the name of the variable passed as inCollection is

displayed in the header.

If an item value is an array, the display depends on the value of inInlineArrays. If

inInlineArrays is not passed or is True, the current element of the array is displayed,

followed by a comma-delimited list of the array elements, with text or string arrays

having their elements surrounded by quotes. If inInlineArrays is False, arrays are displayed

as if dump array($array; False; ""; True) is called.

If inFilter is passed and the first character is “-”, the rest of inFilter is used as a regular

expression and matching items are hidden. Otherwise only items matching the regular

expression in inFilter are displayed.

If an item of the collection is a BLOB or BLOB array and contains text, you may pass the

format of the text within the BLOB (e.g. UTF8 text without length) in inBlobTextFormat. If

inBlobTextFormat is passed and is >= 0, the content of each BLOB is displayed as text.

Otherwise the number of bytes in each BLOB is displayed.

dump collection
version 2

modified v6.1r6

dump collection(inCollection; { inName {; inShowType {; inInlineArrays {; inFilter {;
inBlobTextFormat}}}}})

Parameter Type Description

inCollection Collection | Iterator  Iterator or handle of collection to

dump

inName Text  Display name of collection

inShowType Boolean  True to display types of values

inInlineArrays Boolean  True to display arrays inline

inFilter Text  Regexp to filter the results

inBlobTextFormat Number  Format of text in BLOBs

Warning: If an item of a collection is itself a collection reference, this method is

called recursively to display its contents. So if you have any circular collection

references infinite recursion and a crash will result.
Chapter 12 Standard Libraries 439

Active4D v6.3 a4d.debug
Discussion

This method dumps the contents of the entire built in configuration collection, or if

inWhich is passed, only that particular configuration item.

For a list of configuration items, see “configuration” on page 333.

Discussion

This method calls the dump collection method, passing an iterator to the form variables

collection.

This is the preferred method of inspecting the form variables posted to a page.

Discussion

This method creates a formatted dump of the relevant license information contained in

your current key file, as well as the full path to the key file.

dump configuration version 2

dump configuration{(inWhich)}

Parameter Type Description

inWhich Text  Type of configuration to dump

dump form variables version 2

dump form variables{(inFilter)}

Parameter Type Description

inFilter Text  Regexp to filter the results

dump license info
version 3

modified version 4.0

dump license info
440 Chapter 12 Standard Libraries

a4d.debug Active4D v6.3
Discussion

This command creates a formatted dump of the current local variables.

If inDumpChain is not passed or is False (the default), dump locals only displays the local

variables for the current scope. If inDumpChain is passed and is True, all scopes in the call

chain are dumped in succession, starting with the innermost scope and proceeding

towards the top level scope. If inDumpChain is passed and is text, only the scope

matching that name is dumped. If no matching scopes are found, all scopes are dumped.

If inFilter is not passed or is False (the default), dump locals does not display the fusebox

core and its variables. If inFilter is passed and is True, all of the fusebox internals will be

displayed. If inFilter is passed and is text, it is used as a regular expression to filter which

locals are displayed. If inFilter begins with “-”, any locals whose name matches the regular

expression following the “-” are excluded. If inFilter begins with any other character, only

those locals whose name matches the regular expression are displayed.

If a local variable is a BLOB or BLOB array and contains text, you may pass the format of

the text within the BLOB (e.g. UTF8 text without length) in inBlobTextFormat. If

inBlobTextFormat is passed and is >= 0, the contents of each BLOB is displayed as text.

Otherwise the number of bytes in each BLOB is displayed.

This command is especially useful for getting a quick snapshot of the local variable state

at a given point in the script execution.

Discussion

This method calls the dump collection method, passing an iterator to the query params

collection.

dump locals
version 3

modified v6.1r6

dump locals{(inDumpChain {; inFilter {; inBlobTextFormat})}

Parameter Type Description

inDumpChain Boolean/Text  Determines which scopes should be

dumped

inFilter Boolean/Text  Filters the output

inBlobTextFormat Number  Format of text in BLOBs

dump query params
version 2

modified v6.0

dump query params{(inFilter)}

Parameter Type Description

inFilter Text  Regexp to filter the results
Chapter 12 Standard Libraries 441

Active4D v6.3 a4d.debug
This is the preferred method of inspecting the query string in the request URL.

Discussion

This method calls dump query params, dump form variables, dump request info, and

dump session.

Discussion

This method calls the dump collection method, passing an iterator to the request info

collection.

This is the preferred method of inspecting the HTTP headers sent to a page.

Discussion

This method does a nicely formatted dump of the current selection of inTable. The

current record within the selection is hilighted.

dump request
version 2

modified v6.0

dump request{(inFilter)}

Parameter Type Description

inFilter Text  Regexp to filter the results

dump request info
version 2

modified v6.0

dump request info{(inFilter)}

Parameter Type Description

inFilter Text  Regexp to filter the results

dump selection version 4.0

dump selection(inTable {; inFields})

Parameter Type Description

inTable Pointer  Pointer to table to dump

inFields Text  Field list
442 Chapter 12 Standard Libraries

a4d.debug Active4D v6.3
If inFields is not passed, all fields in the table are displayed.

If inFields is passed, it should be a semicolon delimited list of fields to display. Whitespace

around the field name is ignored. If a field is in inTable, you do not need to specify the

table name. You may also include fields from related one tables, in which case you must

include the table name. If the field name is “#” (or “[table]#” for a related table), the

current record number for the table will be displayed.

You may also specify a format for a field by putting a format expression after the field

name, separated by a colon. For BLOB fields that contain text, the format expression

should be one of the format constants (a number or a named constant) you would use

with BLOB to text. For other fields, the format expression is what you would pass to the

String command to format the field’s value. For numeric types, use a format string

(without quotes). For date and time fields, you may use a number or a 4D named

constant such as “HH MM SS”.

Examples

The following code will display all fields for the [ingredients] table:

The following code will display the id, name, and price fields from [ingredients], as well as

the related one [vendors]name field. In addition, the price field will be formatted with

the format string “$###.00”:

Discussion

This method calls the dump collection method, passing an iterator to the current

session.

This is the preferred method of inspecting session values.

Note: Because semicolon is used as the field delimiter, you may not use semicolons

in the field format.

a4d.debug.dump selection(->[ingredients])

$fields := "id;name;price:$###.00;[vendors]name"
a4d.debug.dump selection(->[ingredients]; $fields)

dump session
version 2

modified v6.0

dump session{(inInlineArrays {; inFilter {; inBlobTextFormat}})}

Parameter Type Description

inInlineArrays Boolean  True to display arrays inline

inFilter Text  Regexp to filter the results

inBlobTextFormat Number  Format of text in BLOBs
Chapter 12 Standard Libraries 443

Active4D v6.3 a4d.debug
Discussion

This method creates a formatted dump of all current sessions, displaying the following

information, one row for each session:

The rows may be sorted by passing in one of the column names in inSortBy. If no name or

an invalid name is passed in, the rows will be sorted by the time remaining. The sort

direction is determined by inDir. If inDir is not passed or is not valid, the rows will be

sorted in ascending order.

Sessions which have expired but have not yet been purged (zombies) will be displayed

with a time remaining of “00:00:00”.

dump session stats version 3

dump session stats {(inSortBy {; inDir})}

Parameter Type Description

inSortBy Text  Column to sort by

inDir Text  '>' to sort ascending, '<' descending

Column Description

ID Session internal id

Timeout Session timeout

Time Remaining Time before session expires, zero means expired

Size Total bytes of memory used by session
444 Chapter 12 Standard Libraries

a4d.json Active4D v6.3
a4d.json

If you are using an AJAX-based Javascript library in your web sites, at some point it is

likely you will need to create JSON (see json.org) formatted data within Active4D.

Active4D provides a full set of commands for easily creating properly formatted JSON

data from all of the data types Active4D supports, including collections. In addition,

there are commands for quickly adding a selection of records or a RowSet to JSON data.

Using the library

The a4d.json library has two primary interfaces: a high level interface and a low level

interface. Most of the time you will use the high level interface to create, populate and

output a JSON “object”. Most of the high level methods names begin with “add”. If you

need more control over the format of the JSON data, you can use the low level methods,

whose names begin with “encode”.

UTF-8 and Ajax

When using Ajax requests, posted data is encoded as UTF-8 and UTF-8 encoded data is

expected in return.

Active4D handles this transparently. When Active4D detects an Ajax request, it

automatically decodes posted UTF-8 data into Unicode. If you use the a4d.json library to

return data to an Ajax request, the data is automatically encoded as UTF-8.

Note: The functionality of the a4d.json library has been replaced by the native JSON

commands, which are much faster (up to 50x) and more powerful. For backwards

compability, the a4d.json library has been retained, but is now just a thin wrapper

around the built in JSON commands, resulting in much greater speed.

It is recommended that you convert any a4d.json-based code to use the built in

commands, as this library will be deprecated in a future version.
Chapter 12 Standard Libraries 445

Active4D v6.3 a4d.json
Discussion

This method creates a new JSON “object” to which data can be added.

Discussion

This method adds data to a JSON object.

If inKey is not an empty string, a new keyed item is added to the object. If inKey is empty,

data is added without a key. Ordinarily you would only add data without a key if you are

dynamically building an array using the startArray and endArray methods.

The data in inValue is converted to JSON format according to its type:

new version 4.5

new{(inWrap)} Object

Parameter Type Description

inWrap Boolean  True to wrap the JSON data within an

enclosing object

Result JSON Object  JSON object to be used with other

methods in this library

Note: This method has been deprecated in favor of the native new json command.

add version 4.5

add(self; inKey; inValue {; inFilter}) Object

Parameter Type Description

self JSON object  Object to add data to

inKey Text  Key for data item

inValue <any>  Data to add

inFilter Text  Filter for collections

Result JSON object  self

Note: This method has been deprecated in favor of the native add to json
command.

Value type Result

String/Text Encoded string, double-quoted

Number Number

Date Date in IETF “Mon Day, Year” format
446 Chapter 12 Standard Libraries

a4d.json Active4D v6.3
If inFilter is passed and inValue is a collection, it is used to filter the contents of inValue.

For more information, see “encodeCollection” on page 464.

Like all of the a4d.json methods, this method returns self, which allows you to chain

several calls together on one line.

Examples

To understand how this method works, let’s look at some examples to see the resulting

output. First let’s look at the output from the basic data types:

Notice that the “time” item returned a value of null, because time is not a supported type

in JSON. Also notice how we could chain multiple calls to add together.

Now let’s look at what happens if we add a collection to a JSON object.

Boolean true or false

Collection Encoded as a subobject

JSON object Added as a subobject

Other null

$json := a4d.json.new
$json->add("name"; "Sri Chinmoy")->add("age"; 76)
$json->add("birthdate"; !08/27/1931!)->add("Bengali"; true)
$json->add("time"; ?07:13:27?)
$json->write

// The output is:
{"name":"Sri Chinmoy","age":76,"birthdate":"Aug 27, 1931",
"Bengali":true,"time":null}

Note: If you are confused by the -> notation in the above example, see “Creating a

Poor Man’s Class” on page 124.

$json := a4d.json.new
$json->add("name"; "Sri Chinmoy")
$info := new collection("age"; 76; "birthdate"; !08/27/1931!; \\
 "Bengali"; true; "time"; ?07:13:27?)
array text($info{"siblings"}; *; "Chitta"; "Mantu"; \\
 "Hriday"; "Lily"; "Arpita"; "Ahana")
$json->add("info"; $info)
$json->write

// The output is:
{"name":"Sri Chinmoy","info":{"age":76,"birthdate":"Aug 27,
1931","Bengali":true,"time":null,"siblings":["Chitta","Mantu",
"Hriday","Lily","Arpita","Ahana"]}}

Value type Result
Chapter 12 Standard Libraries 447

Active4D v6.3 a4d.json
As you can see, the items in a collection are added as a subobject with the given key. The

values in a collection are added with the add method, unless a value is an array, in which

case it is added using the addArray method.

Next let’s look at what happens if we add an existing JSON object to another JSON

object.

Finally let’s look at an example of adding a value with no key.

$json := a4d.json.new
$json->add("name"; "Sri Chinmoy")
$info := a4d.json.new
$info->add("age"; 76)
$info->add("birthdate"; !08/27/1931!)
$info->add("Bengali"; true)
$info->add("time"; ?07:13:27?)
$json->add("info"; $info)
$json->write

// The output is:
{"name":"Sri Chinmoy","info":{"age":76,"birthdate":"Aug 27,
1931","Bengali":true,"time":null}}

array text($siblings; *; "Chitta"; "Mantu"; \\
 "Hriday"; "Lily"; "Arpita"; "Ahana")

$json := a4d.json.new
$json->add("name"; "Sri Chinmoy")
$json->startArray("siblings")

for each($siblings; $name)
 $json->add(""; $name)
end for each

$json->endArray
$json->write

// The output is:
{"name":"Sri Chinmoy","siblings":["Chitta","Mantu","Hriday",
"Lily","Arpita","Ahana"]}
448 Chapter 12 Standard Libraries

a4d.json Active4D v6.3
Discussion

This method adds array data to a JSON object.

If inKey is not an empty string, a new keyed item is added to the object. If inKey is empty,

data is added without a key. Ordinarily you would only add data without a key if you are

dynamically building an array using the startArray and endArray methods.

The elements of inArray are converted to JSON format according to the array type:

Like all of the a4d.json methods, this method returns self, which allows you to chain

several calls together on one line.

addArray version 4.5

addArray(self; inKey; inArray) Object

Parameter Type Description

self JSON object  Object to add data to

inKey Text  Key for data item

inArray Array  Array to add

Result JSON Object  self

Note: This method has been deprecated in favor of the native add to json
command.

Value type Result

ARRAY STRING/TEXT Encoded string, double-quoted

ARRAY INTEGER/LONGINT/REAL Number

ARRAY DATE Date in IETF “Mon Day, Year” format

ARRAY BOOLEAN true or false

Note: For array types other than those listed above, this method will return an

empty JSON array.
Chapter 12 Standard Libraries 449

Active4D v6.3 a4d.json
Examples

Note that the picture array was encoded as an empty JSON array since pictures are not a

supported data type.

Discussion

This method adds an IETF format datetime item to a JSON object. Such an item can be

turned into a Javascript Date object by passing the item string to the Date constructor.

If inKey is not an empty string, a new keyed item is added to the object. If inKey is empty,

a datetime item is added without a key. Ordinarily you would only add a datetime

without a key if you are dynamically building an array using the startArray and

endArray methods.

inTimezone should be in the timezone indicated in the inTimeZone parameter. inTimezone

should be minute offset from GMT.

array string(27; $names; *; "Tom"; "Dick"; "Harry")
array longint($ages; *; 13; 27; 31)
array picture($picts; 3)
$json := a4d.json.new
$json->addArray("names"; $names)->addArray("ages"; $ages)
$json->addArray("oops"; $picts)
$json->write

// Output
{"names":["Tom","Dick","Harry"],"ages":[13,27,31],"oops":[]}

addDateTime version 4.5

addDateTime(self; inKey; inDate; inTime; inTimezone) Object

Parameter Type Description

self JSON object  Object to add data to

inKey Text  Key for data item

inDate Date  Date portion of datetime

inTime Time  Time portion of datetime

inTimezone Number  Timezone portion of datetime

Result JSON Object  self

Note: This method has been deprecated in favor of the native add datetime to json
command.
450 Chapter 12 Standard Libraries

a4d.json Active4D v6.3
Like all of the a4d.json methods, this method returns self, which allows you to chain

several calls together on one line.

Example

Discussion

This method adds an item to self with the key inName and a value of inBody as is,

unquoted and unencoded. This is useful when you need to add a function (such as a

handler or callback) to your JSON data.

Like all of the a4d.json methods, this method returns self, which allows you to chain

several calls together on one line.

$json := a4d.json.new
// add a datetime in EST (GMT-5)
$json->addDateTime("DA"; !02/17/1980!; ?20:31:07?; -5 * 60)
$json->write

// The output is:
{"DA":"Feb 17, 1980 20:31:07 GMT-0500"}

// Javascript on the client, JSON is in a variable called json
var da = new Date(json.DA)

addFunction version 4.5

addFunction(self; inName; inBody) Object

Parameter Type Description

self JSON object  Object to add data to

inName Text  Function name

inBody Text  Function body

Result JSON Object  self

Note: This method has been deprecated in favor of the native add function to json
command.
Chapter 12 Standard Libraries 451

Active4D v6.3 a4d.json
Example

Discussion

This method adds rows from inRowSet to the JSON object self. If you have a RowSet and

you want to use it for generating JSON data, this method is the fastest and easiest way to

do so. If the RowSet is selection-based and is not being used for other purposes, in most

cases you will want to use addSelection instead of this method.

The RowSet’s rows are added as an array of objects, with each object containing one

item for each column of data. The column data is converted as if were passed to the add

method. If inDataKey is passed and is non-empty, the array will have the key inDataKey.

If inCountKey is passed and is non-empty, an item will be added to self whose key is

inCountKey and whose value is the number of rows in inRowSet.

$json := a4d.json.new
$json->addFunction("renderer"; \\
"""function(value, metadata, record) {
 return record.data.title + " " + value;
}""")

addRowSet version 4.5

addRowSet(self; inRowSet {; inCountKey {; inDataKey {; inMap
{; inFirst {; inLimit}}}}}) Object

Parameter Type Description

self JSON object  Object to add data to

inRowSet RowSet  RowSet from which to get data

inCountKey Text  Key for row count item

inDataKey Text  Key for row data item

inMap Text  JSON name to RowSet column map

inFirst Number  Index of first row to add

inLimit Number  Maximum number of rows to add

Result JSON Object  self

Note: This method has been deprecated in favor of the native add rowset to json
command.

Note: The number of rows returned with inCountKey is the result of calling

$inRowSet->rowCount, not $inRowSet->sourceRowCount.
452 Chapter 12 Standard Libraries

a4d.json Active4D v6.3
If inMap is not passed or is empty, all of the columns in inRowSet will be added to the row

array. If inMap is passed and is non-empty, it must be a semicolon-delimited list of

mappings from RowSet column names to JSON key names. If the RowSet column name

will be used as is, it is sufficient to use just the column name. If you want to rename a

RowSet column, then the mapping should be a <JSON key>:<RowSet column> pair. This

allows you to specify a subset of the RowSet columns for inclusion in the JSON data,

and/or to rename the RowSet columns.

If inFirst is passed and is >= 1, it specifies the one-based index of the first row from

inRowSet that will be added to self. If inLimit is passed and is >= 0, it specifies the

maximum number of rows from inRowSet that will be added to self. Together, inFirst and

inLimit make it easy to specify a subset of rows, which is typically the case when paging

through a large RowSet.

Like all of the a4d.json methods, this method returns self, which allows you to chain

several calls together on one line.

Examples

Let’s look at a few examples to illustrate the typical use of the various options. First, we’ll

create a RowSet and then add it a JSON object.

Now let’s add the rest of the parameters to see the effect. This time we want to eliminate

the id column from the JSON data, and we want to rename the RowSet birthdate column

to the JSON key dob. In addition, we are receiving the starting index in a query parameter

Note: Depending on the Ajax toolkit you are using, it is likely that the start index for

a page of data will be zero-based. It is up to you to add 1 to make it one-based before

using the value for inFirst.

// Assume we have a selection of 3 [employee] records
$map := """
name: ‘concat(" "; [employee]first; [employee]last)‘;
id: [employee]id;
birthdate: [employee]birthdate"""
$rs := RowSet.newFromSelection(->[employee]; $map)
$json := a4d.json.new
$json->addRowSet($rs; "count"; "rows")
$json->write

// The output is:
{"count":3,"rows":[{"name":"Tiny Tim","id":31,"birthdate":"Apr
12, 1932"},{"name":"James Taylor","id":27,"birthdate":"Mar 12,
1948"},{"name":"Pat Metheny","id":13,"birthdate":"Aug 12,
1954"}]}
Chapter 12 Standard Libraries 453

Active4D v6.3 a4d.json
called “start” whose value is “2”, and the number of rows to return in a query parameter

called “size” whose value is “1”.

Note that the count item still returns 3, because the number of rows in the RowSet is still

3, even though there is only one row in the rows array. The reason for this is because

when you are showing paging information for a RowSet, you usually want to display

something like “Displaying records <start>-<end> of <total>”, so you always need the

total number of rows in the source dataset.

// RowSet setup is the same as the example above

// Use "name" column as is, rename "birthdate" to "dob"
$jmap := "name;dob:birthdate"

// If "start" query param is not passed, default to "0",
// convert it to one-based number
$first := num($attributes{"start"} | "0") + 1

// If "size" query param is not passed, default to "20"
$limit := num($attributes{"size"} | "20")
$json := a4d.json.new
$json->addRowSet($rs; "count"; "rows"; $jmap; $first; $limit)
$json->write

// The output is:
{"count":3,"rows":[{"name":"Pat Metheny","dob":"Aug 12, 1954"}]}
454 Chapter 12 Standard Libraries

a4d.json Active4D v6.3
Discussion

This method adds record data from the current selection of inTable to the JSON object

self. If you have a selection of records and you want to use it for generating JSON data,

this method is the fastest and easiest way to do so.

This method operates in two modes:

3 selection mode: If inFirst # -1, the selection’s records are output as an array of objects,

with each object containing one item for each field.

inFirst specifies the one-based index of the first record in the current selection of

inTable that will be added to self. If inLimit is passed and is >= 0, it specifies the

maximum number of records from the current selection of inTable that will be added

to self. Together, inFirst and inLimit make it easy to specify a subset of records, which is

typically the case when paging through a large selection.

3 current record mode: If inFirst = -1, only the current record of the selection is output

as a single object (not within an array) with one item for each field.

The field data is converted as if were passed to the add method. If inDataKey is passed

and is non-empty, the record data will have the key inDataKey.

If inCountKey is passed and is non-empty, an item will be added to self whose key is

inCountKey and whose value is the number of records in the current selection of inTable.

addSelection
version 4.5

modified v6.1

addSelection(self; inTable {; inCountKey {; inDataKey {; inMap
{; inFirst {; inLimit}}}}}) Object

Parameter Type Description

self JSON object  Object to add data to

inTable Table pointer  Main table from which to get data

inCountKey Text  Key for row count item

inDataKey Text  Key for row data item

inMap Collection  JSON name to value map

inFirst Number  Index of first row to add

inLimit Number  Maximum number of rows to add

Result JSON Object  self

Note: This method has been deprecated in favor of the native add selection to json
command.

Note: Depending on the Ajax toolkit you are using, it is likely that the start index for

a page of data will be zero-based. It is up to you to add 1 to make it one-based before

using the value for inFirst.
Chapter 12 Standard Libraries 455

Active4D v6.3 a4d.json
If inMap is not passed or is empty, all of the fields in inTable will be added to the record

array, with the field name being the JSON column key. If inMap is passed and is non-zero,

it must be a collection which maps JSON column keys to column values. The keys in

inMap are used as the JSON column keys. The values may be one of three types:

3 Table pointer: If the value is a table pointer, the current record number for inTable is

output as a JSON number.

3 Field pointer: If the value is a field pointer, the value of the field is output as if it were

passed to the add method. Fields from tables other than inTable may be used if there is

a many to one relation (it need not be automatic) between inTable and the foreign

field’s table. If any foreign fields are used in inMap, RELATE ONE($inTable->) is

executed before each record is output to ensure related data is available.

3 Text: If the value is text, it must be an expression than returns a value (although using

return is not necessary). The resulting value is output as if it were passed to the add

command. If you want the result to appended verbatim, without being JSON encoded,

prefix the expression with “@”. If you want to evaluate the expression in 4D instead of

Active4D, prefix the expression (after “@”) with “!”.

If inMap contains an item whose key is “a4d.json.callback”, then the value should be a

text block of code to execute after each record of inTable is loaded. The code does not

have to return a value. If you want the code to be executed in 4D instead of Active4D,

prefix it with “!”. Code executed in Active4D may consist of multiple statements

separated by carriage returns. Code executed in 4D may only be one line.

Like all of the a4d.json methods, this method returns self, which allows you to chain

several calls together on one line.

Examples

Let’s look at a few examples to illustrate the typical use of the various options. First, we’ll

create a selection of records and then add it a JSON object.

Notice how all of the fields were automatically included in the JSON output. Now let’s

add the rest of the parameters to see the effect.

// [employee] table
// id Longint
// firstname Alpha20
// lastname Alpha20
// company_id Longint, relate one with [company]id
// dob Date
query([employee]; [employee]contact_id = $attributes{"id"})
$json := a4d.json.new
$json->addSelection(->[employee]; "count"; "rows")
$json->write

// The output is:
{"count":3,"rows":[{"id":31,"firstname":"Tiny","lastname":"Tim",
"company_id":101,"dob":"Apr 12, 1932"},{"id":27,
"firstname":"James","lastname":"Taylor","company_id":107,
"dob":"Mar 12, 1948"},{"id":13,"firstname":"Pat",
"lastname":"Metheny","company_id":107,"dob":"Aug 12, 1954"}]}
456 Chapter 12 Standard Libraries

a4d.json Active4D v6.3
To make the output more useful, we would like to do the following:

3 Include the record number of the [employee] table

3 Concatenate the first name and last name into a single name column

3 Return the company name instead of its id

3 Rename “dob” to “birthdate”

We accomplish this by creating a map and passing it to addSelection:

Note: For an example of how to use the inFirst and inLimit parameters, see the

documentation for “addRowSet” on page 452.

// Selection setup is the same as the example above

$map := new collection

// output record number
$map{"recnum"} := ->[employee]

// output concatenation of firstname + " " + lastname
$map{"name"} := "concat(\" \"; [employee]firstname;
[employee]lastname)"

// output foreign related one field
$map{"company"} := ->[company]name

// rename a field
$map{"birthdate"} := ->[employee]dob

// use a callback
$map{"a4d.json.callback"} := \\
"query([family]; [family]employee_id = [employee]id)\r" + \\
"query([family]; &; [family]type = 1)" // type 1 is child

$map{"num_children"} := "records in selection([family])"

$json := a4d.json.new
$json->addSelection(->[employee]; "count"; "rows"; $map)
$json->write

// The output is:
{"count":3,"rows":[{"recnum":207,"name":"Tiny Tim",
"company":"Tulips, Inc.","birthdate":"Apr 12, 1932",
"num_children":0},{"recnum":331,"name":"James Taylor",
"company":"Gorilla Corp.","birthdate":"Mar 12, 1948",
"num_children":2}, {"recnum":713,"name":"Pat Metheny",
"company":"The Way Up","birthdate":"Aug 12, 1954",
"num_children":1}]}
Chapter 12 Standard Libraries 457

Active4D v6.3 a4d.json
Discussion

This method adds an array start marker to a JSON object.

Ordinarily you would only call this method if you are dynamically building an array using

the startArray and endArray methods instead of using the addArray method.

If inKey is not an empty string, the array start marker is preceded by an item key.

Like all of the a4d.json methods, this method returns self, which allows you to chain

several calls together on one line.

Example

startArray version 4.5

startArray(self; inKey) Object

Parameter Type Description

self JSON object  Object to add data to

inKey Text  Key for array item

Result JSON object  self

Note: This method has been deprecated in favor of the native start json array
command.

Warning: To ensure valid JSON data, be sure to balance a call to this method with a

call to endArray.

array text($siblings; *; "Chitta"; "Mantu"; \\
 "Hriday"; "Lily"; "Arpita"; "Ahana")

$json := a4d.json.new
$json->startArray("siblings")

for each($siblings; $name)
 $json->add(""; $name)
end for each

$json->endArray
$json->write

// The output is:
{"siblings":["Chitta","Mantu","Hriday", "Lily","Arpita","Ahana"]}
458 Chapter 12 Standard Libraries

a4d.json Active4D v6.3
Discussion

This method adds an array end marker to a JSON object.

Ordinarily you would only call this method if you are dynamically building an array using

the startArray and endArray methods instead of using the addArray method.

Like all of the a4d.json methods, this method returns self, which allows you to chain

several calls together on one line.

Example

See “startArray” on page 458.

Discussion

This method adds an object start marker to a JSON object.

endArray version 4.5

endArray(self) Object

Parameter Type Description

self JSON object  Object to add data to

Result JSON object  self

Note: This method has been deprecated in favor of the native end json array
command.

Warning: To ensure valid JSON data, be sure to balance a call to this method with a

previous call to startArray.

startObject version 4.5

startObject(self; inKey) Object

Parameter Type Description

self JSON object  Object to add data to

inKey Text  Key for subobject

Result JSON object  self

Note: This method has been deprecated in favor of the native start json object
command.
Chapter 12 Standard Libraries 459

Active4D v6.3 a4d.json
Ordinarily you would only call this method if you are dynamically building an object

using the startObject and endObject methods instead of using the add method.

If inKey is not an empty string, the object start marker is preceded by an item key.

Like all of the a4d.json methods, this method returns self, which allows you to chain

several calls together on one line.

Example

Discussion

This method adds an object end marker to a JSON object.

Warning: To ensure valid JSON data, be sure to balance a call to this method with a

call to endObject.

$json := a4d.json.new
$json->startArray("employees")

for each([employee])
 $json->startObject
 $json->add("name"; [employee]name)
 $json->add("age"; [employee]age)
 $json->endObject
end for each

$json->endArray
$json->write

// The output is:
{"employees":[{"name":"Tom","age":31},{"name":"Dick","age":27},
{"name":"Harry","age":42}]}

endObject version 4.5

endObject(self) Object

Parameter Type Description

self JSON object  Object to add data to

Result JSON object  self

Note: This method has been deprecated in favor of the native end json object
command.
460 Chapter 12 Standard Libraries

a4d.json Active4D v6.3
Ordinarily you would only call this method if you are dynamically building an object

using the startObject and endObject methods instead of using the add method.

Like all of the a4d.json methods, this method returns self, which allows you to chain

several calls together on one line.

Example

See “startObject” on page 459.

Discussion

This method returns the data that has been added to self as JSON-formatted text.

Usually you will not need to call this method directly, since you will want to write the

reult of this method to the response buffer, and the a4d.json.write method does that for

you.

Warning: To ensure valid JSON data, be sure to balance a call to this method with a

previous call to startObject.

toJSON version 4.5

toJSON(self) Text

Parameter Type Description

self JSON object  Object from which to get JSON data

Result Text  JSON-formatted data

Note: This method has been deprecated in favor of the native json to text
command.

Warning: If you do decide to write JSON data to the response buffer yourself

(instead of using a4d.json.write), be sure to use the write raw command to prevent

any HTML encoding.
Chapter 12 Standard Libraries 461

Active4D v6.3 a4d.json
Discussion

This method writes the data that has been added to self as JSON-formatted text to the

response buffer. This is the primary method you will use to return JSON data to a client.

If inSetContentType is not passed or is True, the content type of the response is set to

“application/json”.

Discussion

This method writes the data that has been added to self as JSON-formatted text to the

response buffer, wrapped in a call to the function inCallback. This is the primary method

you will use to return JSON data to a client that is using the JSONP protocol.

If inSetContentType is not passed or is True, the content type of the response is set to

“application/json”.

Example

Assume your front end makes a JSONP request with the following URL:

write version 4.5

write(self; inSetContentType)

Parameter Type Description

self JSON object  Object from which to write JSON data

inSetContentType Boolean  True to set the content type

Note: This method has been deprecated in favor of the native write json command.

writep version 4.5

writep(self)

Parameter Type Description

self JSON object  Object from which to write JSON data

inCallback String  Callback expected by JSONP request

inSetContentType Boolean  True to set the content type

Note: This method has been deprecated in favor of the native write jsonp
command.

/enrollments/list?cb=CPJSONPConnectionCallbacks.callback32626
462 Chapter 12 Standard Libraries

a4d.json Active4D v6.3
You build the JSON response and then return it like this:

Discussion

This method encodes a scalar (non-array) value for use in a JSON object. Ordinarily you

would have no need to call this method directly, as it is used internally by the various

add methods.

Depending on the type of inValue, one of the more specific encode<type> methods will

be called.

Discussion

This method encodes the items in inArray as a JSON array for use in a JSON object. Each

item in the array is encoded by calling the appropriate encoder for the array type. If the

$json := a4d.json.new
// add data to $json
$callback := $attributes{"cb"} // assuming fusebox
$json->writep($callback)

encode version 4.5

encode(inValue {; inFilter}) Text

Parameter Type Description

inValue <any scalar value>  Value to encode

inFilter Text  Filters collection items

Result Text  Encoded JSON data

Note: This method has been deprecated in favor of the native json encode
command.

encodeArray version 4.5

encodeArray(inArray) Text

Parameter Type Description

inArray Array  Array to encode

Result Text  Encoded JSON data
Chapter 12 Standard Libraries 463

Active4D v6.3 a4d.json
array type has no encoder, an empty array (“[]”) is returned. For a list of the supported

array types, see “addArray” on page 449.

Ordinarily you would have no need to call this method directly, as it is used internally by

the various add methods.

Discussion

This method encodes a boolean value for use in a JSON object. Ordinarily you would

have no need to call this method directly, as it is used internally by the various add

methods.

The value returned will be either “true” or “false”.

Discussion

This method encodes the data in inCollection as a subobject for use in a JSON object.

Each key of the collection is encoded by calling encodeString, and each value is

Note: This method has been deprecated in favor of the native json encode
command.

encodeBoolean version 4.5

encodeBoolean(inBool) Text

Parameter Type Description

inBool Boolean  Value to encode

Result Text  Encoded JSON data

Note: This method has been deprecated in favor of the native json encode
command.

encodeCollection version 4.5

encodeCollection(inCollection {; inFilter}) Text

Parameter Type Description

inCollection Collection  Collection to encode

inFilter Text  Filters collection items

Result Text  Encoded JSON data
464 Chapter 12 Standard Libraries

a4d.json Active4D v6.3
encoded by calling the appropriate encoder for its type. If the type has no encoder, the

value “null” is returned.

Ordinarily you would have no need to call this method directly, as it is used internally by

the various add methods.

If inFilter is passed and is non-empty, it is used as a matching expression to determine

which items from inCollection are encoded. The rules for the filter expression are as

follows:

3 If the filter begins with "#", it performs an exclusion, i.e. all items that match the filter

are excluded.

3 Otherwise only items that match the filter are included.

3 If the first character after the optional “#” is "/", it is considered a regular expression

pattern and regex matching is done.

3 Otherwise simple string comparison is performed.

Examples

Let’s take a look at some simple filters to see how they affect the output of this method.

Note: This method has been deprecated in favor of the native json encode
command.

$c := new collection("foo"; 7; "bar"; !04/13/1964!; "baz"; false)

// simple string matching
$enc := a4d.json.encodeCollection($c; "foo")
// $enc = {"foo":7}

// simple string matching with wildcard
$enc := a4d.json.encodeCollection($c; "b@")
// $enc = {"bar":"Apr 13, 1964","baz":false}

// exclusion matching, simple string
$enc := a4d.json.encodeCollection($c; "#bar")
// $enc = {"foo":7,"baz":false}

// exclusion matching, simple string with wildcard
$enc := a4d.json.encodeCollection($c; "#b@")
// $enc = {"foo":7}

// regex matching
$enc := a4d.json.encodeCollection($c; "/foo|bar/")
// $enc = {"foo":7,"bar":"Apr 13, 1964"}

// exclusion matching, regex
$enc := a4d.json.encodeCollection($c; "#/foo|bar/")
// $enc = {"baz":false}
Chapter 12 Standard Libraries 465

Active4D v6.3 a4d.json
Discussion

This method encodes a date value for use in a JSON object. Ordinarily you would have no

need to call this method directly, as it is used internally by the various add methods.

The value returned will be in IETF Mon, Day Year format. For more information on date

formatting, see “add” on page 446.

Discussion

This method encodes a string or text value for use in a JSON object. Ordinarily you would

have no need to call this method directly, as it is used internally by the various add

methods.

The value returned is converted to UTF-8, surrounded with double quotes, and any non-

printable characters are encoded according to JSON rules.

encodeDate version 4.5

encodeDate(inDate) Text

Parameter Type Description

inDate Date  Value to encode

Result Text  Encoded JSON data

Note: This method has been deprecated in favor of the native json encode
command.

encodeString version 4.5

encodeString(inString) Text

Parameter Type Description

inString Text  Value to encode

Result Text  Encoded JSON data

Note: This method has been deprecated in favor of the native json encode
command.
466 Chapter 12 Standard Libraries

a4d.json Active4D v6.3
Discussion

This method parses JSON text into its corresponding Active4D value.

All valid JSON types and syntaxes are supported, with the exception that array elements

must all be of the same type. JSON types map to Active4D types as follows:

Note that JSON has no native representation for dates. To convert textual

representations of dates into 4D dates, pass a delimited regular expression in inDateKeys.

JSON strings or string arrays whose keys match the regular expression will be considered

for conversion. Conversion occurs if the value matches one of the following patterns:

If inWantGlobalCollections is False (the default), all collections created from JSON objects

will be local. If True, all collections will be global.

parse
v6.0r2

modified v6.1

parse(inJSON {; inWantGlobalCollections {; inThrowOnError {; inDateKeys}}}) <any>

Parameter Type Description

inJSON Text  Text to parse

inWantGlobalCollections Boolean  True to create global collections

inThrowOnError Boolean  True to throw on malformed JSON

inDateKeys Text  Regular expression to match keys for

date conversion

Result <any>  Parsed JSON data

Note: This method has been deprecated in favor of the native parse json command.

JSON type Active4D type

object collection

array array

string text

number real

true/false boolean

null nil pointer

Pattern Comments

Mmm d, yyyy IETF date format. Mmm is a 3-letter English month

abbreviation.

yyyy-mm-dd

yyyy-mm-ddThh:mm:ss

ISO Date format
Chapter 12 Standard Libraries 467

Active4D v6.3 a4d.json
If inThrowOnError is True (the default), malformed JSON will throw an error.

Discussion

This method recursively traverses an object and converts text that looks like dates into

4D dates.

 Text will be converted if it matches one of the following patterns:

Valid types for inObject are text, text array, longint array, and collection. Longint arrays

are traversed, and if an element is a collection, this method will be called recursively with

that collection.

For text arrays, if all of the elements of the array can be converted to dates, an array of the

converted dates is returned. Otherwise the original text array is returned.

If inKeys is non-empty, it should be a delimited regular expression. When traversing

collections, only collection keys which match will be considered for conversion. This

allows for more efficient conversion with large collections, and also allows you to shield

items from erroneous conversion.

Note: Because this method may return an array, you should always use the super
assign operator (::=) to assign the result of this method.

convertJSONDates v6.0r2

convertJSONDates(inObject {; inKeys}) <any>

Parameter Type Description

inObject <any>  Data to convert

inKeys Text  Collection keys to consider for

conversion

Result <any>  Converted data

Note: This method has been deprecated in favor of the native parse json command,
passing inKeys to the command.

Pattern Comments

Mmm d, yyyy Format used by this library to convert 4D dates to JSON.

Mmm is a 3-letter English month abbreviation.

yyyy-mm-dd

yyyy-mm-ddThh:mm:ss

ISO Date format
468 Chapter 12 Standard Libraries

a4d.json Active4D v6.3
The type of object returned depends on the type of inObject. Converted text arrays will

be returned as date arrays, and converted text will be returned as a date. Otherwise the

original object is returned.

Note: Because this method may return an array, you should always use the super
assign operator (::=) to assign the result of this method.
Chapter 12 Standard Libraries 469

Active4D v6.3 a4d.lists
a4d.lists

Lists are a way of putting multiple values into a single string, delimited by some

character. This is very handy for some types of problems. For example, a URL can be

treated as a list of path elements delimited by "/". Or the string "one,two,three" can be

treated as a list of three elements. Or you can encode a list of values in a list and store it in

a database text field.

Note the following attributes of lists:

3 Empty elements are ignored, so “one,,three” would be a list of two elements, “one” and

“three”.

3 Delimiters at the beginning and end of the list are ignored, so “/one/two/three/”

would be a list of three elements.

3 If the delimiter passed to a method contains more than one character, then any

character in the delimiter can delimit the list elements, but only the first character in

the delimiter will be used if the method adds an element to the list.

3 List elements are numbered beginning at 1.

3 The default delimiter for all list methods is “,”.
470 Chapter 12 Standard Libraries

a4d.lists Active4D v6.3
Discussion

This method appends a value to a list. The value can be of any type that can be

converted to text with the String command (which includes String and Text).

If inDelim is not passed, it defaults to “,”.

Discussion

This method converts inArray into a delimited list. If inDelim is not passed, it defaults to “,”.

append version 3

append(inList; inValue {; inDelim}) Text

Parameter Type Description

inList Text  Delimited list

inValue <any>  Value to append

inDelim Text  List delimiter

Result Text  Modified list

arrayToList version 3

arrayToList(inArray {; inDelim}) Text

Parameter Type Description

inArray Array  Array to convert

inDelim Text  List delimiter

Result Text  inArray as a delimited list

Note: You can easily accomplish the same thing with the join array command.
Chapter 12 Standard Libraries 471

Active4D v6.3 a4d.lists
Discussion

This method changes the delimiters in a list and returns a modified copy. If inDelim is not

passed, it defaults to “,”.

Discussion

This method returns True if any element in the list contains a substring, doing a case- and

diacritical-sensitive match.

If inDelim is not passed, it defaults to “,”.

changeDelims version 3

changeDelims(inList; inNewDelim {; inDelim}) Text

Parameter Type Description

inList Text  Delimited list

inNewDelim Text  New delimiter to use

inDelim Text  List delimiter

Result Text  Modified list

Note: You can accomplish the same thing with replace string.

contains version 3

contains(inList; inSubstr {; inDelim}) Boolean

Parameter Type Description

inList Text  Delimited list

inSubstr Text  Text to match

inDelim Text  List delimiter

Result Boolean  True if an element matches
472 Chapter 12 Standard Libraries

a4d.lists Active4D v6.3
Discussion

This method returns True if any element in the list contains a substring, doing a case- and

diacritical-insensitive match.

If inDelim is not passed, it defaults to “,”.

Discussion

This method deletes an element from a list. If inDelim is not passed, it defaults to “,”.

Discussion

This method returns the index of the first element of inList that exactly matches inMatch,

doing a case- and diacritical-sensitive match. If no element matches, zero is returned.

containsNoCase version 3

containsNoCase(inList; inSubstr {; inDelim}) Boolean

Parameter Type Description

inList Text  Delimited list

inSubstr Text  Text to match

inDelim Text  List delimiter

Result Boolean  True if an element matches

deleteAt version 3

deleteAt(inList; inIndex {; inDelim}) Text

Parameter Type Description

inList Text  Delimited list

inIndex Number  Element to delete

inDelim Text  List delimiter

Result Text  Modified list

find version 3

find(inList; inMatch {; inDelim}) Number

Parameter Type Description

inList Text  Delimited list

inMatch Text  Text to match

inDelim Text  List delimiter

Result Number  Index of first matching element
Chapter 12 Standard Libraries 473

Active4D v6.3 a4d.lists
If inDelim is not passed, it defaults to “,”.

Discussion

This method returns the index of the first element of inList that matches inMatch, doing a

case- and diacritical-insensitive match. If no element matches, zero is returned.

If inDelim is not passed, it defaults to “,”.

Discussion

This method returns the first element from a list, or an empty string if the list is empty. If

inDelim is not passed, it defaults to “,”.

Discussion

This method returns an indexed element from a list, or an empty string if the list is empty

or inIndex is out of range.

findNoCase version 3

findNoCase(inList; inMatch {; inDelim}) Number

Parameter Type Description

inList Text  Delimited list

inMatch Text  Text to match

inDelim Text  List delimiter

Result Number  Index of first matching element

first version 3

first(inList {; inDelim}) Text

Parameter Type Description

inList Text  Delimited list

inDelim Text  List delimiter

Result Text  First element of list

getAt version 3

getAt(inList; inIndex {; inDelim}) Text

Parameter Type Description

inList Text  Delimited list

inIndex Number  Element to get

inDelim Text  List delimiter

Result Text  Requested element of list
474 Chapter 12 Standard Libraries

a4d.lists Active4D v6.3
If inDelim is not passed, it defaults to “,”.

Discussion

This method inserts an element into a list and returns a modified copy. The value can be

of any type that can be converted to text with the String command (which includes

String and Text). If inIndex < 1, the element is prepended. If inIndex > a4d.lists.len(inList),

the element as appended.

If inDelim is not passed, it defaults to “,”.

Discussion

This method returns the last element from a list, or an empty string if the list is empty. If

inDelim is not passed, it defaults to “,”.

insertAt version 3

insertAt(inList; inIndex; inValue {; inDelim}) Text

Parameter Type Description

inList Text  Delimited list

inIndex Number  Where to insert

inValue <any>  Value to insert

inDelim Text  List delimiter

Result Text  Modified list

last version 3

last(inList {; inDelim}) Text

Parameter Type Description

inList Text  Delimited list

inDelim Text  List delimiter

Result Text  Last element of list
Chapter 12 Standard Libraries 475

Active4D v6.3 a4d.lists
Discussion

This method returns the number of element in a list. If inDelim is not passed, it defaults to

“,”.

Discussion

This method converts a delimited list into an array. If inDelim is not passed, it defaults to

“,”.

Discussion

This method inserts an element at the beginning of a list and returns a modified copy.

The value can be of any type that can be converted to text with the String command

(which includes String and Text). If inIndex < 1, the element is prepended. If inIndex >

a4d.lists.len(inList), the element as appended.

len version 3

len(inList {; inDelim}) Number

Parameter Type Description

inList Text  Delimited list

inDelim Text  List delimiter

Result Number  Number of elements in list

listToArray version 3

listToArray(inList; outArray {; inDelim})

Parameter Type Description

inList Text  Delimited list

outArray Array  Array to set

inDelim Text  List delimiter

Note: You can accomplish the same thing with split string.

prepend version 3

prepend(inList; inIndex; inValue {; inDelim}) Text

Parameter Type Description

inList Text  Delimited list

inValue <any>  Value to insert

inDelim Text  List delimiter

Result Text  Modified list
476 Chapter 12 Standard Libraries

a4d.lists Active4D v6.3
If inDelim is not passed, it defaults to “,”.

Discussion

This method encloses the elements of inList with inQualifer (e.g. double quotes).

If inCharAll is “char”, the element will be skipped if it contains any digits. A modified copy

of the list is returned.

If inDelim is not passed, it defaults to “,”.

Discussion

This method returns a copy of list starting from the second element. If inList has less than

two elements, an empty string is returned.

If inDelim is not passed, it defaults to “,”.

qualify version 3

qualify(inList; inQualifier{; inDelim {; inCharAll}}) Text

Parameter Type Description

inList Text  Delimited list

inQualifier Text  String to enclose with

inDelim Text  List delimiter

inCharAll Text  “char” or “all”

Result Text  New list

rest version 3

rest(inList {; inDelim}) Text

Parameter Type Description

inList Text  Delimited list

inDelim Text  List delimiter

Result Text  New list
Chapter 12 Standard Libraries 477

Active4D v6.3 a4d.lists
Discussion

This method sets an element of a list and returns a modified copy. The value can be of

any type that can be converted to text with the String command (which includes String

and Text). If inIndex is out of range, nothing happens.

If inDelim is not passed, it defaults to “,”.

Discussion

This method sorts the elements of a list and returns a modified copy.

If inSortOrder is “>”, the elements are sorted in ascending order. If it is “<“, they are sorted

in descending order.

If inDelim is not passed, it defaults to “,”.

setAt version 3

setAt(inList; inIndex; inValue {; inDelim}) Text

Parameter Type Description

inList Text  Delimited list

inIndex Number  Element to set

inValue <any>  Value to insert

inDelim Text  List delimiter

Result Text  Modified list

sort version 3

sort(inList {; inSortType {; inSortOrder {; inDelim}}}) Text

Parameter Type Description

inList Text  Delimited list

inSortType Text  Not used, pass ““

inSortOrder Text  “>” or “<“

inDelim Text  List delimiter

Result Text  Modified list
478 Chapter 12 Standard Libraries

a4d.lists Active4D v6.3
Discussion

This method counts how many elements of inList match inValue, doing a case- and

diacritical-sensitive match.

If inDelim is not passed, it defaults to “,”.

Discussion

This method counts how many elements of inList match inValue, doing a case- and

diacritical-insensitive match.

If inDelim is not passed, it defaults to “,”.

Discussion

This method returns a delimited list whose values are taken from the field pointed to by

inField, one element for each record in the current selection of inField’s table. inField’s

valueCount version 3

valueCount(inList; inValue {; inDelim}) Number

Parameter Type Description

inList Text  Delimited list

inValue <any>  Value to match

inDelim Text  List delimiter

Result Number  Count of matching elements

valueCountNoCase version 3

valueCountNoCase(inList; inValue {; inDelim}) Number

Parameter Type Description

inList Text  Delimited list

inValue <any>  Value to match

inDelim Text  List delimiter

Result Number  Count of matching elements

valueList version 3

valueList(inField {; inDelim}) Text

Parameter Type Description

inField Field pointer  Field from which to get values

inDelim Text  List delimiter

Result Text  New list
Chapter 12 Standard Libraries 479

Active4D v6.3 a4d.lists
type must be convertible to text with the String command (which includes Alpha and

Text fields).

The selected record is not changed by this method.

If inDelim is not passed, it defaults to “,”.
480 Chapter 12 Standard Libraries

a4d.utils Active4D v6.3
a4d.utils

This library is composed of various utility methods that do not generate HTML for output

to a page.
Chapter 12 Standard Libraries 481

Active4D v6.3 a4d.utils
Discussion

When using APPLY TO SELECTION in a multiuser database, it is of course important to

ensure the entire selection is operated on, since some records may be locked.

This method repeatedly tries to call APPLY TO SELECTION (using execute in 4d) for the

table pointed to by inTable, until either no locked records remain or inTimeout seconds

have elapsed. If no locked records remain, the method returns True. If the timeout is

reached, the method returns False and the set “LockedSet” will contain the locked

records.

If inTimeout is not passed, it defaults to 2. If the timeout is reached and inTimeoutURL is

passed and is not empty, a redirect is performed to that URL.

Discussion

When generating messages in English, it is considered good form to use the proper

article (“a” or “an”) with noun phrases.

applyToSelection version 4.5

applyToSelection(inTable; inStatement {; inTimeoutURL {; inTimeout}}) Boolean

Parameter Type Description

inTable Table pointer  Table to delete records from

inStatement Text  Code for APPLY TO SELECTION

inTimeoutURL Text  URL of page to redirect to on timeout

inTimeout Number  Seconds to wait until timeout

Result Boolean  True if successfully applied

articleFor version 3

articleFor(inNoun {; inBritishEnglish}) Text

Parameter Type Description

inNoun Text  Noun to get article for

inVowelH Boolean  True to consider “h” a vowel sound

Result Text  “a” or “an”
482 Chapter 12 Standard Libraries

a4d.utils Active4D v6.3
If you need to generate a message with dynamically generated noun phrases, this

method will return the proper article. If inVowelH is True, “h” will be considered a vowel

sound as well.

Example

Discussion

This method recursively deserializes a collection serialized with

a4d.utils.collectionToBlob. On entry, ioOffset should point to the byte offset within

inBlob at which the serialized collection data is stored (typically zero). On exit, ioOffset

points to the first byte beyond the serialized collection data.

If inGlobal is True, the collection returned is a global collection, otherwise it is a local

collection.

Discussion

This method is similar to the blob to session command, but it recursively deserializes a

session serialized with a4d.utils.sessionToBlob. On entry, ioOffset should point to the

method "whatAmI"($inKind)
 return ('You\'re `a4d.utils.articleFor($inKind)` $inKind')
end method

writebr(whatAmI("real peach")) // -> You're a real peach
writebr(whatAmI("idiot")) // -> You're an idiot

blobToCollection v5.0

blobToCollection(inBlob; ioOffset; inGlobal) Collection

Parameter Type Description

inBlob BLOB  BLOB data saved with collectionToBlob

ioOffset Number  Offset within inBlob to retrieve data

inGlobal Boolean  True to create a global collection

Result Collection  Deserialized collection

blobToSession v5.0

blobToSession(inBlob; ioOffset)

Parameter Type Description

inBlob BLOB  BLOB data saved with collectionToBlob

ioOffset Number  Offset within inBlob to retrieve data
Chapter 12 Standard Libraries 483

Active4D v6.3 a4d.utils
byte offset within inBlob at which the serialized session data is stored (typically zero). On

exit, ioOffset points to the first byte beyond the serialized session data.

The deserialized session replaces the current session. For information on how this affects

the current session, see “blob to session” on page 351.

Discussion

This method changes the case of the words in inText so that the first character of the

word is uppercase and the remaining letters are lowercase. Words that appear in the

space-separated list inExceptions are completely lowercased. If inExceptions is not passed

it defaults to the word list “a at on in by”.

Discussion

This method chops inText into 80-character chunks separated by the string “"+"“. The

primary purpose of this method is to prepare text for use with the command execute in

4d. When calling that command, the equivalent of a 4D EXECUTE is performed. Since 4D

limits the total length of a single literal string to 80 characters, this method ensures that

the entire text passed to execute in 4d is executed.

camelCaseText version 4.0

camelCaseText(inText {; inExceptions}) Text

Parameter Type Description

inText Text  Text to transform

inExceptions Text  List of words to ignore

Result Text  Transformed text

write(a4d.utils.camelCaseText("this is a test"))
// output -> This is a Test

chopText version 4.0

chopText(inText) Text

Parameter Type Description

inText Text  Text to chop into chunks

Result Text  Chopped text
484 Chapter 12 Standard Libraries

a4d.utils Active4D v6.3
Example

Discussion

This method recursively serializes a collection and appends the serialized data to ioBlob.

Numeric items or elements of numeric arrays are checked for validity as collection

handles, and if they are valid the collections they point to are serialized.

Example

$sql := 'select trans.tran_key,splits.split_key,trans.amount as
camount, splits.amount from trans,splits where trans.id =
splits.tran_id and split_key = \'$invnum\''
$cmd := 'PgSQL Select(%d;"%s")' % ($connection; $sql)

$rowset:= execute in 4d(a4d.utils.chopText($cmd); *)

collectionToBlob v5.0

collectionToBlob(inCollection; ioBlob)

Parameter Type Description

inCollection Collection  Collection to serialize

ioBlob BLOB  BLOB to serialize to

$c := new collection("first"; "Tom"; "last"; "Bombadil")
$c{"company"} := new collection("name"; "Acme Corp.")
array longint($c{"company"}{"emps"}; 0)
$emp := new collection("name"; "Sam Gamgee"; "age"; 47)
$c{"company"}{"emps"}{} := $emp
$emp := new collection("name"; "Frodo Baggins"; "age"; 53)
$c{"company"}{"emps"}{} := $emp
c_blob($blob)
a4d.utils.collectionToBlob($c; $blob)
// save $blob somewhere

// in another script
$offset := 0
$c := a4d.utils.blobToCollection($blob; $offset; false)

Note: If you serialize with this method, be sure to deserialize with

a4d.utils.blobToCollection.
Chapter 12 Standard Libraries 485

Active4D v6.3 a4d.utils
Discussion

This method is a generalized processor for the most common operations on single

records: creates, updates and deletes (hence the name “cud”). You supply a table-specific

processing script and cud does the rest.

There are four actions you can pass in cudAction:

cudTable is a pointer to the table on which you wish to perform the operation. cud takes

care of setting and restoring the read write state of the table.

If cudProcessor begins with “/”, it is taken to be a web root-relative path to an executable

script and is executed using include. Otherwise it is taken to be the name of an Active4D

method (local or library) to execute.

attributes is a collection containing values you wish to pass on to cudProcessor. Under

fusebox, typically this would be the $attributes collection itself.

If you are using timestamps to perform optimistic locking (see “Using Timestamps with

Optimistic Locking” on page 401), you can have cud do the timestamp checking when

updating or deleting records. If cudTimestampField is non-nil and cudTimestamp is non-

empty, the current value of the field pointed to by cudTimestampField will be compared

to cudTimestamp.

cud returns a status which identifies the outcome of the operation. The built-in statuses

returned by cud are:

You may also define your own status values in cudProcessor. The only status that cud

really pays attention to is “success”; any status other than that is considered failure.

cud version 4.5

cud(cudAction; cudTable; cudProcessor {; attributes {; cudTimestampField {;
cudTimestamp}}}) Text

Parameter Type Description

cudAction Text  Action to perform

cudTable Table pointer  Table to operate on

cudProcessor Text  Table-specific processing code

attributes Collection  Values to pass to cudProcessor

cudTimestampField Field pointer  Pointer to field holding a timestamp

cudTimestamp Text  Current record’s timestamp

Result Text  Status of action

Action Description

create Create a new record

update Update an existing record

update* Update a record if it exists, create a new record if not

delete Delete an existing record
486 Chapter 12 Standard Libraries

a4d.utils Active4D v6.3
Phases

For each action, there are several possible phases: “query”, “update”, “delete”, “post” and

“cleanup”. During each phase cudProcessor is executed, which gives you a chance to

customize cud’s behavior accordingly. The details of each phase are covered below in the

description of each action’s flow of control.

Custom processors

Your custom processor needs to know the current state and return a status indicating

success or failure.

In the case of an include-based cudProcessor, cud communicates its current state via

local variables. In addition to the parameters passed to cud itself (which appear as local

variables and should be considered read only), there are two additional variables:

3 $cudPhase: This is set to the current phase of the requested action, and should be

considered read only. You use this variable to determine what to do in your processor.

3 $cudResult: This is set to the current status of the requested action, and may be

changed by your processor. You may abort the action before the “post” phase by

setting this variable to a value other than “success”.

In the case of a method-based cudProcessor, your method should be declared with the

following signature:

The method should return a text status. You may abort the action before the “post”

phase by returning a value other than “success”.

If you want to maintain state in your cudProcessor between phases, it is recommended

that you use the _request collection (see “_request” on page 330).

Now we have seen all of the elements that go into making cud work. At this point it will

be useful to examine the flow of control of each action in more detail.

Create action

The “create” action has four phases, in the following order:

3 query: Usually you will ignore this phase with the “create” action, since you don’t

need to find an existing record in cudTable. But there may be cases where, for example,

Status Description

success The operation completed successfully

missing The record could not be found

conflict Timestamp checking is being used and the timestamps do not

match

locked The record could not be unlocked

method "myProccesor"($inAction; $inPhase; $inTable; $attributes;
$inTimestampField; $inTimestamp)
Chapter 12 Standard Libraries 487

Active4D v6.3 a4d.utils
the creation of a record in cudTable is dependent on some value, either in a variable or

in another table.

In such cases you would check for the dependent value, and if the test fails you would

set the status to “missing”, or whatever error message you wish to use.

In this phase the read/write state of cudTable is whatever it was when cud was called

(which is usually read only).

3 update: If the status is still “success” after the “query” phase, the “update” phase is

executed after CREATE RECORD is called and just before the newly created record is

saved. In this phase cudTable will be read write and you must set cudTable’s fields to the

appropriate values, typically retrieved from $attributes in a fusebox application, or

from _query or _form in non-fusebox applications.

If you want to use a transaction, you should start the transaction in this phase.

If you want to abort the record creation, set the status to something other than

“success”.

3 post: If the status is still “success” after the “update” phase, the “post” phase is

executed just after the new created record is saved. In this phase you would typically

perform operations on related tables that depend on the existence of a record in

cudTable, or you may need to wait for cudTable’s trigger to execute before performing

some postprocessing.

3 cleanup: The “cleanup” phase is always executed, no matter what the status is. In this

phase you perform any last-minute processing, for example committing or cancelling

a transaction based on the status. If you are not using transactions, most of the time

you will ignore this phase.

In this phase the read/write state of cudTable has already been restored to what it was

before cud was called (usually read only).

Update action

The “update” action has the same four phases as the “create” action. The “post” and

“cleanup” phases function identically to the “create” action. The “query” and “update”

phases function as follows:

3 query: In this phase you must perform a query (or some other operation) that will

result in a selection of exactly one record in cudTable. If cudTable does not have exactly

one record in its selection, cud will abort the action with a status of “missing”.

3 update: If the status is still “success” after the “query” phase, the “update” phase is

executed just before the record selected in the “query” phase is saved. Before this

phase executes, cud has already set cudTable to read write and unlocked the record. In

addition, if cudTimestampField was non-nil, cud has already verified that the record’s

timestamp matches cudTimestamp.

In this phase you must set cudTable’s fields to the appropriate values, typically

retrieved from $attributes in a fusebox application, or from _query or _form in non-

fusebox applications.

If you want to use a transaction, you should start the transaction in this phase.

If you want to abort the record update, set the status to something other than

“success”.
488 Chapter 12 Standard Libraries

a4d.utils Active4D v6.3
Update* action

The “update*” action has the same four phases as the “update” action. The “post” and

“cleanup” phases function identically to the “create” action. The flow of control during

the “update*” action is as follows:

1 The “query” phase is executed as if the action were “update”.

2 If the “query” phase results in an empty selection in cudTable, cudAction is changed

to “create” and then the action is restarted.

3 If the “query” phase results in a selection of one record in cudTable, execution

continues as if the action were “update”.

4 If the “query” phase results in a selection of more than one record in cudTable, the

action is aborted with a status of “missing”.

Delete action

The “delete” action has four phases like the “update” action. The “query”, “post” and

“cleanup” phases function identically to the “update” action. Instead of an “update”

phase, there is a “delete” phase which functions as follows:

3 delete: If the status is still “success” after the “query” phase, the “delete” phase is

executed just before the record selected in the “query” phase is deleted. Before this

phase executes, cud has already set cudTable to read write and unlocked the record. In

addition, if cudTimestampField was non-nil, cud has already verified that the record’s

timestamp matches cudTimestamp.

In this phase you would typically update or delete related records. If there are no

updates necessary outside of the main record deletion, you may ignore this phase.

If you want to use a transaction, you should start the transaction in this phase.

If you want to abort the record deletion, set the status to something other than

“success”.

Examples

Let’s take a look at an example. In this example, we have an application that tracks

companies and contacts. Both use an edit form which receives the record’s id in the

query string. If a new record is being created, the id is “-1”.
Chapter 12 Standard Libraries 489

Active4D v6.3 a4d.utils
Here is the HTML (quite simplified for the sake of this example) for the company edit

form:

When the a button is clicked and the form is posted, fusebox routes the request to an

action fuse:

<form action="<%=fusebox.makeURL($XFA_onSubmit)%>" method="post">
<%
 // $rs is a RowSet populated in a query fuse
 $rs->first
 $row := $rs->getRow
 a4d.web.hideField("id"; $attributes{"id"})
 a4d.web.hideField("timestamp"; $row{"timestamp"})
%>
Name: <input name="name" type="text" value="<%=$row{"name"}%>"/>

Phone: <input name="phone" type="text"
 value="<%=$row{"phone"}%>"/>

<input name="b_save" type="submit" value="Save" />
<input name="b_cancel" type="submit" value="Cancel" />
<input name="b_delete" type="submit" value="Delete"
 style="margin-left: 70px"/>
</form>

if ($attributes{"b_cancel"} # "")
 // Either delete or update with create if not found
 $action := choose($attributes{"b_delete"}; \\
 "delete"; "update*")

 // Use a library method app.cudCompanies as processor,
 // and we want timestamp checking
 $result := a4d.utils.cud($action; ->[companies]; \\
 "app.cudCompanies"; $attributes; \\
 ->[companies]timestamp; $attributes{"timestamp"})

 if ($result = "success")
 redirect(fusebox.makeURL($XFA_onSuccess))
 else
 $query := build query string(""; "status"; $result)
 redirect(fusebox.makeURL($XFA_onFailure; $query))
 end if
else
 redirect(fusebox.makeURL($XFA_onCancel))
end if
490 Chapter 12 Standard Libraries

a4d.utils Active4D v6.3
That is all of the setup we need or cud. Now we take a look at our custom processor, the

library method app.cudCompanies:

As you can see, cud does most of the work and allows you to focus very tightly on the

code that is specific to each table. Without cud you have to deal with the supporting

logic, and you would end up copying, pasting and tweaking the same code for every

table.

Discussion

When deleting a selection of records in a multiuser database, it is of course important to

ensure the entire selection is deleted, since some records may be locked.

method "cudCompanies"($cudAction; $cudPhase; $cudTable; \\
 $inStatus; $attributes; $cudTimestampField; $cudTimestamp)

 case of
 :($cudPhase = "query")
 query([companies]; [companies]id = $attributes{"id"})

 :($cudPhase = "update")
 [companies]name := $attributes{"name"}
 [companies]phone := $attributes{"phone"}

 :($cudPhase = "delete")
 // contacts for this company now belong to the
 // special company "(None)" with id 0
 if (not(a4d.utils.applyToSelection(->[contacts]; $code)))
 // oops, a contact record could not be unlocked
 return ("locked")
 end if
 end case

 return ("success")
end method

Note: Just so we are all clear on this principle: copy, paste and tweak is a BAD THING.

Don’t do it. Use cud instead.

deleteSelection version 3

deleteSelection(inTable {; inTimeoutURL {; inTimeout}}) Boolean

Parameter Type Description

inTable Table pointer  Table to delete records from

inTimeoutURL Text  URL of page to redirect to on timeout

inTimeout Number  Seconds to wait until timeout

Result Boolean  True if selection successfully deleted
Chapter 12 Standard Libraries 491

Active4D v6.3 a4d.utils
This method repeatedly tries to delete the current selection in the table pointed to by

inTable, until either no locked records remain or inTimeout seconds have elapsed. If no

locked records remain, the method returns True. If the timeout is reached, the method

returns False and the set “LockedSet” will contain the locked records.

If inTimeout is not passed, it defaults to 2. If the timeout is reached and inTimeoutURL is

passed and is not empty, a redirect is performed to that URL.

Discussion

This method filters a collection and returns a new, filtered collection.

inFilter is matched against the keys of inCollection to determine which collection items

are returned in the filtered collection. Each collection item whose key matches inFilter is

copied to the filtered collection.

If the first character of inFilter is ‘+’, the filter is an inclusion filter. If the first character is ‘-’,

the filter is an exclusion filter. If there is no ‘+/-’, the filter defaults to an inclusion filter. If

the first character after the optional ‘+/-’ is ‘/’, the rest of the filter is taken as a regular

expression, and should follow the rules for regular expression match strings (see “regex

match” on page 281). Otherwise the normal string matching rules (‘@’ is a wildcard) are

in effect.

Discussion

Given a phone number in any format, this method will do the following:

3 If the number is empty, an empty string is returned.

filterCollection version 4.0

filterCollection(inCollection; inFilter {; inGlobal}) Collection

Parameter Type Description

inCollection Collection | Iterator  Collection to filter

inFilter Text  Filter specification

inGlobal Boolean  True to return a global collection

Result Collection  Filtered collection

formatUSPhone version 3

formatUSPhone(inPhone {; inFormat}) Text

Parameter Type Description

inPhone Text  Phone number to format

inFormat Text  Format string for number

Result Text  Formatted phone number
492 Chapter 12 Standard Libraries

a4d.utils Active4D v6.3
3 Any non-numeric characters are removed.

3 If the remaining string is 11 digits and begins with “1”, the “1” is removed.

3 If the remaining string is 10 digits it is formatted according to inFormat. If inFormat is

not passed, the number is formatted as (000) 000-0000. Otherwise the number is

formatted using the given format string using the % formatting operator. For example,

to format the number as 000-000-000, pass a format of “%s-%s-%s”.

3 If the string is not 10 digits, it is returned in its original form.

Discussion

This method returns the name of the 4D method which is called by a4d.utils.sendMail to

send a mail message. The default method is A4D_SendMail.

For more information, see “setMailMethod” on page 503.

Discussion

This method returns a string which describes the width, height, and byte size of inPicture.

This is primarily useful in debugging.

getMailMethod version 4.0

getMailMethod Text

Parameter Type Description

Result Text  Method to call for sending mail

getPictureDescriptor version 3

getPictureDescriptor(inPicture) Text

Parameter Type Description

inPicture Picture  Picture to get info for

Result Text  Descriptive string
Chapter 12 Standard Libraries 493

Active4D v6.3 a4d.utils
Discussion

This method returns a string which identifies the referent of inPointer in the same way it

would appear in the 4D debugger. In other words, the output for different pointer types

is:

Discussion

This method returns the current username and password that will be used to authorize

SMTP access when calling sendMail.

The username and password are set with setSMTPAuthorization.

getPointerReferent version 3

getPointerReferent(inPointer) Text

Parameter Type Description

inPointer Pointer  Pointer to get referent of

Result Text  Describes referent of inPointer

Pointer type Result

Table ->[table]

Field ->[table]field

Variable ->var

Array element ->array{index}

getSMTPAuthorization version 4.0

getSMTPAuthorization(outUserName; outPassword)

Parameter Type Description

outUserName Text  SMTP account username

outPassword Text  SMTP account password
494 Chapter 12 Standard Libraries

a4d.utils Active4D v6.3
Discussion

This method returns the current password that will be used to authorize SMTP access

when calling sendMail.

The username and password are set with setSMTPAuthorization.

Discussion

This method returns the current username that will be used to authorize SMTP access

when calling sendMail.

The username and password are set with setSMTPAuthorization.

Discussion

This method returns the current hostname that will be used for SMTP access when

calling sendMail.

The SMTP host is set with setSMTPHost.

getSMTPAuthPassword version 4.0

getSMTPAuthPassword Text

Parameter Type Description

Result Text  SMTP account password

getSMTPAuthUser version 4.0

getSMTPAuthUser Text

Parameter Type Description

Result Text  SMTP account username

getSMTPHost version 4.0

getSMTPHost Text

Parameter Type Description

Result Text  SMTP account username
Chapter 12 Standard Libraries 495

Active4D v6.3 a4d.utils
Discussion

Given a pointer to a field which contains a Longint, Alpha or Text ID, this method returns

the number which is one higher than the maximum value in that field. If inField is an

Alpha or Text field, it is converted to a number with the Num command.

If inKeepSelection is passed and is True, the current selection and record will be

maintained. Otherwise they will be lost.

Discussion

This method returns inNumber suffixed with the correct suffix to make it an ordinal

number.

nextID version 4.0

nextID(inField {; inKeepSelection}) Text

Parameter Type Description

inField Field Pointer  ID field

inKeepSelection Boolean  True to maintain selection/record

Result Number  Next highest ID

ordinalOf version 3

ordinalOf(inNumber) Text

Parameter Type Description

inNumber Number  Number to get ordinal for

Result Text  Number plus ordinal
496 Chapter 12 Standard Libraries

a4d.utils Active4D v6.3
Example

Discussion

This method parses a text file with one or more lines in the form <key>=<value> into a

collection.

If inPathOrDocRef is of type Time, it must be a valid document reference to an open file

that was opened with the command. In this case you are responsible for closing the file

after calling this method.

Otherwise inPathOrDocRef should be a text path to the config file you want to parse. The

path should follow the rules or paths used with the command. If the file is successfully

opened, it is automatically closed before this method returns. If the file cannot be

opened, an empty collection is returned.

If inEOL is not passed, the line endings are assumed to be LF (“\n”). If your config file has

line endings other than LF, you must pass the line ending in inEOL. The last line of the

config file does not need to be terminated with a line ending.

Blank lines and white space around the keys and values are discarded. In addition, if the

first characters of a line are “‘” (4D comment character) or “//” (Active4D line comment

characters), the line is ignored. This allows you to comment the config file.

Examples

Let’s assume a site we are developing has to send emails. During testing, we do not want

the emails to go to the intended recipients, we want them to come to us. In addition, the

SMTP host on the deployment server is different than the one we use during testing.

Instead of hard coding hostnames and email addresses into our code, we can use a

config file. We decide to put a file called “mail.ini” in the database directory. Here’s what

our config file might look like:

write(a4d.utils.ordinalOf(1)) // -> 1st
write(a4d.utils.ordinalOf(10)) // -> 10th

parseConfig version 4.5

parseConfig(inPathOrDocRef {; inEOL}) Collection

Parameter Type Description

inPathOrDocRef Text/Time  Path to file or document reference

inEOL Text  Line ending
Chapter 12 Standard Libraries 497

Active4D v6.3 a4d.utils
To ensure our config file is accessible, we set the “safe doc dirs” option in Active4D.ini:

In the “On Application Start” method in the Active4D library, we add this code:

Then, to build our mail message we do this:

// Use this file to configure the settings for your mail server.
// If you want to force mail to go to a certain address, enter
// the "to" address here. To use the normal destination
// address, leave the "to" value empty.
// If a "to" address is entered here, the mail message
// will display the original "to" address.

host = smtp.foobar.com
to = foo@bar.com

safe doc dirs = <default>

$path := join paths(default directory(*); "mail.ini")
$config := a4d.utils.parseConfig($path)
a4d.utils.setSMTPHost($config{"host"})
globals{"mail.to"} := $config{"to"}

$testing := ""
$from := "staff@mycompany.com"
$to := globals{"mail.to"}

if ($to)
 $testing += 'Original To: [employee]email\n'
else
 $to := [employee]email
end if

if ($testing)
 $testing := "[This is a test message]\n" + $testing + "\n"
end if

$name := [employee]first_name + " " + [employee]last_name
$msg := "|System message\n%sHello,\n\nOn %s, " + \\
 "%s fooed the bar.\n\nSincerely,\n\n - The System"
$msg := $msg % ($testing; string(current date); $name)
$err := a4d.utils.sendMail($msg; $from; $to)
498 Chapter 12 Standard Libraries

a4d.utils Active4D v6.3
Discussion

This method reverses the elements of ioArray in place.

Discussion

This method is the same as selectionToCollection, but allows you to specify a range of

selected records as you would with SELECTION RANGE TO ARRAY.

Discussion

This method is analogous to SELECTION TO ARRAY, but instead of copying the field

data into a number of different array variables, the data is copied into arrays within a

single collection.

The resulting collection has one item per field, each of which contains an array of values

for that field. Like SELECTION TO ARRAY, the table of the first field is considered the

main table.

reverseArray version 3

reverseArray(ioArray)

Parameter Type Description

ioArray Array  Array to reverse

selectionRangeToCollection v6.0r7

selectionRangeToCollection(inStart; inEnd; inFields {; inWantGlobal }) Collection

Parameter Type Description

inStart Number  Starting index in selection

inEnd Number  Ending index in selection

inFields Array/Text/Pointer  Field specification

inWantGlobal Boolean  True to return a global collection

selectionToCollection v6.0r7

selectionToCollection(inFields {; inWantGlobal }) Collection

Parameter Type Description

inFields Array/Text/Pointer  Field specification

inWantGlobal Boolean  True to return a global collection
Chapter 12 Standard Libraries 499

Active4D v6.3 a4d.utils
inFields may be either:

3 A semicolon-delimited list of [table]field names and optional aliases

3 An array of [table]field names and optional aliases

3 An array of field pointers

3 A table pointer (which must be passed in a variable)

When passing a list or array of [table]field names, leading and trailing whitespace is

ignored. If a [table]field is followed by an item which does not begin with "[", the next

item is used as the key for that field in the collection. This allows you to map database

field names to something else.

If you pass an array of field pointers, it is the same as passing an array of [table]field

names for those fields.

If you pass a table pointer, it is the same as passing an array of all [table]field names for

that table.

If a field name is not aliased, the field name is used as the collection key for fields

belonging to the main table. For unaliased fields in other tables, the collection key will be

table.field.

Example

In this example, we specify the list of fields and aliases. Because leading and trailing

whitespace is ignored, we can use a multi-line heredoc string:

$fields := """
[contacts]id;
[contacts]first_name;first;
[contacts]last_name;last;
[company]id;
[company]name"""
$collection := a4d.utils.selectionToCollection($fields)

// $collection has 5 array items:
// id, first, last, company.id, company.name
500 Chapter 12 Standard Libraries

a4d.utils Active4D v6.3
Discussion

This method is a front end to the 4D method A4D_SendMail that makes it easy to

dynamically generate email messages.

If the first character of inMailFile is not ‘!’, it is considered a path to a file to include, relative

to the file that called this method. Because the file in included within the context of this

method, the caller’s local variables are not available. To access the caller’s local variables,

put the values you want to access in a collection and pass that collection in inUserData.

The output of the include becomes the source of the email message.

If the first character of inMailFile is ‘!’, the text following it is executed using the Active4D

execute command. Any output from that execution that would normally go to the

response buffer is saved and becomes the source of the email message.

If the first character of inMailFile is ‘|’, the text following it becomes the source of the

email message.

The first line of the email source is taken as the subject of the message, and must be

separated from the body of the message by a linefeed (“\n”). Thus you must save an

include file with Unix line endings when you edit it.

The rest of the email source becomes the body of the message.

inTo, inCc, and inBcc can all contain more than one address, separated by commas.

To add an attachment, pass the full Unix-style path to the attachment in

inAttachmentPath.

sendMail
version 3

modified version 4.0

sendMail(inMailFileOrText; inFrom; inTo; inCC; inBCC; inAttachmentPath; inUserData;
inHeaders) Number

Parameter Type Description

inMailFileOrText Text  Path to a file or text to send/execute

inFrom Text  From address

inTo Text  To addresses

inCc Text  Cc addresses

inBcc Text  Bcc addresses

inAttachmentPath Text  Unix path to attachment

inUserData Collection  Data for included file

inHeaders Text  Extra headers to add to message

Result Number  Error code, 0 means success
Chapter 12 Standard Libraries 501

Active4D v6.3 a4d.utils
If inHeaders is passed, it should be a linefeed-delimited list of header:value pairs.

Example

When a new user logs into the system, we want to send a welcome email with their user

information. Here is the email include file called “welcome.inc”:

To generate the email, we first do a query that generates a RowSet with the columns

“email”, “username”, “password”, and “firstname”. We then pass this to sendMail:

Note: Before using this command you must call setSMTPHost, and

setSMTPAuthorization if the SMTP host requires account authorization. Also, the

subject must be separated from the body by a linefeed ("\n"), not a carriage return

("\r").

Welcome to ACME Corporation!
Dear <%=$inUserData{"firstname"}%>,

Welcome to the growing family of ACME Corporation members. Your
login information is as follows:

username: <%=$inUserData{"username"}%>
password: <%=$inUserData{"password"}%>

To login, please go to www.acme.com/login.

Regards,

 ACME Corporation

$map := """
email: [users]email;firstname:[users]firstname;
username:[users]username;password:[users]password"""

$rs := RowSet.NewFromSelection(->[users]; $map)
$rs->first
$row := $rs->getRow
a4d.utils.sendMail("email/welcome.inc"; "sales@acme.com"; \\
 $row{"email"}; ""; ""; ""; $row; \\
 "Reply-To: noreply@acme.com")
502 Chapter 12 Standard Libraries

a4d.utils Active4D v6.3
Discussion

This method recursively serializes the current session and appends the serialized data to

ioBlob. Numeric items or elements of numeric arrays are checked for validity as collection

handles, and if they are valid the collections they point to are serialized.

Discussion

This method sets the name of the 4D method which is called by a4d.utils.sendMail to

send a mail message. The default method is A4D_SendMail.

If you specify a method other than A4D_SendMail, its parameters must be identical in

position and type to A4D_SendMail.

A4D_SendMail uses 4D Internet Commands to send email immediately. If you want to

use some other method to send email, for example if you want to queue the mail for later

delivery or use some other plugin to send mail, you can use setMailMethod to call your

own custom method.

sessionToBlob v5.0

sessionToBlob(ioBlob)

Parameter Type Description

ioBlob BLOB  BLOB to serialize to

Note: If you serialize with this method, be sure to deserialize with

a4d.utils.blobToSession.

setMailMethod version 4.0

setMailMethod(inMethod)

Parameter Type Description

inMethod Text  4D method name
Chapter 12 Standard Libraries 503

Active4D v6.3 a4d.utils
Discussion

This method sets the username and password that will be used to authorize SMTP access

when calling sendMail.

Discussion

This method sets the hostname that will be used for SMTP access when calling sendMail.

Discussion

This method truncates inText to the character width specified by inWidth. If

Length(inText) < 3 or Length(inText) < inWidth, inText is returned as is. Otherwise

Length(inText) - inWidth characters are removed from inText and are replaced by an

ellipsis (“...”).

The placement of the ellipsis is controlled by inTruncateMode. There are three modes

which are defined as library constants:

setSMTPAuthorization version 4.0

setSMTPAuthorization(inUserName; inPassword)

Parameter Type Description

inUserName Text  SMTP account username

inPassword Text  SMTP account password

setSMTPHost version 4.0

setSMTPHost(inHost)

Parameter Type Description

inHost Text  SMTP hostname

truncateText version 4.0

truncateText(inText; inWidth; inTruncateMode) Text

Parameter Type Description

inText Text  Text to truncate

inWidth Number  Width to truncate to

inTruncateMode Number  How to truncate

Result Text  Truncated text
504 Chapter 12 Standard Libraries

a4d.utils Active4D v6.3
Example

If you know you will have a very long string, such as a file path, you may want to display

only part of it onscreen, like so:

Discussion

This method tries repeatedly to load an unlocked copy of the record with the record

number inRecNum in the table pointed to by inTable, until either the record becomes

unlocked or inTimeout seconds elapses.

Basically, you should be using this method any time you need to update a record.

If inRecNum is not passed or is -1, the current record in the table pointed to by inTable is

used. If inTimeout is not passed, by default unlockAndLoad will wait 2 seconds before

timing out. If inTimeoutURL is passed in and is non-empty, after a timeout a redirect will

be performed to that URL.

Truncate modes

kTruncateText_Start

kTruncateText_Middle

kTruncateText_End

$path := "/Home/Users/Spock/Documents/biz/webapps/contacts/docs"
write(a4d.utils.truncateText($path; 20; \\
 a4d.utils.kTruncateText_Start))
// -> ...ebapps/contacts/docs
write(a4d.utils.truncateText($path; 20; \\
 a4d.utils.kTruncateText_Middle))
// -> /Home/User...tacts/docs
write(a4d.utils.truncateText($path; 20; \\
 a4d.utils.kTruncateText_End))
// -> /Home/Users/Spock/Do...

unlockAndLoad
version 3

modified version 4.0

unlockAndLoad(inTable {; inRecNum {; inTimeoutURL {; inTimeout}}}) Boolean

Parameter Type Description

inTable Table pointer  Table to load record from

inRecNum Number  Record number of record to unlock, or

-1 to use current record

inTimeoutURL Text  URL of page to redirect to if timeout

inTimeout Number  Seconds to wait before timing out

Result Boolean  True if record successfully unlocked
Chapter 12 Standard Libraries 505

Active4D v6.3 a4d.utils
If the record is successfully unlocked, True is returned and the table pointed to by inTable

is left in read write mode. If a timeout occurs while waiting for a lock, the read only state

of the table is restored to what it was before the method was called, and if inTimeoutURL

is empty False is returned.

Example

A typical scenario is the posting of an edit form for a record. In the form processing script

you need to update the record. Typically you would do something like this:

Discussion

This method validates the format of a price. If inPrice is a number, it is converted to a

string with two decimal places and the decimal separator inDecimalSep.

query([contacts]; [contacts]id = $attributes{"cid"})

if (records in selection([contacts]) = 1)
 if (a4d.utils.unlockAndLoad(->[contacts]))
 [contacts]email := $attributes{"f_email"}
 [contacts]phone := $attributes{"f_phone"}
 save record([contacts])
 unload record([contacts])
 read only([contacts])
 end if
end if

validPrice
version 3

modified version 4.0

validPrice(inPrice; inCurrencyMark; inDecimalSep) Boolean

Parameter Type Description

inPrice Number/Text  Price to check

inCurrencyMark Text  Optional currency mark to allow,

defaults to "$"

inDecimalSep Text  Decimal separator character, defaults

to "."

Result Boolean  True if inPrice fits the pattern
506 Chapter 12 Standard Libraries

a4d.utils Active4D v6.3
Discussion

This method converts inDate to the format YYYYMMDD if inShortDate is False or is not

passed.

If inShortDate is passed and is True, inDate is converted to the format YYMMDD.

If inDate is not passed or is !00/00/00!, it defaults to the current server date.

yearMonthDay
version 3

modified version 4.0

yearMonthDay({inShortDate {; inDate}}) Text

Parameter Type Description

inShortDate Boolean  True to use 2-digit year, defaults to

False

inDate Date  Date to format, defaults to current

date

Result Text  Formatted date
Chapter 12 Standard Libraries 507

Active4D v6.3 a4d.web
a4d.web

This library is composed of methods that are primarily designed to make it easier to work

with forms, query strings, and SELECT lists.

Note: The dump <something> methods have been moved to a separate a4d.debug

library.
508 Chapter 12 Standard Libraries

a4d.web Active4D v6.3
Discussion

This method returns a
 tag if the “doctype” option in Active4D.ini is “html”, or

if the doctype is “xhtml”.

Discussion

This method writes a series of HTML OPTIONs to the output buffer, one for each element

in the inOptions array. The text of each OPTION comes from inOptions, and the value

comes from inValues.

Both inOptions and inValues can be any type to which the String command can be

applied to its elements (which includes String/Text Arrays). If inSelect is passed in, it must

be assignment compatible with inValues. If inInitialIndex > 0, it is used as the starting

index and inInitialValue is ignored.

br v6.0

br

buildOptionsFromArrays version 3

buildOptionsFromArrays(inOptions; inValues; inInitialIndex {; inInitialValue})

Parameter Type Description

inOptions Array  Option texts

inValues Array  Option values

inInitialIndex Number  Index of option to select, 0 to use

inInitialValue

inInitialValue <any>  Value of option to select
Chapter 12 Standard Libraries 509

Active4D v6.3 a4d.web
Note that this method only builds the OPTIONs of a SELECT object, not the SELECT object

itself.

Example

Given arrays of country names and codes that you have cached in the globals collection,

you could build a select list that would default to United States as the country and would

return the country code like this:

Discussion

This method writes a series of HTML OPTIONs to the output buffer, one for each element

in the inOptions list. The text of each OPTION comes from inOptions, and the value comes

from inValues.

If inInitialIndex > 0, it is used as the starting index and inInitialValue is ignored.

Note: This method was previously called buildArrayValueList, which will continue to

work in this release but is now deprecated.

<select name="f_country" id="f_country" size="1">
<% a4d.web.buildOptionsFromArrays(globals{"country_names"}; \\
 globals{"country_codes"}; 0; "US") %>
</select>

buildOptionsFromLists version 3

buildOptionsFromLists(inOptions; inValues; inInitialIndex {; inInitialValue {; inDelimiter}})

Parameter Type Description

inOptions Text  Delimited list of option texts

inValues Text  Delimited list of option values

inInitialIndex Number  Index of option to select, 0 to use

inInitialValue

inInitialValue Text  Value of option to select

inDelimiter Text  List delimiter, defaults to “;”
510 Chapter 12 Standard Libraries

a4d.web Active4D v6.3
Note that this method only builds the OPTIONs of a SELECT object, not the SELECT object

itself.

Example

To build a choice list of US states and select the first state by default, you could do the

following:

Discussion

This method writes a series of HTML OPTIONs to the output buffer, one for each element

in the inOptions array. The text of each OPTION comes from inOptions. If inInitialIndex > 0,

the value of each OPTION is its index. If inInitialIndex > 0, the value of each OPTION comes

from inOptions.

inOptions can be any type to which the String command can be applied to its elements

(which includes String/Text Arrays). If inInitialValue is passed in, it must be assignment

compatible with inOptions. If inInitialIndex > 0, it is used as the starting index and

inInitialValue is ignored.

Note: This method was previously called buildSelectValueMenu, which will continue

to work in this release but is now deprecated.

<select name="f_state" id="f_state" size="1">
<% a4d.web.buildOptionsFromLists(\\
 a4d.web.kUS_SortedStateNames; \\
 a4d.web.kUS_UnsortedStateCodes; 1) %>
</select>

buildOptionsFromOptionArray version 3

buildOptionsFromOptionArray(inOptions; inInitialIndex {; inInitialValue})

Parameter Type Description

inOptions Array  Contains option texts

inInitialIndex Number  Index of option to select, 0 to use

inInitialValue

inInitialValue <any>  Value of option to select
Chapter 12 Standard Libraries 511

Active4D v6.3 a4d.web
Note that this method only builds the OPTIONs of a SELECT object, not the SELECT object

itself.

Example

To build a choice list of cached status codes, you could do this:

Discussion

This method writes a series of HTML OPTIONs to the output buffer, one for each element

in the inOptions list. The text of each OPTION comes from inOptions. If inInitialIndex > 0,

the value of each OPTION is its index. If inInitialIndex > 0, the value of each OPTION comes

from inOptions.

If inInitialIndex > 0, it is used as the starting index and inInitialValue is ignored.

Note that this method only builds the OPTIONs of a SELECT object, not the SELECT object

itself.

Example

To build a choice list of US state codes that defaults to the first state, you could do this:

Note: This method was previously called buildArrayList, which will continue to work

in this release but is now deprecated.

<select name="f_status" id="f_status" size="1">
<% a4d.web.buildOptionsFromOptionArray(\\
 globals{"customer.status"}; 0; $row{"status"}) %>
</select>

buildOptionsFromOptionList version 3

buildOptionsFromOptionList(inOptions; inInitialIndex {; inInitialValue})

Parameter Type Description

inOptions Text  Delimited list of option texts

inInitialIndex Number  Index of option to select, 0 to use

inInitialValue

inInitialValue Text  Value of option to select

Note: This method was previously called buildSelectMenu, which will continue to

work in this release but is now deprecated.

<select name="f_state" id="f_state" size="1">
<% a4d.web.buildOptionsFromOptionArray(\\
 a4d.web.kUS_State; 1) %>
</select>
512 Chapter 12 Standard Libraries

a4d.web Active4D v6.3
Discussion

This method writes a series of HTML OPTIONs to the output buffer, one for each row in

inRowSet. The text of each OPTION comes from the column inOptionColumn. The value of

each OPTION comes from the column inValueColumn if inValueColumn is not an empty

string, or from the column inOptionColumn otherwise.

If inInitialIndex > 0, it is used as the starting index and inInitialValue is ignored.

Note that this method only builds the OPTIONs of a SELECT object, not the SELECT object

itself.

Example

To build a multiple choice list of sport names and codes that defaults to nothing

selected, you could do this:

buildOptionsFromRowSet version 4.0

buildOptionsFromRowSet(inRowSet; inOptionColumn; inValueColumn; inInitialIndex
{; inInitialValue})

Parameter Type Description

inRowSet RowSet  Rows from which to get data

inOptionColumn Text  Name of column which contains

option texts

inValueColumn Text  Name of column which contains

option values

inInitialIndex Number  Index of option to select, 0 to use

inInitialValue

inInitialValue Text  Value of option to select

<select name="f_sports" id="f_sports" size="10"
multiple="multiple">
<%
a4d.web.buildOptionsFromRowSet($rsSports; "name"; "code"; -1)
%>
</select>
Chapter 12 Standard Libraries 513

Active4D v6.3 a4d.web
Discussion

This method writes a series of HTML OPTIONs to the output buffer, one for each record in

the current selection of inValueField’s table. The text of each OPTION comes from

inOptionField. The value of each OPTION comes from inValueField.

If String(inValueField->) evaluates to “0”, the option text is set to “<Default>”.

Note that this method only builds the OPTIONs of a SELECT object, not the SELECT object

itself.

Example

To build a choice list of vendor names and IDs that defaults to the first one selected, you

could do this:

buildOptionsFromSelection version 3

buildOptionsFromSelection(inOptionField; inValueField; inInitialValue)

Parameter Type Description

inOptionField Field pointer  Points to option texts

inValueField Field pointer  Points to option values

inInitialValue <any>  Value of option to select initially

Note: This method was previously called buildRecordList, which will continue to

work in this release but is now deprecated. Also note that buildRecordList reversed

the order of inOptionField and inValueField.

<select name="f_vendors" id="f_vendors" size="1">
<% a4d.web.buildOptionsFromSelection(\\
 ->[vendors]name; ->[vendors]id; [vendors]id) %>
</select>
514 Chapter 12 Standard Libraries

a4d.web Active4D v6.3
Discussion

It is important that you detect when a session has timed out or when no session exists.

This is easily done by designating one session item (such as a user id) which only exists

when a user has successfully logged in to the site.

You then need to check the session before displaying every page that relies on a current

session. This method is a convenience method for checking the session. You pass the

designated session item in inItemToCheck. If the item does not exist, a redirect is

performed to inRedirectURL, passing inQueryString.

Example

Discussion

This method makes it easier to set dynamic checkboxes in your pages. If inState is a

Boolean and True, or if it is text and is “1”, the text “checked="checked"” is written to the

output buffer.

Example

Suppose you have a series of checkboxes on a form that reflect data from a RowSet. You

could set them like this:

checkSession version 3

checkSession(inItemToCheck; inRedirectURL {; inQueryString})

Parameter Type Description

inItemToCheck Text  Name of item to check for in session

inRedirectURL Text  URL of page to redirect to

inQueryString Text  Query string to pass on redirect

Note: If you are using Fusebox, do not use this method.

<% checkSession("user.id"; "/timeout.a4d") %>

checkboxState version 3

checkboxState(inState)

Parameter Type Description

inState Boolean | Text  State of a checkbox

<input name="f_dorm" id="f_dorm" type="checkbox"
 <%checkboxState($row{"dorm"})%>> Will live in dorm
Chapter 12 Standard Libraries 515

Active4D v6.3 a4d.web
Discussion

This method constructs a query string (without a leading “?”) from the items in

inCollection whose keys match the keys in the semicolon-delimited list inItems. White

space around the key names in inItems is automatically trimmed.

inSwitches determines the formatting of the query string, and follows the same format as

the switches passed to build query string. For more information, see “build query

string” on page 275.

Example

When you are displaying a page that is based on some contextual information derived

from a posted form or the query string, you usually need to maintain that contextual

information in any links which exit the page.

For example, consider the following typical “drill-drown” scenario:

3 The user selects a company

3 From a list of contacts in the company, a contact is clicked on to view his or her details

3 From a list of phone calls, one call is clicked on to view the details of the call

At each step along the way, you want to know the full context so you know how the user

got to where they are and how they can get back. So you need to carry the context

information (such as company ID / contact ID / call ID) forward as the user drills down.

This method makes it easy to construct links with query strings that contain all the

context information you need.

In the company/contacts/phone calls example cited above, the links to display a call

detail might look like this:

collectionItemsToQuery version 3

collectionItemsToQuery(inCollection; inItems {; inSwitches}) Text

Parameter Type Description

inCollection Collection | Iterator  Collection from which to get items

inItems Text  Semicolon-delimited list of item keys

inSwitches Text  Switches to control query formatting

Result Text  Query string

<%
 // We are using Fusebox, so the query string for this
 // page is in $attributes
 // cid = company id, ctid = contact id
 $query := a4d.web.collectionItemsToQuery($attributes; \\
 "cid;ctid")
%>
<a href="<%=fusebox.makeLink($XFA_onViewCallDetail; $query)%>"
title="View call detail">$row{"number"}
516 Chapter 12 Standard Libraries

a4d.web Active4D v6.3
Discussion

This method is identical to embedCollection, but instead of creating hidden form fields,

constructs a query string (without a leading “?”) from the items in inCollection whose

keys match the filter specified by inFilter.

For more information on how the filtering works, see “embedCollection” on page 517.

Discussion

When you are displaying a form that is based on some contextual information derived

from a posted form or the query string, you usually need to maintain that contextual

information in hidden fields within the form, so that when the form is posted you can

determine the context.

For example, consider the following typical scenario:

3 The user selects a company

3 From a list of contacts in the company, a contact is clicked on to view his or her details

At each step along the way, you want to know the full context so you know how the user

got to where they are and how they can get back. So you need to carry the context

information (such as company ID / contact ID) forward as the user navigates through the

data.

collectionToQuery version 4.0

collectionToQuery(inCollection {; inFilter}) Text

Parameter Type Description

inCollection Collection | Iterator  Collection from which to get items

inFilter Text  Text to match against

Result Text  Query string

embedCollection version 3

embedCollection(inCollection {; inFilter})

Parameter Type Description

inCollection Collection | Iterator  Collection from which to get items

inFilter Text  Text to match against
Chapter 12 Standard Libraries 517

Active4D v6.3 a4d.web
If all of the context information is in a single collection, and the keys of the collection

items can be included or excluded by a pattern, this method makes it easy to embed all

of the context information you need within a form.

inFilter is matched against the keys of inCollection to determine which collection items

are embedded in the form. For each collection item whose key matches inFilter, a hidden

form field is created whose id/name is the item key and whose value is the item value. If a

collection item is an array, a hidden form field will be created for each element of the

array.

If the first character of inFilter is ‘+’, the filter is an inclusion filter. If the first character is ‘-’,

the filter is an exclusion filter. If there is no ‘+/-’, the filter defaults to an inclusion filter. If

the first character after the optional ‘+/-’ is ‘/’, the rest of the filter is taken as a regular

expression, and should follow the rules for regular expression match strings (see “regex

match” on page 281). Otherwise the normal string matching rules (‘@’ is a wildcard) are

in effect.

Example

In the company/contacts example cited above, the edit form for the contact might look

like this:

Note: If the keys of the items you want to embed do not follow a pattern (which is

often the case), use embedCollectionItems instead of this method.

<form id="form" name="form"
 action="<%=fusebox.makeURL($XFA_onSubmit)%>"
 method="post"
>
<div>
<input id="f_name" name="f_name" type="text"
 value="<%=$row{"name"}%>" />

<input id="f_phone" name="f_phone" type="text"
 value="<%=$row{"phone"}%>" />

<input id="x_submit" name="x_submit" type="submit" value="Save"
/>
<%
 // embed the context
 a4d.web.embedCollection($attributes; "f_@")
%>
</div>
</form>
518 Chapter 12 Standard Libraries

a4d.web Active4D v6.3
Discussion

This method serves the same purpose as collectionItemsToQuery, but instead of returning

a query string, embeds the items as hidden form items. For more details see the

discussion for collectionItemsToQuery.

Discussion

This method is equivalent to:

For more information, see the discussion of “embedCollectionItems” on page 519.

Discussion

This method is equivalent to:

embedCollectionItems version 3

embedCollectionItems(inCollection; inItems)

Parameter Type Description

inCollection Collection | Iterator  Collection from which to get items

inItems Text  Semicolon-delimited list of item keys

embedFormVariableList version 3

embedFormVariableList(inItems)

Parameter Type Description

inItems Text  Semicolon-delimited list of form

variables

embedCollectionItems(_form; $inItems)

embedFormVariables version 3

embedFormVariables({inFilter})

Parameter Type Description

inFilter Text  Text to match against

embedCollection(_form; $inFilter)
Chapter 12 Standard Libraries 519

Active4D v6.3 a4d.web
For more information, see the discussion of “embedCollection” on page 517.

Discussion

This method is equivalent to:

For more information, see the discussion of “embedCollection” on page 517.

Discussion

This method is equivalent to:

For more information, see the discussion of “embedCollection” on page 517 and

“getVariablesIterator” on page 522.

embedQueryParams version 3

embedQueryParams({inFilter})

Parameter Type Description

inFilter Text  Text to match against

embedCollection(_query; $inFilter)

embedVariables version 3

embedVariables({inFilter})

Parameter Type Description

inFilter Text  Text to match against

embedCollection(getVariablesIterator; $inFilter)
520 Chapter 12 Standard Libraries

a4d.web Active4D v6.3
Discussion

This method returns inTag and inAttributes wrapped correctly according to the doctype

set in the “doctype” option of Active4D.ini and according to which tags can actually be

empty in XHTML.

This is useful if you are writing generic code that might run under any doctype. If you

know the doctype of your site, this method is not necessary.

Examples

Discussion

This method is equivalent to:

If inSwitches is not passed, it defaults to an empty string. For more information, see the

discussion of “collectionItemsToQuery” on page 516.

emptyTag v6.0

emptyTag(inTag {; inAttributes})

Parameter Type Description

inTag Text  Tag name

inAttributes Text  Tag attributes

write(a4d.web.emptyTag("hr"; "style=\"height:3px\""))
// html: <hr style="height:3px">
// xhtml: <hr style="height:3px" />

write(a4d.web.emptyTag("div"; "id=\"foo\""))
// html: <div id="foo"></div>
// xhtml: <div id="foo"></div>

formVariableListToQuery version 3

formVariableListToQuery(inVariables {; inSwitches})

Parameter Type Description

inVariables Text  Semicolon-delimited list of form

variables

inSwitches Text  Controls the formatting of the query

collectionItemsToQuery(_form; $inVariables; $inSwitches)
Chapter 12 Standard Libraries 521

Active4D v6.3 a4d.web
Discussion

This method checks the form variables collection for each field named in the list

inFieldList. If the field does not exist or is empty, it is added to the result list.

Discussion

Sometimes it is necessary to force (lousy) browsers or proxy caches into thinking that the

same page is a new page in order to prevent the page from being cached. The simplest

way to do this is to append a unique query parameter to the query string of the URL. This

forces clients to think it is a different page.

This method will give you a per-request unique identifier that you can put into a query

string.

Discussion

This method returns an iterator for the collection in which values were passed to the

current page. In other words, whether the current page was reached via a link, a form

posted with the “get” method, or a form posted with the “post” method, this method will

getEmptyFields version 3

getEmptyFields(inFieldList) Text

Parameter Type Description

inFieldList Text  Semicolon-delimited list of form fields

to validate

Result Text  Semicolon-delimited list of empty

fields

getUniqueID version 3

getUniqueID Text

Parameter Type Description

Result Text  Per-request unique identifier

getVariablesIterator version 3

getVariablesIterator Iterator

Parameter Type Description

Result Iterator  Either _form or _query
522 Chapter 12 Standard Libraries

a4d.web Active4D v6.3
return an iterator that gives you access to the query string or form variables

appropriately.

Discussion

This method writes an XHTML-compatible hidden form field to the output buffer. inValue

must be convertible by the String command (which includes strings/text).

If inEncode is not passed or is passed and is True, inValue is HTML encoded.

Discussion

This method writes an XHTML-compatible hidden form field to the output buffer with a

per-request unique value. For more information see “getUniqueID” on page 522.

Discussion

If you want to save one or more form variables to the session, and the form variable

names can be included or excluded by a pattern, this method makes it easy to do so.

hideField version 3

hideField(inName; inValue {; inEncode})

Parameter Type Description

inName Text  Name/id of hidden field

inValue <any>  Value of hidden field

inEncode Boolean  True to HTML encode inValue

hideUniqueField version 3

hideUniqueField(inName)

Parameter Type Description

inName Text  Name/id of hidden field

saveFormToSession version 3

saveFormToSession({inFilter})

Parameter Type Description

inFilter Text  Text to match against
Chapter 12 Standard Libraries 523

Active4D v6.3 a4d.web
inFilter is matched against the names of the form variables to determine which ones are

saved in the session. For each form variable whose name matches inFilter, a session item

is created whose key is the form variable name and whose value is the form variable

value.

If the first character of inFilter is ‘+’, the filter is an inclusion filter. If the first character is ‘-’,

the filter is an exclusion filter. If there is no ‘+/-’, the filter defaults to an inclusion filter. If

the first character after the optional ‘+/-’ is ‘/’, the rest of the filter is taken as a regular

expression, and should follow the rules for regular expression match strings (see “regex

match” on page 281). Otherwise the normal string matching rules (‘@’ is a wildcard) are

in effect.

Discussion

This method is an alias for getEmptyFields.

Discussion

This method validates that inAddress is valid using a regular expression that should cover

the vast majority of possible email addresses.

validateTextFields version 3

validateTextFields(inFieldList) Text

Parameter Type Description

inFieldList Text  Semicolon-delimited list of form fields

to validate

Result Text  Semicolon-delimited list of empty

fields

Note: This method is deprecated. Please use getEmptyFields instead.

validEmailAddress
version 3

modified version 4.0

validEmailAddress(inAddress) Boolean

Parameter Type Description

inAddress Text  Email address to validate

Result Boolean  True if valid

Note: Full validation according to RFC822 would require a regular expression that is

6K characters in length!
524 Chapter 12 Standard Libraries

a4d.web Active4D v6.3
Discussion

$inCurrentField->TextThe current field we are checking

$inInvalidFields->TextSemicolon-delimited list of invalid form fields

$inWarningURL->TextURL of warning icon to display

If $inCurrentField is in the list $inInvalidFields, an image tag is written

to display $inWarningURL. The format of $inInvalidFields is that returned by

the ValidateTextFields method.

This method validates that inAddress is valid using a regular expression that should cover

the vast majority of possible email addresses

Discussion

This method writes inText to the response buffer. If inTest is True, inText is enclosed in a

 tag pair. is used because it is preferred by web designers.

 is a font weight, whereas conveys the meaning you want to impart to

inText by changing it’s style.

warnInvalidField version 3

warnInvalidField(inCurrentField; inInvalidField; inWarningURL)

Parameter Type Description

inCurrentField Text  The current field being checked

inInvalidFields Text  Semicolon-delimited list of invalid

form fields

writeBold
version 3

modified version 4.0

writeBold(inText; inTest)

Parameter Type Description

inText Text  Text to modify

inTest Boolean  True to make inText strong
Chapter 12 Standard Libraries 525

Active4D v6.3 Batch
Batch

One of the most common tasks in a dynamic website is the display of columnar data

following a query, much as you would display a listing form within 4D.

It is bad user interface design to display much more than one or two screens of data at

one time. This means that you have to split the total number of data rows into batches

and give the user a means of paging through them, much as you do when paging

through the results of a google search.

The Batch library is designed to make the process of generating batches as simple as

possible. In addition, it provides one-line methods for generating the HTML links

necessary to go from one page to another.

Batches don’t know anything about the nature of the rows they are batching. They have

no access to the data. Their sole purpose in life is to deal with indexes into the rows of

data. You must use those indexes to fetch the data from whatever data source you are

using, be it a RowSet, table selection, or array.

Batch Attributes

A batch is an “object”-like thing that is represented by a collection. The collection

contains several numeric attributes that control the behavior of the batch.

In order to use batches effectively, you need to understand their attributes:

Creating a Batch

Batches are created from a set of rows. Those rows can come from a RowSet, a table

selection, or an array. So to create a batch “object” you call the appropriate method in

the Batch library.

Note: You should consider batch attributes read-only. Don’t try changing them once

the batch is created unless you want unexpected results.

Attribute Description

size Number of rows per batch

row_count Number of rows managed by batch

start Starting index of the batch

end Ending index (inclusive) of the batch

orphan Minimum batch size (maximum orphans)

overlap How many rows to overlap in each batch
526 Chapter 12 Standard Libraries

Batch Active4D v6.3
To create a batch from a RowSet, you use the newFromRowSet method (surprise,

surprise), like this:

To create a batch from a table selection, use the newFromSelection method:

To create a batch from an array, use the newFromArray method:

After calling these methods, you get back a batch “object” that contains the attributes

listed above. Typically the only attributes you are interested in are the start, end and

row_count attributes.

How Batches Are Calculated

To calculate the starting and ending index of a batch, five parameters are taken into

account:

To calculate the starting and ending indexes for the batch, the Batch library uses the

following logic:

3 If start is known and is > 0, it is used as the starting index. Otherwise the starting index

is 1.

3 If the next batch would contain less than orphan elements, it is combined with the

current batch.

3 overlap is the number of rows shared by adjacent batches.

3 If size is <= 0, it is computed from start and end. Failing that, it is the default size.

3 If end is not specified or is <= 0, it is computed from the other parameters.

Batch Defaults

Typically, all of the batches in a given site will share the same size, minimum size

(orphan), and overlap. The batch library allows you to set defaults for these values so that

you do not have to specify them each time you create a batch.

$batch := Batch.newFromRowSet($rowset; $attributes)

$batch := Batch.newFromSelection(->[contacts]; $attributes)

$batch := Batch.newFromArray($contacts; $attributes)

Parameter Description

size Number of rows in a batch

start Starting index for batch

end Ending index for batch

orphan Minimum batch size

overlap How many rows to overlap
Chapter 12 Standard Libraries 527

Active4D v6.3 Batch
When the Batch libary is first imported, the following defaults are set:

You may set the defaults by calling Batch.setDefaults. Typically you would do this in the

On Application Start event handler in Active4D.a4l.

If you do not specify the start index when creating a batch, you must pass one of the

newFromX methods a collection handle or iterator which contains the default start

param. Since the batch start index is usually kept in the query string, in a Fusebox

application you would pass $attributes, as in the examples above, and in a non-Fusebox

application you would usually pass _query.

Let’s look at some examples to see how this works. Let’s assume we have a RowSet that

has 30 rows. We have a batch size of 10, a minimum batch size (orphan) of 3, and an

overlap of 1. We will end up with 3 batches:

Okay, let’s analyze what’s happening here. In the first batch, the starting index is 1, and

the size is 10, so obviously we will get rows 1-10.

The last <batch overlap> rows of the each batch are repeated at the beginning of the

next batch. So in the second batch, because we have an overlap of 1, the first row is row

10. A total of 10 rows takes us up to 19 as the ending index (not 20, that would be 11

rows).

Applying the same overlap trick to the third batch, we start at index 19 and add 9 to get a

total of 10 rows. This takes us to an ending index of 28. But since the orphan (minimum)

size is 3 and there are only 2 rows left, the final 2 rows are added to the end of the third

batch, which gives us an ending index of 30. In this case examining the size attribute of

the batch would reveal a size of 12.

Generating Batch Links

The main purpose of the Batch library is to help you generate links to the batches. Once

you have created a batch, there are two ways you can do this: the hard way and the easy

way.

Parameter Default

size 10

orphan 2

overlap 0

start param “bst”

Batch # Start - end indexes

1 1 - 10

2 10 - 19

3 19 - 30
528 Chapter 12 Standard Libraries

Batch Active4D v6.3
The hard way is to iterate through the batches and build the links yourself, like this:

That may not look so hard, but the code to build the links is not trivial. It’s so non-trivial

I’m too lazy to bother including it here, because all that work is done for you if you take

the easy road, like this:

The “easy way” has a little more code here, but only because I am leaving so much out of

the “hard way,” which in reality would have 10 times more code — code that you would

end up copying and pasting all over the place.

The makeFuseboxLinks method and its non-Fusebox cousin, makeLinks, allow you to

customize everything necessary to format the page links exactly the way you want, so

you should never have to do it yourself.

Batch Defaults for Generating Links

To format the batch links, the Batch library needs the following parameters:

array longint($starts; 0)
$batch->getStarts($starts)
c_longint($i)

for ($i; 1; size of array($starts))
 if ($i = $starts) // current batch
 // build link for current batch
 else
 // build link for other batches
 end if
end for

<%
c_text($prev; $batches; $next)
$needBatch := $batch->makeFuseboxLinks($prev; $batches; $next; \\
 $attributes)
%>

// later, when you need to display the links
<% if ($needBatch) %>
 <div id="batches">
 Go to page: <%=$prev + $batches + $next%>
 </div>
<% end if %>

Parameter Description Default

previous HTML|CSS to use for “first” and

“previous” link

« Previous|batch-prev

separator HTML to use between page numbers

next HTML|CSS to use for “next” and “last”

link

Next »|batch-next

tag HTML tag to use for the current batch strong

max Maximum batches to display 7
Chapter 12 Standard Libraries 529

Active4D v6.3 Batch
The defaults are set for you when the Batch library is imported. If you wish to change the

defaults, you may do so with the Batch.setDefaults method.

When you call makeFuseboxLinks or makeLinks, to use the default values either omit

parameters or pass empty strings or negative numbers, as is done in the example above.
530 Chapter 12 Standard Libraries

Batch Active4D v6.3
Iterating Through Rows

Once you create a batch object, the start and end index for the current batch are

accessible as items of the batch. To iterate through the current batch you would do

something like this, given a RowSet called $qryContacts:

<%
// Make the batch using defaults
$batch := Batch.newFromSelection(->[contacts]; $attributes)

// Now make the RowSet from the subset of rows in the batch
$rs := RowSet.newFromSelection(->[contacts]; $map; \\
 '$batch{"start"}:$batch{"end"}')

// Setup the link info, make the links
c_text($prev; $batches; $next)
$needBatch := $batch->makeFuseboxLinks($prev; $batches; $next; \\
 $attributes)

if ($qryContacts->rowCount > 0)
%>
<p>Displaying
<%='$batch{"start"}-$batch{"end"} of $batch{"row_count"}'%>
</p>
<table>
 <tr>
 <th>Name</th>
 <th>Phone</th>
 </tr>
<%
 $row := $qryContacts->getRow
 $alt := true

 while ($qryContacts->next)
 $alt := not($alt)
%>
 <tr<%=choose($alt; " class=\"row-alt\""; "")%>>
 <td><%=$row{"name"}%></td>
 <td><%=$row{"phone"}%></td>
 </tr>
<% end while %>
</table>
<% if ($needBatch) %>
 <div id="batches">
 Go to page: <%=$prev + $batches + $next%>
 </div>
<% end if %>
<% else %>
<p>There are no contacts that matched your query.</p>
<% end if %>
Chapter 12 Standard Libraries 531

Active4D v6.3 Batch
Discussion

This method produces a formatted dump of the current default parameters. For a

discussion of the purpose of each parameter, see “Batch Defaults” on page 527 and

“Batch Defaults for Generating Links” on page 529.

Discussion

This method retrieves the current defaults for all values used by the Batch library. For a

discussion of the purpose of each parameter, see “Batch Defaults” on page 527 and

“Batch Defaults for Generating Links” on page 529.

dumpDefaults version 4.0

dumpDefaults

getDefaults version 4.0

getDefaults(outSize; outMinSize; outOverlap; outMaxBatches; outPrevious;
outSeparator; outNext; outCurBatchTag; outStartParam)

Parameter Type Description

outSize Number  Receives batch size

outMinSize Number  Receives batch minimum size

outOverlap Number  Receives batch overlap

outMaxBatches Number  Receives maximum batches to display

outPrevious Text  Receives “previous batch” HTML

outSeparator Text  Receives batch separator HTML

outNext Text  Receives “next batch” HTML

outCurBatchTag Text  Receives HTML tag for current batch

outStartParam Text  Receives start index parameter name
532 Chapter 12 Standard Libraries

Batch Active4D v6.3
Discussion

This method gets the starting indexes for every batch that can be generated for the set

of rows referred to by self. The current element of outStarts is set to the current batch

number.

Discussion

This method is the same as makeLinks, but it calculates the inLinkRef parameter of that

method from inAttributes, inXFA, and inPassedAttrs.

If inXFA is not passed in or is empty, it is set to the circuit.fuseaction of the current page.

getStarts version 4.0

getStarts(self; outStarts)

Parameter Type Description

self Batch  The batch object

outStart Array Longint  Receives batch starting indexes

makeFuseboxLinks version 4.0

makeFuseboxLinks(self; ioPrevious; ioBatches; ioNext; inAttributes {; inXFA
{; inPassedAttrs {; inCurBatchTag {; inStartParam {; inMaxBatches}}}}})
Boolean

Parameter Type Description

self Batch  The batch object

ioPrevious Text  On entry, the HTML text for the

first/previous batch link

ioBatches Text  On entry, the HTML text to insert

between batch numbers

ioNext Text  On entry, the HTML text for the

next/last batch link

inAttributes Collection  Fusebox $attributes collection

inXFA Text  The XFA to link to

inPassedAttrs Text  Semicolon-delimited list of attributes

to pass in the links

inCurBatchTag Text  Tag to enclose current batch in

inStartParam Text  Query parameter name for start index

inMaxBatches Number  Maximum number of batches to

display

Result Boolean  True if links are needed
Chapter 12 Standard Libraries 533

Active4D v6.3 Batch
If inPassedAttrs is passed in and is not empty, a query string is built from the semicolon-

delimited list of attributes names, whose values are taken from inAttributes.

For the rest of the parameters and examples, see the discussion of makeLinks.

Discussion

This method generates the batch links for all batches that can be generated for the set of

rows referred to by self.

There are three parts to the links generated: a “first/previous batch” link, the batch

number links, and a “next/last batch” link. Each is generated separately to give you

maximum flexibility in formatting the output.

On entry, ioPrevious should contain the encoded HTML text you would like to use for the

“first/previous batch” link. If ioPrevious is empty, the default HTML “previous/first batch”

text is used. If there are no previous batches, an empty string is returned.

Otherwise, if the text you pass in ioPrevious contains “^”, the text before it is used as the

HTML to display for a “first batch” link, and the text after it is used as the the HTML to

display for a “previous batch” link. If there is no “^”, the text is used for a “previous batch”

link.

If the text for the “first batch” or “previous batch” link contains a “|” (vertical bar), the text

before it is the HTML to display, and the text after it is used as the CSS class name for the

link.

On entry, ioBatches should contain the encoded HTML text you would like to insert

between batch numbers, for example “ ”. If ioBatches is empty, the default HTML

separator is used. If there are batches to display, on return ioBatches will contain HTML

with links for each batch that should be displayed. If the text contains a “|” (vertical bar),

the text before it is the text to display, and the text after it is used as the CSS class name

for the links.

makeLinks version 4.0

makeLinks(self; ioPrevious; ioBatches; ioNext; inLinkRef
{; inCurBatchTag {; inStartParam {; inMaxBatches}}}) Boolean

Parameter Type Description

self Batch  The batch object

ioPrevious Text  First/previous batch link

ioBatches Text  Batch numbers

ioNext Text  Next/last batch link

inLinkRef Text  The base URL to link to

inCurBatchTag Text  Tag to enclose current batch in

inStartParam Text  Query parameter name for start index

inMaxBatches Number  Maximum number of batches to

display

Result Boolean  True if links are needed
534 Chapter 12 Standard Libraries

Batch Active4D v6.3
The inCurBatchTag parameter determines what HTML tag and CSS class, if any, will be

used for the current batch number, which does not have a link. If this parameter contains

a “|” (vertical bar), the text before it is the tag to use (without the enclosing <>), and the

text after it is the CSS class name for the tag. If inCurBatchTag is empty, the default tag is

used.

On entry, ioNext should contain the encoded HTML text you would like to use for the

“next/last batch” link. If ioNext is empty, the default HTML “next/last batch” text is used. If

there are no more batches, an empty string is returned.

Otherwise, if the text you pass in ioNext contains “^”, the text before it is used as the

HTML to display for a “next batch” link, and the text after it is used as the the HTML to

display for a “last batch” link. If there is no “^”, the text is used for a “next batch” link.

If the text for the “next batch” or “last batch” link contains a “|” (vertical bar), the text

before it is the HTML to display, and the text after it is used as the CSS class name for the

link.

The inLinkRef parameter should contain the URL that will go in the href of the batch links.

If you want to pass query parameters to the destination page, be sure to include them in

the query string of this URL. You do not have to (and should not) include the batch start

index, that is handled by this method.

If you want to customize the start index parameter name, pass its name in the

inStartParam parameter. If inStartParam is omitted or is empty, the default is used.

By default this method will generate HTML for all possible batches. If you want to limit

the number of batch links that display at one time, pass the maximum number in the

inMaxBatches parameter. If inMaxBatches is omitted or is < 0, the default is used. Passing

a value of zero means there is no limit on the number of batches generated.

If there are more batches than the maximum, batches will be removed from the

beginning or end of the list and the current batch will be centered within the list.

The result of this method will be True if there is more than one batch, which means you

need to display the HTML generated by the method.

Example

Although it seems complicated, using this method is actually quite easy. Let’s take a look

at the following scenario:

Note: Be sure to HTML encode the text you pass in ioPrevious, ioBatches, and ioNext.

For example, if you would like the “previous batch” link to say “<< Previous ”, you

would pass the text “<< Previous ”.

Note: inLinkRef should be URL encoded.

Note: The standard start index parameter name “bst” is contained in the library

constant Batch.kStartParam.
Chapter 12 Standard Libraries 535

Active4D v6.3 Batch
3 We have a RowSet with 320 rows, broken up into 32 batches of 10 rows each with no

overlap and a minimum batch size of 2.

3 We want a “first batch” link of “First”, a “previous batch” link of “«Previous” with a

CSS class of “batch-prev”, a “next batch” link of “Next»” with a CSS class of

“batch-next”, and a “last batch” link of “Next”.

3 We want the current batch number to use a tag with a CSS class of “batch-

current”.

3 The target URL will be the current page with a query parameter “cid” for the company

ID, which we get from the current query params.

3 We will accept the default batch start query parameter of “bst”.

3 We want to show the default maximum of 7 batches at a time.

Given all of this information, the code to make all this happen is straightforward:

Six lines of code to generate and display the batching is not bad! If you are using

Fusebox, assuming your display fuse receives an XFA for the batch links called

$XFA_onBatch, you would use the makeFuseboxLinks method like this:

<%
$batch := Batch.newFromSelection(->[contacts]; _query)

// Set up the HTML
c_text($prev; $batches; $next)
$prev := "First^«Previous|batch-prev"
$next := "Next»|batch-next^Last"
$href := requested url + '?cid=_query{"cid"}'
$needBatches := $batch->makeLinks($prev; $batches; $next; \\
 $href; "span|batch-current")
%>

<A table with the row data>

<% if ($needBatches) %>
 <p><%=$prev + $batches + $next %></p>
<% end if %>

$batch := Batch.newFromSelection(->[contacts]; $attributes)

// Set up the HTML
c_text($prev; $batches; $next)
$needBatches := $batch->makeFuseboxLinks($prev; $batches; \\
 $next; $attributes; $XFA_onBatch; "cid"; \\
 "span|batch-current")
536 Chapter 12 Standard Libraries

Batch Active4D v6.3
Discussion

This method creates a new batch from row data whose size is inRowCount. For a full

discussion of the parameters, see newFromRowSet.

new version 4.0

new(inRowCount; inCollection) Longint
new(inRowCount; inSize {; inStart {; inEnd {; inOrphan {; inOverlap}}}}) Longint

Parameter Type Description

inRowCount Number  Row count of data batch is based on

inCollection Collection  Collection from which to get default

start index param

OR

inRowCount Number  Row count of data batch is based on

inSize Number  Batch size

inStart Number  Starting index into the array

inEnd Number  Ending index into the array

inOrphan Number  Maximum orphans

inOverlap Number  How many rows to overlap

Result Longint  Batch “object”
Chapter 12 Standard Libraries 537

Active4D v6.3 Batch
Discussion

This method creates a new batch from an array of row data contained in inArray. For a full

discussion of the parameters, see newFromRowSet.

Discussion

This method creates a new batch from the RowSet inRowSet.

newFromArray version 4.0

newFromArray(inArray; inCollection) Longint
newFromArray(inArray; inSize {; inStart {; inEnd {; inOrphan {; inOverlap}}}}) Longint

Parameter Type Description

inArray Array  Data source the batch is based on

inCollection Collection  Collection from which to get default

start index param

OR

inArray Array  Data source the batch is based on

inSize Number  Batch size

inStart Number  Starting index into the array

inEnd Number  Ending index into the array

inOrphan Number  Maximum orphans

inOverlap Number  How many rows to overlap

Result Longint  Batch “object”

newFromRowSet version 4.0

newFromRowSet(inRowSet; inCollection) Longint
newFromRowSet(inRowSet; inSize {; inStart {; inEnd {; inOrphan {; inOverlap}}}})

Longint

Parameter Type Description

inRowSet RowSet  Data source the batch is based on

inCollection Collection  Collection from which to get default

start index param

OR

inRowSet RowSet  Data source the batch is based on

inSize Number  Batch size

inStart Number  Starting index into the array

inEnd Number  Ending index into the array

inOrphan Number  Maximum orphans

inOverlap Number  How many rows to overlap

Result Longint  Batch “object”
538 Chapter 12 Standard Libraries

Batch Active4D v6.3
There are two forms of this method. The first form receives a collection handle or iterator

in the second parameter. The default start index parameter (usually “bst”) is taken from

that collection, and its value is used as the start index. If the parameter is not found, the

start index defaults to 1. The rest of the parameters used in the first form are taken from

the defaults.

In the second form of this method, the number of rows desired in each batch must be

passed in the inSize parameter.

By default a batch is constructed with a start index of 1 and an end index of inSize. To use

a different start index, you can either leave inStart zero and pass a non-zero inSize and

inEnd, or leave inSize zero and pass a non-zero inStart and inEnd.

If you would like to set the maximum number of orphans (i.e. the minimum batch size) in

the last batch, pass a non-zero value in inOrphan.

If you would like to overlap one or more rows between batches, pass a non-zero value in

inOverlap.

The result of this method is a actually a collection handle that you use with the other

methods in the Batch library.

Discussion

This method creates a new batch from a selection of records in the table pointed to by

inTable. For a full discussion of the parameters, see newFromRowSet.

Note: For more information on these parameters, see “How Batches Are Calculated”

on page 527.

newFromSelection version 4.0

newFromSelection(inTable; inCollection) Longint
newFromSelection(inTable; inSize {; inStart {; inEnd {; inOrphan {; inOverlap}}}})

Longint

Parameter Type Description

inTable Table pointer  Data source the batch is based on

inCollection Collection  Collection from which to get default

start index param

OR

inTable Table pointer  Data source the batch is based on

inSize Number  Batch size

inStart Number  Starting index into the array

inEnd Number  Ending index into the array

inOrphan Number  Maximum orphans

inOverlap Number  How many rows to overlap

Result Longint  Batch “object”
Chapter 12 Standard Libraries 539

Active4D v6.3 Batch
Discussion

On entry, ioLength, ioStart and ioEnd should be set to the current values for self. On exit

they will be set to the values for the next batch, if any.

If there is another batch available, True is returned, else False.

Example

If you are determined to iterate through batches yourself, you will probably need to use

this method like this:

Discussion

On entry, ioLength, ioStart and ioEnd should be set to the current values for self. On exit

they will be set to the values for the previous batch, if any.

next version 4.0

next(self; ioLength; ioStart; ioEnd) Boolean

Parameter Type Description

self Batch  The batch object

ioLength Number  Batch size

ioStart Number  Starting index

ioEnd Number  Ending index

Result Longint  True if there are more batches

$start := $batch{"start"}
$end := $batch{"end"}
$length := $batch{"size"}

while ($batch->next($length; $start; $end))
 // do something
end while

previous version 4.0

previous(self; ioLength; ioStart; ioEnd) Boolean

Parameter Type Description

self Batch  The batch object

ioLength Number  Batch size

ioStart Number  Starting index

ioEnd Number  Ending index

Result Longint  True if there are more batches
540 Chapter 12 Standard Libraries

Batch Active4D v6.3
If there is another batch available, True is returned, else False.

Discussion

This method retrieves the current defaults for all values used by the Batch library. For a

discussion of the purpose of each parameter, see “Batch Defaults” on page 527 and

“Batch Defaults for Generating Links” on page 529.

setDefaults version 4.0

setDefaults(inSize; inMinSize; inOverlap; inMaxBatches; inPrevious;
inSeparator; inNext; inCurBatchTag; inStartParam)

Parameter Type Description

inSize Number  Receives batch size

inMinSize Number  Receives batch minimum size

inOverlap Number  Receives batch overlap

inMaxBatches Number  Receives maximum batches to display

inPrevious Text  Receives “previous batch” HTML

inSeparator Text  Receives batch separator HTML

inNext Text  Receives “next batch” HTML

inCurBatchTag Text  Receives HTML tag for current batch

inStartParam Text  Receives start index parameter name
Chapter 12 Standard Libraries 541

Active4D v6.3 Breadcrumbs
Breadcrumbs

Very often the data in a dynamic website is structured in a hierarchical fashion, and the

user interface follows accordingly. For example, consider the following scenario:

1 The user selects a company from a list, which displays a list of departments.

2 The user selects a department, which displays the employees in that department.

3 The user selects an employee, which displays a list of projects the employee is

working on.

4 The user selects a project, which displays a list of the work performed on the project

by the employee.

5 The user selects a work item, which displays details about the work performed.

At the end of this process the user is five levels deep in the hierarchy. It is essential to

provide some context for the user so he or she has some idea how they got to where

they are and how to get back to where they came from.

The standard technique for doing this is called “breadcrumbs”. The idea is that as users

journey through the site — especially if they are descending through a hierarchy — you

leave a trail of “breadcrumbs” so that they can find their way back.

For example, if you go to www.aparajitaworld.com/store, then roll over the “Category”

menu, and select the category “Plugins>Active4D>Deployment Licenses”, below the

menu strip you will see the following:

These are the breadcrumbs. Going from left to right, we see the path you took to get to

the page you are on. The text between each “>” is a breadcrumb along the way, and is

also a link to jump directly to that point in the path.

The Breadcrumbs library gives you a simple interface for building and displaying

breadcrumbs. By using this library you will save a lot of code.

Using Breadcrumbs

Using breadcrumbs is basically a three-step process:

1 Create a breadcrumbs object

2 Add breadcrumbs to the object

3 Write the breadcrumbs on your page

In practice step 2 can be a little complex, because you have to figure out exactly what

URL is necessary to retrace your steps.

For example, let’s consider the following case using Fusebox:

1 From the main page (fuseaction=app.main), the user selects “View companies”

(fuseaction=companies.list).

Home > Plugins > Active4D > Deployment Licenses
542 Chapter 12 Standard Libraries

Breadcrumbs Active4D v6.3
2 From the company list, the user selects a company to show the employees for that

company (fuseaction=employee.list). The company id is passed in the query param

“cid”.

3 From the employee list, an employee is selected (fuseaction=employees.edit). The

employee id is passed in the query param “eid”.

Our Fusebox circuit structure is like this:

In a case like this, we can take advantage of the hierarchy of circuits and the fact that

Fusebox will call fbx_settings.a4d in each circuit as it descends to the target circuit

(employees). So app/fbx_settings.a4d will contain this code:

Now we have a new breadcrumbs object with a home link to the application’s main

page. Next we descend into the companies circuit. Since a company can be edited

(fuseaction=companies.edit), we have to check the fuseaction in

app/companies/fbx_settings.a4d:

Finally we descend into the employees circuit. At this point the breadcrumbs are:

In app/companies/employees/fbx_settings.a4d we do a check like in the companies circuit,

because employees can be listed or edited:

app
 companies
 employees

$breadcrumbs := Breadcrumbs.fuseboxNew("Home"; "app.main")

$breadcrumbs->add("Companies"; "companies.list")

if ($fusebox{"isTargetCircuit"})
 if ($fusebox{"fuseaction"} = "edit")
 $breadcrumbs->add("Edit"; "companies.edit"; \\
 'cid=$attributes{"cid"}')
 end if
end if

Home > Companies

$breadcrumbs->add("Employees"; "employees.list";
'cid=$attributes{"cid"}')

if ($fusebox{"isTargetCircuit"})
 if ($fusebox{"fuseaction"} = "edit")
 $query := a4d.web.collectionItemsToQuery($attributes; \\
 "cid;eid")
 $breadcrumbs->add("Edit"; "employees.edit"; $query)
 end if
end if
Chapter 12 Standard Libraries 543

Active4D v6.3 Breadcrumbs
When we arrive at the display fuse for the fuseaction employees.edit, the breadcrumbs

have been completely built. Now in the app/companies/employees/dsp_editForm.a4d

display fuse, we write out the breadcrumbs like so:

The breadcrumbs library takes care of building the whole list, inserting a separator

between each breadcrumb, and leaving out a link from the last one (since you are

already there).

Customizing Breadcrumbs Appearance

Naturally you will want to have the breadcrumbs appear in a way that is consistent with

the rest of your page. By default, the entire breadcrumbs display is wrapped in a div with

the id “breadcrumbs”, and the separator between breadcrumbs is the image

“/images/breadcrumb-separator.gif”.

If you choose not to use the default settings, you can change them with the methods

setSeparator and setDivId. These settings apply globally to all breadcrumbs created by

the Breadcrumbs library.

To control the appearance of the breadcrumb text and links, you must use CSS to define

styles specific to the “breadcrumbs” div (or whatever id you choose for the div).

For example here is some CSS code that will format the breadcrumb elements:

<% $breadcrumbs->write %>

#breadcrumbs
{
 padding: 3px;
 margin: 0;
 border: none;
 color: #333;
 font-family: Verdana, Helvetica, Arial, san serif;
 font-size: 1em;
 font-weight: normal;
 font-style: normal;
}

#breadcrumbs img
{
 margin: 0 5px;
 padding: 0;
 border: none;
}

#breadcrumbs a:hover
{
 background-color: #ccc;
 text-decoration: none;
 border-bottom: 1px solid #999;
}

544 Chapter 12 Standard Libraries

Breadcrumbs Active4D v6.3
Discussion

This method adds a new breadcrumb to the end of the breadcrumbs list. If self was

created with fuseboxNew, inURL should be a fully qualified fuseaction (circuit.fuseaction).

Otherwise it should be the URL to target page for the breadcrumb. If you know the

breadcrumb is the last one in the chain, you may omit inURL and inQuery.

inText is the text that will display when the breadcrumbs are written. It should be URL-

encoded.

inQuery is the query string (if any) to be appended to the target URL. It should be URL-

encoded, and may be supplied with or without a leading “?”.

Discussion

This method dumps the library variables used for the default separator and div id.

add version 4.0

add(self; inText {; inURL {; inQuery}})

Parameter Type Description

self Breadcrumbs  The breadcrumbs object

inText Text  Text to display

inURL Text  URL/fuseaction for this breadcrumb

inQuery Text  Query string for this breadcrumb

dumpLib version 4.0

dump
Chapter 12 Standard Libraries 545

Active4D v6.3 Breadcrumbs
Discussion

This method creates a new breadcrumbs “object” for use with a Fusebox site and adds a

breadcrumb with the values passed in.

For more information on the parameters, see “add” on page 545.

Discussion

This method creates a new breadcrumbs “object” for use with non-Fusebox site and adds

a breadcrumb with the values passed in.

For more information on the parameters, see “add” on page 545.

fuseboxNew version 4.0

fuseboxNew(inHomeText {; inHomeAction {; inHomeQuery}})  Longint

Parameter Type Description

inHomeText Text  Text to display for the home

breadcrumb

inHomeAction Text  Fuseaction for the home breadcrumb

inHomeQuery Text  Query string for the home

breadcrumb

Result Longint  Breadcrumbs object

new version 4.0

new(inHomeText {; inHomeURL {; inHomeQuery}})  Longint

Parameter Type Description

inHomeText Text  Text to display for the home

breadcrumb

inHomeURL Text  URL for the home breadcrumb

inHomeQuery Text  Query string for the home

breadcrumb

Result Longint  Breadcrumbs object
546 Chapter 12 Standard Libraries

Breadcrumbs Active4D v6.3
Discussion

This method sets the id of the div that will wrap breadcrumbs written with all future calls

to the Breadcrumbs.write method.

For more information on how to use the div id, see “Customizing Breadcrumbs

Appearance” on page 544.

Discussion

This method sets the HTML that will be inserted between breadcrumbs written with all

future calls to the Breadcrumbs.write method.

For more information on how to control the appearance of the separator, see

“Customizing Breadcrumbs Appearance” on page 544.

Discussion

This method writes the breadcrumbs list to the response buffer wrapped in a div. All but

the last breadcrumb are links.

For more information on how to control the appearance of the breadcrumbs, see

“Customizing Breadcrumbs Appearance” on page 544.

setDivId version 4.0

setDivId(inId)

Parameter Type Description

inId Text  div id to use for breadcrumbs

setSeparator version 4.0

setSeparator(inSeparator)

Parameter Type Description

inSeparator Text  HTML to insert between breadcrumbs

write version 4.0

write(self)

Parameter Type Description

self Breadcrumbs  The breadcrumbs object
Chapter 12 Standard Libraries 547

Active4D v6.3 fusebox
fusebox

As software developers, we fight a continual battle to create order out of chaos and to

minimize the amount of code we write (at least I do!). Towards this end we make

methods, components, and frameworks, so that we might reduce the complexity of our

applications, thereby allowing us to focus more clearly on the important problems at

hand.

Fusebox is a both a framework and a methodology that fulfills this promise. To describe it

I will quote from the fusebox.org web site.

An Overview of Fusebox

Application developers face a daunting task: they must translate the often fuzzily-

defined requirements for a new application into the rigid language of computers. While

the Fusebox Lifecycle Process (FLiP) offers help in managing the project management

aspects of creating a new application, what help is there available to developers

approaching the technical challenges of creating and maintaining applications?

Application frameworks answer this question, offering pre-built (and pre-tested) code —

a collection of services that can provide the architectural underpinnings for a particular

type of application. As web development matures, web-based application frameworks

allow the developer to concentrate more on meeting the business needs of the

application and less on the “plumbing” needed to make that application work.

Fusebox is, by far, the most popular and mature web framework available for ColdFusion

and PHP developers [and now for Active4D developers!]. The architecture of a Fusebox

application is divided into various sections (“circuits” in Fusebox parlance), each of which

has a particular focus. For example, the responsiblity for ensuring that only authorized

users have access to all or part of the application might fall under a Security circuit.

The Fusebox application architect defines these circuits, as well as the individual actions

(“fuseactions”) that may be requested of it. When a fuseaction request is made of the

application, the Fusebox machinery (the “Fusebox”) routes the request to the

appropriate circuit, where the fuseaction is processed. This idea of encapsulation of

responsibilities makes it easy for different functional circuits to be “plugged” into an

application, making it possible to reuse code.

Within the individual circuit responsible for carrying out the requested fuseaction, the

Fusebox architect specifies the individual files (“fuses”) needed to fulfill the fuseaction

request. Thus, the Fusebox acts like a good manager, delegating tasks to appropriate

departments where it is decomposed into individual tasks, each of which can be

assigned to individuals to carry out.

Why Should I Use Fusebox?

There are a couple of outstanding reasons why you should start using Fusebox:

3 It doesn’t just promise to make web development easier, it actually fulfills that

promise. With Fusebox you will write less code with less bugs that is easier to maintain.
548 Chapter 12 Standard Libraries

fusebox Active4D v6.3
3 The guys who designed Fusebox are incredibly smart and have a lot of experience

writing web applications. The chances are what they have come up with is a lot better

than any sort of framework we could design.

3 Last but certainly not least, Fusebox is the programming model of choice for Active4D.

All demos and sample code are in Fusebox.

How Do I Learn Fusebox?

There are a number of good resources for Fusebox, including several books. You should

definitely get the Fusebox 3 books and start there. Although the code in those books is in

ColdFusion, you should have no problem translating it to Active4D.

A complete list of Fusebox resources can be found at:

http://www.fusebox.org/index.cfm?fuseaction=fusebox.resources

Active4D provides many Fusebox code examples that illustrate key techniques. Be

prepared to spend a week trying to understand how Fusebox works. Don’t give up — at

some point it all becomes clear, and you realize that it is actually incredibly simple.

Active4D’s Fusebox Implementation

Currently Active4D provides a very robust implementation of Fusebox 3. The reference

implementation of Fusebox is now at version 5.5. Perhaps Active4D’s Fusebox

implementation will be updated in the future, but doing so would actually break existing

Fusebox code, so for now Fusebox 3 is more than sufficient.

Differences Between the ColdFusion and Active4D Implementation

As you are reading the Fusebox books, which are based on ColdFusion, you will notice

some differences between the ColdFusion implementation of Fusebox and the Active4D

implementation. Here is a quick guide to translating between the two versions:

3 Syntax differences: Where ColdFusion talks about structures, Active4D will use

collections. When you see a ColdFusion structure reference like Fusebox.circuit, the

Active4D equivalent is $fusebox{"circuit"}.

3 Fusebox variable differences: ColdFusion sets a boolean variable isCustomTag in the

Fusebox structure to indicate if a nested fuseaction is being called. In Active4D, you

examine the collection item $fusebox{"isNestedCall"}.

Active4D also defines several new variables in $fusebox:

Variable Description

appPath Contains the full Unix path to the root circuit of the application. This is

needed when calling the core directly.

fqfa Contains the fully qualified fuseaction, i.e. circuit.fuseaction

isNestedCall Boolean variable set to true when the core is called by sendFuseaction
Chapter 12 Standard Libraries 549

Active4D v6.3 fusebox
3 Fusedoc differences: The <structure></structure> element should be called

<collection></collection> in Active4D fusedocs.

3 Convenience methods: Active4D adds a few convenience methods to the fusebox

library (discussed below) for creating URLs suitable for use with fusebox.

Circuit libraries and initializers

In Active4D circuits are truly self-contained and self-initializing, which increases your

ability to design generic circuits.

Each circuit can have its own libraries and initialization script. At startup, after

Active4D.ini is read, the web root directory for each virtual host is recursively traversed.

Each directory that contains the file fbx_switch.a4d is assumed to be a Fusebox circuit. If

it is a circuit, the following two steps are taken:

1 Any files whose filename extension matches the configured library extension

exactly (case is significant) are imported as libraries. Since the __load__ method will

be executed when the library is imported, you can perform initialization of circuit

libraries at startup.

2 If the file __init__.a4d is found, it is executed. Note that the code in this script must

be embedded in <% %> tags, and that any output is ignored. This script gives you a

chance to perform circuit-level initialization. Circuit libraries may be referenced

within this script.

Configuring Fusebox

By default the name of the fuseaction query parameter is “fuseaction”. In actual fact this

name is not hard-coded into the fusebox library, but is defined as the library constant

fuseaction in the fusebox.conf library.

If you would like to change the fuseaction query parameter name, you can do so by

changing the define in the fusebox.conf. If you want to refer to the fully qualified

circuit.fuseaction within your fuses, you should always do so in this way:

nestLayouts When set to false by a circuit, prevents its layouts from being nested in

parent circuit layouts

self contains the name of the single point of entry into fusebox, usually

“index.a4d”.

Note: It is your responsibility to ensure that no two circuit libraries in all circuits

share the same name with other circuit libraries or with global libraries.

$fuseaction := $fusebox{fusebox.conf.fuseaction}

Variable Description
550 Chapter 12 Standard Libraries

fusebox Active4D v6.3
Discussion

This method is the Active4D Fusebox core file. You should never have to call this method

directly.

Discussion

This method returns the name of the method which will be called to create URLs when

fusebox.makeURL is called.

For more information on URL factory methods, see “setURLFactory” on page 555.

Discussion

This method has been deprecated in favor of handleErrorInline, it should no longer be

used.

core
version 3

modified version 4.0

core(inRootPath {; ioAttributes {; inNestedCall}})

Parameter Type Description

inRootPath Text  Path to the directory of index.a4d

ioAttributes Collection  The request context

inNestedCall Boolean  True if called from sendFuseaction

getURLFactory version 4.5

getURLFactory Text

Parameter Type Description

Result Text  Current URL factory method

handleError
version 4.0

deprecated v6.0

handleError(inTarget {; inQuery})

Parameter Type Description

inTarget Text  The fully qualified circuit.fuseaction to

call, or a full URL+query to redirect to

inQuery Text  Query string
Chapter 12 Standard Libraries 551

Active4D v6.3 fusebox
This method is meant to be called from the error page configured in Active4D.ini, or the

error page set by a call to set error page.

If inTarget begins with “/”, it is considered to be a full URL + query string (it should be URL-

encoded) to redirect to. Otherwise it is considered to be a fully qualified

circuit.fuseaction, which will be passed along with inQuery to fusebox.makeURL to

construct the URL to redirect to. If inQuery is passed, it should already be URL-encoded.

Before redirecting to the target URL, the standard $a4d_err_x error variables are put in

the session as session{"a4d_err_x"}. In addition, the full requested URL and referer are put

in the session as “a4d_err_url” and “a4d_err_referer” respectively.

To ensure proper cleanup, the target fuseaction should call fusebox.postHandleError after

using the session items created by this method.

For a discussion of how to handle errors in Fusebox, see “Custom Error Handling in

Fusebox” on page 612.

Discussion

This method is meant to be called from the error page configured in Active4D.ini, or the

error page set by a call to set error page.

inTarget should be a fully qualified circuit.fuseaction, which will be sent using

fusebox.sendFuseaction along with inAttributes. If inAttributes is not passed, a new

collection is created and passed to the fuseaction.

The standard $a4d_err_x error variables are put in the $attributes passed to the target

fuseaction as $attributes{"a4d_err_x"}. In addition, the full requested URL and referer are

put in $attributes as “a4d_err_url” and “a4d_err_referer” respectively.

Unlike the deprecated handleError method, this method does not redirect and thus

maintains the response status and execution context in which the error occurred. It also

does not require a session to be created.

]For a discussion of how to handle errors in Fusebox, see “Custom Error Handling in

Fusebox” on page 612.

handleErrorInline v6.0

handleErrorInline(self; inTarget {; inAttributes})

Parameter Type Description

self Collection  The $fusebox collection

inTarget Text  The full circuit.fuseaction to call to

handle errors

inAttributes Collection  Attributes to send to the target

fuseaction
552 Chapter 12 Standard Libraries

fusebox Active4D v6.3
Discussion

This is a convenience method you can call when an fbx_switch.a4d catches an

unhandled action. It throws a user error with the error code kInvalidActionError and an

informative message.

Example

Discussion

This method returns True if the current request is being handled by Fusebox, False if not.

invalidAction v6.0

invalidAction(self)

Parameter Type Description

self Collection  The $fusebox collection

case of
 :($action = "main")
 include("dsp_main.a4d")

 else
 $fusebox->invalidAction
end case

isFuseboxRequest version 4.0

isFuseboxRequest Boolean

Parameter Type Description

Result Boolean  Query string
Chapter 12 Standard Libraries 553

Active4D v6.3 fusebox
Discussion

This method creates a Fusebox URL suitable for use with links, form actions, redirects, etc.

If inQuery is passed, it should already be URL-encoded.

If a URL factory method has been set with fusebox.setURLFactory, that method will be

called with the arguments inFuseaction and inQuery.

Discussion

If you are using the new handleErrorInline method, this method is no longer necessary

and is deprecated.

This method should be called from the target fuseaction of the fusebox.handleError

method, after the session items created by fusebox.handleError are used.

makeURL
version 4.0

modified version 4.5

makeURL(inFuseaction {; inQuery})  Text

Parameter Type Description

inFuseaction Text  The fully qualified circuit.fuseaction to

call

inQuery Text  Query string

Result Text  URL suitable for use with Fusebox

postHandleError
version 4.0

deprecated v6.0

postHandleError
554 Chapter 12 Standard Libraries

fusebox Active4D v6.3
Discussion

When you want to call a fuseaction within the fuse of another fuseaction, use this

method. Typically you would call it like this:

ioAttributes should contain the same items that can validly be passed to the target

fuseaction either through a query string or through form variables.

Because the new fuseaction is running within a method call, you will not have access to

any of the local variables used within the calling fuseaction. To pass values to the nested

fuseaction, use ioAttributes or the built in _request collection.

Discussion

If you want to use your own URL style, use this method to set the name of a method

which will be called to create URLs when fusebox.makeURL is called. Your factory method

should take the same parameters as fusebox.makeURL and return the full URL.

If inMethod is empty, the default URL form is used.

The previous URL factory method is returned.

sendFuseaction
version 3

modified version 4.0

sendFuseaction(self; inFuseaction {; ioAttributes})

Parameter Type Description

self Collection  The $fusebox collection

inFuseaction Text  The fully qualified circuit.fuseaction to

call

ioAttributes Collection  The request context

// Insert a calendar, pass today's date in the attributes
$attrs := new collection("date"; \\
 string(current date; MM DD YYYY Forced))
$fusebox->sendFuseaction("calendar.view"; $attrs)

setURLFactory version 4.5

setURLFactory(inMethod) Text

Parameter Type Description

inMethod Text  The method to delegate URL creation

to

Result Text  Previous URL factory method
Chapter 12 Standard Libraries 555

Active4D v6.3 fusebox
Example

Let’s assume that instead of the default URL form:

we want to use the form:

We have a makeUrl method in a library called mylib which can create URLs in the new

form. The method looks like this:

We can easily use our new URL style without changing all of our calls to fusebox.makeURL

by setting a custom URL factory method. In this case we would call the following code in

the On Application Start method of the Active4D library:

/index.a4d?action=<circuit>.<action>;<query>

/<circuit>/<action>?<query>

method "makeUrl"($inFuseaction; $inQuery = "")

 $circuit := slice string($inFuseaction; "."; $action)
 $url := "/%s/%s" % ($circuit; $action)

 if (length($inQuery) > 0)
 $url += "?" + $inQuery
 end if

 return ($url)

end method

fusebox.setURLFactory("mylib.makeUrl")
556 Chapter 12 Standard Libraries

fusebox.head Active4D v6.3
fusebox.head

A Fusebox application is made up of many different circuits that work together. The

Fusebox methodology (and good programming practice) demands that these circuits be

as independent as possible. Ideally they should know nothing about each other.

In addition, Fusebox also tries to separate the presentation of a site from the logic by

using layouts. These layouts typically are responsible for writing the HTML header in a

page. And like the circuits, the layouts should know little or nothing about the rest of the

application. But what happens if the circuits need to write things into the HTML header,

such as meta tags, stylesheet includes, Javascript includes, etc. How can we allow circuits

to write to the header without the header knowing about them?

This library facilitates the decoupling of circuits and layouts by providing a means for

registering information that should go in the HTML header. The layouts can then use a

method in this library to write that info without knowing anything about the circuits

themselves.

How To Use This Library

There two places you should be using this library: in fbx_settings.a4d, and in the actual

layout files themselves. In fbx_settings.a4d you add calls to set the window title, add

stylesheet and Javascript references, and declare meta tags. In your layout file (or a file

included by the layout file), you call fusebox.head.write somewhere within the <head>

section of the document.

For example, let’s assume a calendar circuit needs to load a stylesheet and a Javascript

file. In the calender circuit’s fbx_settings.a4d, we add the following code:

In the layout file lay_main.a4d, we put the following:

Because you are adding header elements in fbx_settings.a4d, they are added from the

most generic to the most specific as Fusebox traverses from the root circuit to the target

circuit.

fusebox.head.addCSS($fusebox; "css/calendar.css")
fusebox.head.addJS($fusebox; "js/calendar.js")

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type"
 content="text/html; charset=utf-8">
<% fusebox.head.write %>
</head>

Note: This library creates items in the _request collection whose keys begin with

“fusebox.head.”. Be sure not to use such keys yourself for any _request items.
Chapter 12 Standard Libraries 557

Active4D v6.3 fusebox.head
Discussion

This method adds one or more URLs that will go into the href attribute of a <link> tag to

load a CSS stylesheet. To pass more than one URL, concatenate them together with

semicolons. The URLs will be URL-encoded for you.

If the URL of a stylesheet is a relative path, it is assumed it is relative to the directory of

the current circuit. This makes it much easier for you to specify circuit-relative paths. If

you want to use a path which is relative to the Fusebox root, you should do something

like this:

If you want the stylesheets to apply to a given media, prefix the filename of the

stylesheet with “@”, followed by the media type.

If you want a stylesheet to be an alternate stylesheet, add the alternate stylesheet title

after the filename, separated by a colon.

If you want to pass verbatim text, pass “!” followed by the text.

If you want to add attributes to the link tag which is generated, append “|” followed by

the attributes (and values if necessary) to the filename.

Examples

Let us assume a calendar circuit needs to have access to a stylesheet calendar.css that is

within a css directory within the circuit directory. To add this stylesheet to the header, we

would execute the following code in the fbx_settings.a4d of the calendar circuit:

If more than one path needs to be added, we can concatenate them together using the

concat command:

addCSS version 4.0

addCSS(inFusebox; inURLs)

Parameter Type Description

inFusebox Collection  $fusebox

inURLs Text  Semicolon-delimited list of URLs to

stylesheets

$path := join paths($fusebox{"rootPath"}; "path/to/styles.css")

fusebox.head.addCSS($fusebox; "css/calendar.css")

fusebox.head.addCSS($fusebox; concat(";"; \\
 "css/calendar.css"; \\
 "css/@screen:calendar_small.css:small text"; \\
 "css/@screen:calendar_large.css:large text"; \\
 "css/@print:calendar_print.css"; \\
 "css/event.css"))
558 Chapter 12 Standard Libraries

fusebox.head Active4D v6.3
Note in the above example that calendar_small.css and calendar_large.css are screen

media alternate stylesheets with the title “small text” and “large text” respectively. The

stylesheet calendar_print.css will only be used when printing.

Assuming the path from the web root to the calendar circuit is portlets/calendar, a call to

fusebox.head.write will result in the following comments and tags being written:

Now let’s suppose we have to create a specialized stylesheet for IE6 to get around it’s

bugs. We can do that by using a conditional stylesheet include, like this:

This would generate the following in the header:

Discussion

This method sets a flag which will cause the method a4d.debug.writeDumpStyles to

be called when fusebox.head.write is called.

<!-- css added by calendar circuit ->
<link rel="stylesheet" type="text/css"
 href="/portlets/calendar/css/calendar.css" />
<link rel="alternate stylesheet" type="text/css"
 href="/portlets/calendar/css/calendar_small.css"
 media="screen" title="small text" />
<link rel="alternate stylesheet" type="text/css"
 href="/portlets/calendar/css/calendar_large.css"
 media="screen" title="large text" />
<link rel="stylesheet" type="text/css"
 href="/portlets/calendar/css/calendar_print.css"
 media="print"/>
<link rel="stylesheet" type="text/css"
 href="/portlets/calendar/css/event.css" />
<!-- end calendar circuit css -->

fusebox.head.addCSS(concat(";"; \\
 "!<!--[if lt IE 7]>"; \\
 "/css/ie6.css"; \\
 "!<![endif]-->"))

<!--[if lt IE 7]>
<link rel="stylesheet" type="text/css" href="/css/ie6.css" />
<![endif]-->

addDumpStyles version 4.0

addDumpStyles
Chapter 12 Standard Libraries 559

Active4D v6.3 fusebox.head
Normally you do not need to call this method, it is called by the methods in the

a4d.debug libary. If you plan to use the Active4D dump styles in a fusebox application,

use this method, since the styles get written to the page header where they belong.

Discussion

This method is a synonym for addJS.

Discussion

This method adds one or more URLs that will go into the src attribute of a <script> tag to

load a Javascript file. To pass more than one URL, concatenate them together with

semicolons. The URLs will be URL-encoded for you.

If the URL of a Javascript file is a relative path, it is assumed it is relative to the directory of

the current circuit. This makes it much easier for you to specify circuit-relative paths. If

you want to use a path which is relative to the absolute web root, begin the path with “/”.

If the Fusebox root (where index.a4d is located) is within a subdirectory of the web root,

you have to build the path to the Javascript file like this:

If you want to pass verbatim text, pass “!” followed by the text.

If you want to add attributes to the script tag which is generated, append “|” followed by

the attributes (and values if necessary) to the filename.

addJavascript version 4.0

addJavascript(inFusebox; inURLs)

Parameter Type Description

inFusebox Collection  $fusebox

inURLs Text  Semicolon-delimited list of URLs to

Javascript files

addJS version 4.0

addJS(inFusebox; inURLs)

Parameter Type Description

inFusebox Collection  $fusebox

inURLs Text  Semicolon-delimited list of URLs to

Javascript files

$path := join paths($fusebox{"rootPath"}; "path/to/script.js")
560 Chapter 12 Standard Libraries

fusebox.head Active4D v6.3
Example

Let us assume a calendar circuit needs to have access to a Javascript file calendar.js that is

within a js directory within the circuit directory. To load this Javascript file in the header,

we would execute the following code in the fbx_settings.a4d of the calendar circuit:

If more than one path needs to be added, we can concatenate them together like this:

Assuming the path from the web root to the calendar circuit is portlets/calendar, a call to

fusebox.head.write will result in the following tags being written:

Now let’s suppose we have to include a Javascript file only on IE6 to enable it to display

PNG images with transparency. In addition, we have to add the “defer” attribute to the

script tag, because the file must not executed when it is loaded.

We can accomplish this by using a conditional include, like this:

This would generate the following in the header:

Note we added the “defer” attribute by appending “|defer” to the file path.

fusebox.head.addJS($fusebox; "js/calendar.js")

fusebox.head.addJS($fusebox; \\
 concat(";"; "js/calendar.js"; "js/events.js"; "/js/help.js"))

<!-- Javascript added by calendar circuit -->
<script type="text/javascript"
 src="/portlets/calendar/js/calendar.js">
</script>
<script type="text/javascript"
 src="/portlets/calendar/js/event.js">
</script>
<script type="text/javascript" src="/js/event.js"></script>
<!-- end calendar circuit Javascript -->

fusebox.head.addJS(concat(";"; \\
 "!<!--[if lt IE 7]>"; \\
 "/js/pngfix.js|defer"; \\
 "!<![endif]-->"))

<!--[if lt IE 7]>
<script type="text/javascript" src="/js/pngfix.js" defer>
</script>
<![endif]-->
Chapter 12 Standard Libraries 561

Active4D v6.3 fusebox.head
Discussion

This method adds one or more <meta> tags to the header. Only the content of the meta

tag should be passed, not the meta tag itself. To pass more than one meta tag,

concatenate them together with vertical bars (|). The meta tag content will not be URL

encoded for you, it must be URL encoded by you if necessary.

Example

When a new user comes to the site, we redirect to a checker circuit which determines

which browser is being used, as well as if Javascript and cookies are enabled. In order to

do the cookie and Javascript checking, the circuit needs to put a meta refresh tag in the

header:

If our current host is “my.host.com” and fusebox.conf.fuseaction is “action”, a call to

fusebox.head.write will result in the following tag being written:

Discussion

This method sets the title of the window, which will be written out as the <title> tag

when fusebox.head.write is called. The text will be HTML encoded when it is written,

you should not encode it yourself.

addMetaTag version 4.0

addMetaTag(inFusebox; inTags)

Parameter Type Description

inFusebox Collection  $fusebox

inTags Text  Vertical bar-delimited list of meta tags

$url := "http://" + join paths(request info{"host"}; \\
 fusebox.makeURL("checker.checkJS")
$tag := 'http-equiv="refresh" content="1;URL=$url"'
fusebox.head.addMetaTag($fusebox; $tag)

<!-- meta tags added by checker circuit -->
<meta http-equiv="refresh"
content="1;URL=http://my.host.com/index.a4d?action=checker.JS" />
<!-- end checker circuit meta tags -->

getTitle version 4.0

getTitle

Parameter Type Description

inTitle Text  Window title
562 Chapter 12 Standard Libraries

fusebox.head Active4D v6.3
Discussion

This method sets the title of the window, which will be written out as the <title> tag

when fusebox.head.write is called. The text will be HTML encoded when it is written,

you should not encode it yourself.

In a Fusebox application, you should call this method in the root circuit’s

fbx_settings.a4d, then you can specialize the title in other circuits by calling it in other

circuits’ fbx_settings.a4d or display fuses. The call closest to the target circuit will

ultimately set the title.

Discussion

This method writes the tags specified by the add<type> methods and the setTitle

method. When writing the tags, they are separated by circuit and their source is noted in

HTML comments to aid in debugging your code.

setTitle version 4.0

setTitle(inTitle)

Parameter Type Description

inTitle Text  Window title

write version 4.0

write
Chapter 12 Standard Libraries 563

Active4D v6.3 RowSet
RowSet

In the course of building a dynamic, database-driven web site, one of the most common

tasks is to perform a query and then display or edit the results of that query. Such actions

always have the following attributes:

3 The result of the query is an ordered set of one or more rows in the database.

3 Each row consists of one or more columns.

3 To display the set of rows you must iterate over each row in order.

3 To display a single row you must access the column data for that row.

3 The data source of the column data typically consists of fields within a selection of

records or elements within an array.

Enter the RowSet

A RowSet is a data structure that encapsulates all of the attributes listed above. The

RowSet library is a set of methods that provides an API for working with a RowSet in an

abstract and consistent manner.

There are several key advantages to using RowSets:

3 Simple syntax for working with rows

3 Uniform API no matter what the source of the row data is

3 Ability to use dummy data if real table data is not available

3 You can embed complex queries and data manipulations into the RowSet

specification, much like a SQL query

At the heart of a RowSet is the data source. The data source acts as the conduit between

the actual row data and the RowSet API. Currently there are three possible data sources

for a RowSet:

3 Selection of records

3 Arrays

3 Delimited text data

No matter what the data source is, once a RowSet is created the code that uses a RowSet

will not change.

In addition to insulating you from the data source, RowSets also insulate you from

changes to table, field, and array names. RowSets accomplish this in several ways:

3 When you create a RowSet, you map virtual column names to the data source

columns.

3 You can access RowSet data by index, with the order being determined by the order in

which you declare the columns in the mapping.
564 Chapter 12 Standard Libraries

RowSet Active4D v6.3
This architecture means that changes to the underlying data source will affect only the

one or two lines of code where you create the RowSet and declare the column/data

mapping.

For example, let’s say that you want to display a list of people. The list will have the

following columns:

3 name

3 phone

3 email

Originally the data will come from these fields:

3 [People]Name

3 [People]Phone

3 [People]Email

To create a RowSet from this data, you would do something like this:

In this case the logical column names happen to correspond to the physical field names

in the structure. But what happens if the structure changes (as it often does)? For

example, let’s say that the [People]Name field is renamed to [People]FullName, new

phone number and email address fields are added, and the original fields are renamed,

such that the data source for our “name”, “phone” and “email” columns now are:

3 People]FullName

3 [People]HomePhone

3 [People]Email1

If you were using field names directly in your pages, you would have to do a search and

replace in your entire site to make sure existing code doesn't break. On the other hand, if

you are using a RowSet, only the single line of code that creates the column/field

mapping will change, like this:

All of the rest of the code that uses the RowSet will remain unaffected. “Okay,” you say,

“that's fine, but I don't see what the big deal is. I still have to change the field names in all

of my mappings.” While this is true, insulation from structure changes is not the only

benefit you get from RowSets.

$map := """
name: [People]Name;
phone:[People]Phone;
email:[People]Email"""

$rs := RowSet.newFromSelection(->[People]; $map)

$map := """
name: [People]FullName;
phone:[People]HomePhone;
email:[People]Email1"""
Chapter 12 Standard Libraries 565

Active4D v6.3 RowSet
Let’s suppose that at some point you decide not to access the selection directly, but for

one reason or another you fetch (or build) the data into these arrays:

3 $names

3 $phones

3 $emails

Without RowSets you would be in for a lot of work, because the whole paradigm for

accessing the data has changed. At best you will have a lot of global find and replace

operations to perform, and the chances of it happening successfully are low.

On the other hand, if you use RowSets you only need to change the one line of code that

creates the RowSet, like this:

None of the code that works with the RowSet will have to change! But it gets better.

When you are developing your web site, you may not have access to the database, either

because it has not yet been finalized or because you are working remotely. In that case

you want to have some sample data so you can test your code, but where do you get it

from?

With RowSets it is easy. You can create a RowSet from delimited text data, which could

be read in from a file. To use this as your data source instead of selections or arrays, you

need only change the RowSet creation code, like this:

Again, none of the code that uses the RowSet will have to change.

Using RowSets

Once you have created a RowSet, to iterate through its rows you simply do this:

$map := """
name: $names;
phone:$phones;
email:$emails"""

$rs := RowSet.newFromArrays($map)

$rs := RowSet.newFromData($myData)

while ($rs->next)
 // Show data
end while

// sometimes a for loop is preferable

for ($i; $rs->getStart; $rs->getEnd)
 $rs->gotoRow($i)
 // Show data
end for
566 Chapter 12 Standard Libraries

RowSet Active4D v6.3
How you choose to display the row data is up to you. You have three ways of accessing

column within a row:

3 By getting the row data collection with getRow and indexing that by column name

3 By column index using getData

3 By column name using getData

Of the three techniques, the first is recommended, because it results in clearer (and

faster) code. Here is an example of the first technique:

This is by far the simplest technique. However, there may be times when you are

programmatically creating columns and it is easier to iterate through the columns by

index, like this:

You may not like using indexes, since you can’t see what column you are using without

referring to the column mapping, so you can use column names instead. Here’s an

example of using column names to access column data:

<%
 $row := $rs->getRow

 while ($rs->next)
%>
<tr>
<td><% =$row{"name"} %></td>
<td><% =$row{"phone"} %></td>
<td><% =$row{"email"} %></td>
</tr>
<% end while %>

<%
 $numColumns := $rs->columnCount

 while ($rs->next)
 %>
<tr>
<% for ($i; 1; $numColumns) %>
<td><% =$rs->getData($i) %></td>
<% end for %>
</tr>
<% end while %>

<% while ($rs->next) %>
<tr>
<td><% =$rs->getData("name") %></td>
<td><% =$rs->getData("phone") %></td>
<td><% =$rs->getData("email") %></td>
</tr>
<% end while %>
Chapter 12 Standard Libraries 567

Active4D v6.3 RowSet
That’s about all there is to iterating through and accessing row data in a RowSet. It’s

about as easy as it can get. And remember…you can change your data source and none

of your iterating code will have to change!

Subsetting Source Rows

In most cases you actually want a RowSet to represent a subset of the source data rows.

For example, if you are displaying a selection of 100 records, you will typically batch

them into groups of 10 or so rows. (And if you are not, you might want to consider doing

so.)

If you know in advance you are going to show a subset of the source rows, you can

indicate the subset when creating the RowSet. If the RowSet is cached or is created from

arrays or delimited data, this can dramatically improve performance, because the

RowSet will only store and process the given subset of rows.

There are two ways to indicate a row subset:

3 Pass a Batch when creating the RowSet. The Batch start and end indexes will become

the start and end rows of the RowSet.

3 Pass the start and end indexes as a delimited pair in the form "<start>:<end>".

For more information on using row subsets, see the newFrom<Source> method

descriptions below.

RowSet Cursors

Every RowSet has a cursor which keeps track of the current row. Unlike 4D query

commands which automatically go to the first record in a selection, when a RowSet is

first created the cursor is before the first row of the RowSet.

Like the current record in a selection, the cursor can be in one of three states:

3 before first: This corresponds to Before selection in 4D. This is the state you

ordinarily start in when iterating forward through a RowSet.

3 within: The cursor index is within the range 1 to the number of rows in the RowSet if

the RowSet has been created with the entire set of source data. If the RowSet

represents a subset of the source data, the cursor index is within the range <subrange

start> to <subrange end> inclusive.

3 after last: This corresponds to End selection in 4D. This is the state you ordinarily

start in when iterating backward through a RowSet.

There is a full suite of methods that allow you to move the cursor and determine its

current state.

Persistent RowSets

There is a certain amount of overhead involved in creating a RowSet. For data sets that

change infrequently or not at all, it would be nice if you could avoid the overhead of

creating a new RowSet on every request.
568 Chapter 12 Standard Libraries

RowSet Active4D v6.3
By passing a name to one of the newFrom<Source> methods, you create a persistent

RowSet: one that remains in memory until you specifically clear or overwrite it. Once a

persistent RowSet is created, you can access it by name in subsequent requests.

In addition, because you can set a timeout for a RowSet, you can easily implement a

refresh interval. For example, let’s say you want to create a persistent RowSet for a list of

product categories, since they change very infrequently, and you would like the RowSet

to timeout every 8 hours. You would do something like this:

By passing a name as the next to last parameter when creating a RowSet, you make that

RowSet persistent. The number after the name is the RowSet timeout in minutes.

To retrieve a persistent RowSet, you simply do this:

If the given persistent RowSet does not exist, zero is returned.

To see if a RowSet has timed out, you do this:

Putting it all together, your code to create a persistent RowSet will follow this sort of

pattern:

all records([categories])
order by([categories]; [categories]name)

$map := """
id: [categories]id;
name: [categories]name"""

$qryCategories := RowSet.newFromSelection(->[categories]; \\
 $map; -1; ""; "categories"; 60 * 8)

$qryCategories := RowSet.persistent("categories")

if ($qryCategories->timedOut)

$qryCategories := RowSet.persistent("categories")

if ($qryCategories # 0)
 if (not($qryCategories->timedOut))
 return
 end if
end if

all records([categories])
order by([categories]; [categories]name)

$map := """
id: [categories]id;
name: [categories]name"""

$qryCategories := RowSet.newFromSelection(->[categories]; \\
 $map; -1; ""; "categories"; 60 * 8)
Chapter 12 Standard Libraries 569

Active4D v6.3 RowSet
Which RowSet to Use

To get the most out of RowSets, you should know which kind of RowSet to create. Each

RowSet creation method is designed to fulfill a specific need.

3 Data comes from the database: If the source of your data is the database, use

newFromSelection or newFromCachedSelection. Using row callbacks and column

expressions, you can do very sophisticated queries and data manipulations with very

little work. If you need to search in a RowSet or iterate through its rows more than

once, consider using newFromCachedSelection.

If you need to use a cached selection and one or more columns must be calculated,

consider using SELECTION TO ARRAY to load the non-calculated columns and then

using setColumnArray to add the calculated columns.

If you need to directly access a blob field, you must use newFromSelection, since all of

the other RowSets are array-based, and there are no blob arrays in 4D. To get around

this you can use a column expression that extracts the data you need from the blob, in

which case newFromCachedSelection can be used.

3 Data comes from arrays: If you need to build arrays through complex queries and

manipulations of the data, consider using newFromCachedSelection with a row

callback and column expressions. Usually that can accomplish what you need but it

does most of the work for you. If you just need to create a RowSet with one or more

calculated columns, you can load the non-calculated columns using SELECTION TO

ARRAY and then use setColumnArray to add the calculated columns. For more

information on this strategy, see “setColumnArray” on page 590.

If the ultimate source of your data is arrays, obviously you must use newFromArrays.
570 Chapter 12 Standard Libraries

RowSet Active4D v6.3
Discussion

This method moves the cursor of self to just after the last row in the RowSet. After this

call isAfterLast will return True and previous will move to the last row if there is one.

Discussion

This method moves the cursor of self to just before the first row in the RowSet. After this

call isBeforeFirst will return True and next will move to the first row if there is one.

Discussion

This method does a deep clear of the persistent RowSet named inName and removes it

from the list of persistent RowSets.

If no such RowSet exists, nothing happens.

afterLast version 3

afterLast(self)

Parameter Type Description

self RowSet  RowSet reference

beforeFirst version 3

beforeFirst(self)

Parameter Type Description

self RowSet  RowSet reference

clearPersistent version 4.0

clearPersistent(inName)

Parameter Type Description

inName Text  Name of persistent RowSet
Chapter 12 Standard Libraries 571

Active4D v6.3 RowSet
Discussion

This method returns the number of columns in a RowSet. Use this as the end index when

iterating over the RowSet columns.

Discussion

This method returns the current position of the cursor of self. If isBeforeFirst is True, this

method returns RowSet.kRow_BeforeFirst. If isAfterLast is True, this method returns getEnd

+ 1.

Discussion

This method writes a nicely formatted dump listing the name, number of rows, and

column names for each persistent RowSet.

columnCount version 3

columnCount(self)  Longint

Parameter Type Description

self RowSet  RowSet reference

Result Longint  Number of columns in RowSet

currentRow version 3

currentRow(self)  Longint

Parameter Type Description

self RowSet  RowSet reference

Result Longint  Current row of RowSet

dumpPersistent version 4.0

dumpPersistent
572 Chapter 12 Standard Libraries

RowSet Active4D v6.3
Discussion

This method writes a nicely formatted dump of all columns and rows in self to the output

buffer. This is very useful for debugging your queries, row callbacks and column maps.

Discussion

This method returns the index of a column given a name. Columns are indexed in the

order they were declared on RowSet creation. If no column with the given name exists,

zero is returned.

Discussion

This method performs a linear search of the column inColumn for the value inValue,

starting at the first row of self. If a match is found, the index of the first matching row is

dump version 4.0

dump(self {; inName {; inShowType}})

Parameter Type Description

self RowSet  RowSet reference

inName Text  Optional name

inShowType Boolean  True to show column type

findColumn version 3

findColumn(self; inColumn)  Longint

Parameter Type Description

self RowSet  RowSet reference

inColumn Text  Column name to find

Result Longint  Index of column

findRow version 3

findRow(self; inColumn; inValue)  Longint

Parameter Type Description

self RowSet  RowSet reference

inColumn Text  Column in which to search

inValue <any>  Value to search for

Result Longint  Index of first matching row
Chapter 12 Standard Libraries 573

Active4D v6.3 RowSet
returned and the cursor is moved to that row. If a match is not found, zero is returned

and isAfterLast is True.

The type of inValue must be assignment compatible with the type of the column

referenced by inColumn.

Discussion

This method moves the cursor to the first row of self. If there is a first row (rowCount > 0),

True is returned, else False.

Discussion

This method returns the name of the column with the given index. Columns are indexed

in the order they were declared on RowSet creation. If no column with the given index

exists, an error is thrown.

Note: If the RowSet was created with newFromSelection with no subset of source

rows specified, the search may be very slow, because each record in the selection is

loaded one by one starting from the first record of the selection.

If you need to use this method with a selection-based RowSet, be sure to create the

RowSet with a subset of source rows, or use a cached RowSet.

first version 3

first(self)  Boolean

Parameter Type Description

self RowSet  RowSet reference

Result Boolean  True if there is a first row

getColumn version 3

getColumn(self; inIndex)  Text

Parameter Type Description

self RowSet  RowSet reference

inIndex Number  Column index

Result Text  Column name
574 Chapter 12 Standard Libraries

RowSet Active4D v6.3
Discussion

This method retrieves data from the column inColumn in the current row of self. If

inColumn is a number, it is taken as a column index. Columns are indexed in the order

they were declared on RowSet creation. If inColumn is a string or text, it is taken as a

column name.

If inColumn is not a valid column index or name, an error is thrown. If inColumn is valid

and there are no rows in the RowSet, or isBeforeFirst or isAfterLast is True, an empty value

for the column’s type is returned.

Discussion

This method returns the number of the last row in self.

Discussion

This method retrieves a list of the persistent RowSet names into outList. If outList is not a

String/Text Array, an error is generated and execution is aborted.

getData version 3

getData(self; inColumn)  <any>

Parameter Type Description

self RowSet  RowSet reference

inColumn Number/Text  Column index/name

Result <any>  Column data

getEnd version 4.0

getEnd(self)  Longint

Parameter Type Description

self RowSet  RowSet reference

Result Longint  Last row of RowSet

getPersistentList version 3

getPersistentList(outList)

Parameter Type Description

outList String/Text Array  Receives list of persistent RowSets
Chapter 12 Standard Libraries 575

Active4D v6.3 RowSet
Discussion

This method returns a reference to a collection which contains all of the row data for the

current row of self. The data in the collection is keyed on the column name. This is the

easiest and most efficient way to access row data.

See “Using RowSets” on page 566 for an example of using this method to access row

data.

Discussion

This method returns the number of the first row in self.

Discussion

This method returns the timeout in minutes for self.

getRow version 3

getRow(self)  Longint

Parameter Type Description

self RowSet  RowSet reference

Result Collection  Row data

getStart version 4.0

getStart(self)  Longint

Parameter Type Description

self RowSet  RowSet reference

Result Longint  First row of RowSet

getTimeout version 3

getTimeout(self)  Number

Parameter Type Description

self RowSet  RowSet reference

Result Number  Timeout in minutes
576 Chapter 12 Standard Libraries

RowSet Active4D v6.3
Discussion

This method moves the cursor to a given row within self.

If inRow is positive, the cursor is moved to the absolute row number given. If inRow is

negative, the cursor is positioned relative to the end of the RowSet. A value of -1

positions the cursor on the last row, -2 on the second to last row, and so on.

If inRow > rowCount, this method effectively performs afterLast. If inRow is negative and

abs(inRow) > rowCount, this method effectively performs beforeFirst.

Discussion

This method returns True if the cursor is positioned after the last row of self or if there are

no rows in self.

gotoRow version 3

gotoRow(self; inRow)  Boolean

Parameter Type Description

self RowSet  RowSet reference

inRow Number  Row number

Result Boolean  True if a valid row

isAfterLast version 3

isAfterLast(self)  Boolean

Parameter Type Description

self RowSet  RowSet reference

Result Boolean  True if current row is after last
Chapter 12 Standard Libraries 577

Active4D v6.3 RowSet
Discussion

This method returns True if the cursor is positioned before the first row of self or if there

are no rows in self.

Discussion

This method returns True if the cursor is positioned at the first row of self.

Discussion

This method returns True if the cursor is positioned at the last row of self.

isBeforeFirst version 3

isBeforeFirst(self)  Boolean

Parameter Type Description

self RowSet  RowSet reference

Result Boolean  True if current row is before first

isFirst version 3

isFirst(self)  Boolean

Parameter Type Description

self RowSet  RowSet reference

Result Boolean  True if current row is first

isLast version 3

isLast(self)  Boolean

Parameter Type Description

self RowSet  RowSet reference

Result Boolean  True if current row is last
578 Chapter 12 Standard Libraries

RowSet Active4D v6.3
Discussion

This method moves the cursor to the last row of self. If there is a last row (rowCount > 0),

True is returned, else False.

Discussion

This method returns the maximum rows in self, as set by the inSubset parameter during

RowSet creation.

If there is no limit on the number of rows, -1 is returned. Note that maxRows > rowCount

is possible if the number of rows in the data source was less than inSubset at the time of

RowSet creation.

Discussion

This method moves the cursor relative to the current row of self by the number of rows

given in inRows.

last version 3

last(self)  Boolean

Parameter Type Description

self RowSet  RowSet reference

Result Boolean  True if there is a last row

maxRows version 3

maxRows(self)  Longint

Parameter Type Description

self RowSet  RowSet reference

Result Longint  Maximum rows in RowSet

move version 3

move(self; inRows)  Boolean

Parameter Type Description

self RowSet  RowSet reference

inRows Number  Number of rows to move

Result Boolean  True if moving to a valid row
Chapter 12 Standard Libraries 579

Active4D v6.3 RowSet
If currentRow + inRows is in the range 1..rowCount, True is returned.

If inRows is positive and currentRow + inRows > rowCount, this method effectively

performs afterLast. If inRows is negative and currentRow + inRows < 1, this method

effectively performs beforeFirst. In either case False is returned.

Discussion

This method creates a RowSet from a group of arrays.

The columns in the RowSet are determined by inColumnMap, which maps virtual column

names to array references, which can be any valid Active4D array reference, which

includes local arrays, process/interprocess arrays, and arrays within collections.

The column map is formatted as a semicolon-delimited list of column:array pairs.

Whitespace before and after the column name and array reference is ignored.

For example, the following code would create a four-column RowSet:

One important thing to note in the example above is the global declaration of the arrays

before they are created. For newFromArrays to do its magic, it must have access to any

local variables that are used as array references in the column map. So any local variables

used within a column map must be declared global before they are created or used.

newFromArrays
version 3

modified version 4.0

newFromArrays(inColumnMap {; inSubset {; inName {; inTimeout}}})  Longint

Parameter Type Description

inColumnMap Text  Virtual column mapping

inSubset Number/Batch/Text  Maximum rows/row subset

inName Text  Persistent name

inTimeout Number  Timeout in minutes

Result RowSet  RowSet object

global($ids; $names; $birthdays; $genders)
selection to array([contacts]id; $ids; \\
 [contacts]name; $names; \\
 [contacts]birthdate; $birthdays; \\
 [contacts]gender; $genders)
$map := """
id: $ids;
name: $names;
birthdate:$birthdays;
gender: $genders"""

$rs := RowSet.newFromArrays($map)
580 Chapter 12 Standard Libraries

RowSet Active4D v6.3
Note also that $ids and the other local arrays in the above example could just as easily be

session items, process arrays or interprocess arrays. In that case the global declaration is

of course unnecessary. If you need to reference an array within a collection which is local,

you must declare the collection itself as global.

Here is another example where the session is storing a shopping cart in the parallel

arrays session{"cart.qtys"}, session{"cart.descriptions"} and session{"cart.prices"}. To create a

RowSet from the shopping cart is simple:

If all of the arrays in the column map are not the same size, the copies within the RowSet

are padded to the length of the first one or the specified subset of rows, whichever is

less.

For a discussion of the remaining parameters, see “newFromSelection” on page 584.

Discussion

This method creates a RowSet in exactly the same way as newFromSelection, but all of the

data is preloaded into memory when the RowSet is created. For a full discussion of the

parameters, see “newFromSelection” on page 584.

Reasons why you might use this method instead of newFromSelection include:

3 You need to manipulate inMainTable’s selection after creating the RowSet but before it

is displayed.

3 You need to use the RowSet find method to search within the RowSet.

3 A “cached” RowSet sounds a lot cooler than one that isn’t.

$map := """
qty: session{"cart.qtys"};
description: session{"cart.descriptions"};
price: session{"cart.prices"}"""

$rs := RowSet.newFromArrays($map)

newFromCachedSelection version 4.0

newFromCachedSelection(inMainTable; inColumnMap {; inSubset {; inRowCallback
{; inName {; inTimeout}}}})  Longint

Parameter Type Description

inMainTable Table pointer  Pointer to main table

inColumnMap Text  Virtual column mapping

inSubset Number/Batch/Text  Maximum rows/subset of rows

inRowCallback Text  Code to execute when loading a row

inName Text  Persistent name

inTimeout Number  Timeout in minutes

Result RowSet  RowSet object
Chapter 12 Standard Libraries 581

Active4D v6.3 RowSet
For a discussion of the performance considerations of using cached vs. non-cached

RowSets, see “To Cache or Not to Cache?” on page 588.

Discussion

This method creates a RowSet from delimited data, such as CSV (comma separated

values), coming from a text or BLOB variable.

The first row of inData contains column names, followed by one or more data rows, with

each row delimited by inRowDelimiter and each column delimited byinColumnDelimiter.

Whitespace around the column names is trimmed.

If inColumnDelimiter is not passed, it defaults to “,”. If inRowDelimiter is not passed, it

defaults to line feed (“\n”). Only the first character of each is used. If a column’s data

might contain the column delimiter, you should enclose the column data in double

quotes. The quotes are not included as part of the column data.

To specify a column data type, append one of the following types to the name, separated

by a colon:

3 boolean, date, longint, real, string(size), text

If no type is specified, the type defaults to “text”. Here is an example which creates a four-

column RowSet:

newFromData version 4.0

newFromData(inData {; inRowDelimiter {; inColumnDelimiter {; inSubset
{; inName {; inTimeout {; inTextFormat}}}}}})  Longint

Parameter Type Description

inData Text/BLOB  Delimited data

inRowDelimiter Text  Delimiter between rows

inColumnDelimiter Text  Delimiter between columns

inSubset Number/Batch/Text  Maximum rows/row subset

inName Text  Persistent name

inTimeout Number  Timeout in minutes

inTextFormat Number  Storage format of text

Result RowSet  RowSet object

$data := """name:text,birthdate:date,salary:real,comments
Dewey Cheatham,06/21/1949,75000,"Great guy"
Anne Howe,03/04/1951,78000,"The Big Cheese, dude"
"""
582 Chapter 12 Standard Libraries

RowSet Active4D v6.3
In the case of the string type, the number in parentheses specifies the string width.

The maximum size of the column info plus the data is 2GB.

Note that unlike the other RowSet types, if a subset of rows is specified, sourceRowCount

will return the same as getEnd, because scanning of the source data is aborted as soon as

the last specified row is reached. Also, row 1 is considered the first row after the header

row.

If inTextFormat is passed and inData is a BLOB, it represents the storage format of the text

within the BLOB. If it is not passed, the format defaults to Mac Text without length for

backwards compatibility.

For a discussion of the remaining parameters, see “newFromSelection” on page 584.

Discussion

This method creates a RowSet in exactly the same way as newFromData, but the data

comes from the text file located at inPath.

For information on working with documents and paths, see “Working with Paths” on

page 96.

Note: The string type in v6 is identical to the text type and has been kept for

backwards compatibility.

newFromFile
version 4.0

modified v5

newFromFile(inPath {; inRowDelimiter {; inColumnDelimiter {; inSubset
{; inName {; inTimeout {; inTextFormat}}}}}})  Longint

Parameter Type Description

inPath Text  Path to file

inRowDelimiter Text  Delimiter between rows

inColumnDelimiter Text  Delimiter between columns

inSubset Number/Batch/Text  Maximum rows/row subset

inName Text  Persistent name

inTimeout Number  Timeout in minutes

inTextFormat Number  Storage format of text

Result RowSet  RowSet object
Chapter 12 Standard Libraries 583

Active4D v6.3 RowSet
Discussion

This method creates a RowSet from a selection of records in the table pointed to by

inMainTable.

The columns in the RowSet are determined by inColumnMap, which maps virtual column

names to values, which can either be database fields or executable expressions. The

column map is formatted as a semicolon-delimited list of column:value pairs. Whitespace

before and after the column name and value is ignored.

If inSubset is a positive number, it is taken as the maximum number of rows to allow in

the RowSet. In this case the start index of the RowSet will be 1 and the end index will be

the number of rows in the source data or inSubset, whichever is less.

If inSubset is a negative number, this means you would like to allow an unlimited number

of rows. In this case the start index of the RowSet will be 1 and the end index will be the

number of rows in the source data.

If inSubset is a Batch collection reference, the start index of the RowSet will be

$inSubset{"start"} and the end index will be $inSubset{"end"}.

If inSubset is text, it should be in the form “<start>:<end>”. For example, to use only rows

10-20 of the source data, you would pass the string “10:20” in inSubset. If inSubset in

passed in this manner, the start index of the RowSet will be <start> and the end index

will be <end> or the number of rows in the source data, whichever is less.

If inName is passed and is non-empty, the RowSet will be persistent and will replace any

previous persistent RowSet with that name.

If inTimeout is passed and is > 0, a call to timedOut will return true after inTimeout

minutes. If inTimeout is not passed or is <= 0, timedOut will always return False, unless

setTimeout is subsequently called with a value greater than zero.

newFromSelection
version 3

modified version 4.0

newFromSelection(inMainTable; inColumnMap {; inSubset {; inRowCallback
{; inName {; inTimeout}}}})  Longint

Parameter Type Description

inMainTable Table pointer  Pointer to main table

inColumnMap Text  Virtual column mapping

inSubset Number/Batch/Text  Maximum rows/row subset

inRowCallback Text  Code to execute when loading a row

inName Text  Persistent name

inTimeout Number  Timeout in minutes

Result RowSet  RowSet object

Note: If you pass inName and create a persistent RowSet, it is effectively the same as

calling newFromCachedSelection.
584 Chapter 12 Standard Libraries

RowSet Active4D v6.3
Example 1

The following code would create a four-column RowSet:

Note the use of a literal heredoc string so the column mapping is clearer to the eye. Of

course you could do this:

but it is a lot harder to see the mapping and to add/delete columns later on.

If a value references a table which is not the same as the table pointed to by inMainTable,

Active4D will turn on auto-loading of related one records. For example, suppose we want

to add a “company” column to the RowSet in Example 1, whose value is

[companies]name. The column map would then become:

Example 2

If there is an automatic relation between [contacts] and [companies], there is nothing

more that needs to be done. The RowSet will take care of loading the related [companies]

record each time a [contacts] record is loaded.

But what if there is no automatic relation between [contacts] and [companies]? Ordinarily

you would think of doing something like this in your web page:

$map := """
id: [contacts]id;
name: [contacts]name;
birthdate:[contacts]birthdate;
gender: [contacts]gender"""

$rs := RowSet.newFromSelection(->[contacts]; $map)

$map := "name:[contacts]name; birthdate: [contacts]birthdate; ...

$map := """
id: [contacts]id;
name: [contacts]name;
birthdate: [contacts]birthdate;
gender: [contacts]gender;
company: [companies]name"""
Chapter 12 Standard Libraries 585

Active4D v6.3 RowSet
Example 3

What’s wrong with this picture? You are making a direct reference to a database table

within code that is meant to format output. This is a Bad Thing for two reasons:

3 It breaks the insulation from hardcoded data sources that RowSets provide. If you have

to write code like Example 3 you might as well not use RowSets.

3 If you are using Fusebox, the code above would belong to a display fuse, which is never

allowed to reference the database. All database references belong to query fuses.

So how can we accomplish this within the context of the RowSet? The answer is by using

a row calback. If an expression is passed in inRowCallback, it will be executed just after

each record in the main table is loaded, but before the column values are set.

Thus the query performed in Example 3 above would become part of the RowSet

constructor call, like this:

Example 4

Let’s extend this example by adding a column “supervisor” from a third table,

[employees], which is not directly related to [contacts] at all, but whose current record is

derived from some complex set of database operations that is already coded in an

Active4D library method called contacts.getSupervisor.

In this case we will take advantage of the fact that the row callback can be a block of code

with more than one line, since it is executed using the Active4D execute command. So

our new version of the RowSet construction looks like this:

<%
$row := $rs->getRow

while ($rs->next)
 // have to load [companies] record
 query([companies]; [companies]id = [contacts]company_id)
%>
<tr>
 <td><%=$row{"name"}%></td>
 <td><%=$row{"birthdate"}%></td>
 <td><%=$row{"gender"}%></td>
 <td><%=$row{"company"}%></td>
</tr>
<% end while %>

$map := """
id: [contacts]id;
name: [contacts]name;
birthdate: [contacts]birthdate;
gender: [contacts]gender;
company: [companies]name"""

$cb := "query([companies]; [companies]id = [contacts]company_id)"

$rs := RowSet.newFromSelection(->[contacts]; $map; -1; $cb)
586 Chapter 12 Standard Libraries

RowSet Active4D v6.3
Example 5

Note how we took advantage of heredoc strings to write multiple lines of code in the

$callback variable.

Now let us extend this example one more time to examine the ability to use expressions

instead of fields for column values. Suppose the database is changed such that the

[contacts]name is split into four fields: [contacts]title, [contacts]first_name,

[contacts]middle_initial and [contacts]last_name. You could change the column map to

include the four different fields, then concatenate the four fields in your display code, like

this:

Example 6

While you could do this, you shouldn’t, because you are effectively tying yourself to the

database structure in your display code. What you really want is a virtual database field

that concatenates the four fields together. You can accomplish this easily by using an

expression as the column value in the column map.

To use an expression as the column value, enclose any valid Active4D expression which

returns a value in a pair of backticks (``). The expression will be evaluated after each

record is loaded and the row callback is executed.

This allows us to change the column map and display code in Example 6 to the following:

$map := """
id: [contacts]id;
name: [contacts]name;
birthdate: [contacts]birthdate;
gender: [contacts]gender;
company: [companies]name
supervisor:[employees]name"""

$cb := """
query([companies]; [companies]id = [contacts]company_id)
contacts.getSupervisor([contacts]id)"""

$rs := RowSet.newFromSelection(->[contacts]; $map; -1; $cb)

$map := """
id: [contacts]id;
title: [contacts]title;
firstname: [contacts]first_name;
mi: [contacts]middle_initial;
lastname: [contacts]last_name;
birthdate: [contacts]birthdate;
gender: [contacts]gender;
company: [companies]name
supervisor:[employees]name"""

// display code
<td><%=concat(" "; $row{"title"}; $row{"firstname"}; \\
 $row{"mi"}; $row{"lastname"}) %></td>
Chapter 12 Standard Libraries 587

Active4D v6.3 RowSet
Example 7

Note that the display code is the same as in Example 3, which means it did not have to

change, even though a huge change was made to the database structure!

Together with row callbacks, column expressions give you unparalleled power to isolate

the database from the rest of your code. And since any valid Active4D expression can be

used, you can call a method as well. Overall selection-based RowSets give you much of

the expressive power of SQL.

To Cache or Not to Cache?

There are two types of selection-based RowSets: cached and non-cached. This method

creates a non-cached RowSet, which means that every time you go to a row a record has

to be loaded from the database, the row callback has to be executed, column data has to

be copied from the record, and column expressions have to be executed. The method

newFromCachedSelection creates a cached RowSet, which means all of the row data is

preloaded into memory when the RowSet is created, and all of the above mentioned

operations only occur once.

There are several factors which might influence the decision whether or not to use

cached RowSets:

3 If the number of rows and columns is very large you may have to worry about memory

usage, however the memory is freed as soon as the request is processed.

3 If you will be accessing the RowSet multiple times — for example if you need to do a

search within the RowSet before displaying it — then a cached RowSet will be faster,

since loading data from an array is faster than loading a record and accessing its fields,

especially if Active4D is running on 4D Remote.

3 If there is no row callback and no column expressions, a cached RowSet will use

SELECTION TO ARRAY to load the data. If Active4D is running on 4D Remote, and if

the number of columns used in the RowSet is a small subset of the fields in the source

table, or the source table contains large text, BLOB or picture fields, then SELECTION

TO ARRAY is faster than a row-by-row loading of records because only data from the

requested fields is sent to the 4D Remote.

$map := """
id: [contacts]id;
name: ‘concat(" "; [contacts]title; [contacts]first_name;
contacts]middle_initial; [contacts]last_name)‘;
birthdate: [contacts]birthdate;
gender: [contacts]gender;
company: [companies]name
supervisor:[employees]name"""

// display code
<td><%=$row{"name"}%></td>

Note: Unlike row callbacks, column expressions may only be one line of code. If you

need to execute multiple lines of code, put them in a method and call the method.
588 Chapter 12 Standard Libraries

RowSet Active4D v6.3
Discussion

This method moves the RowSet cursor to the next row in the RowSet and loads its data. If

the cursor was not the last row of the RowSet before this call, True is returned, else False.

Discussion

This method returns a reference to the persistent RowSet named inName. If no such

persistent RowSet exists, zero is returned.

Discussion

This method moves the RowSet cursor to the previous row in the RowSet and loads its

data. If the cursor was not the first row of the RowSet before this call, True is returned,

else False.

next version 3

next(self)  Boolean

Parameter Type Description

self RowSet  RowSet reference

Result Boolean  True if there is a next row

persistent version 4.0

persistent(inName)  Collection

Parameter Type Description

inName Text  Name of a persistent RowSet

Result RowSet  Named RowSet

previous version 3

previous(self)  Boolean

Parameter Type Description

self RowSet  RowSet reference

Result Boolean  True if there is a previous row
Chapter 12 Standard Libraries 589

Active4D v6.3 RowSet
Discussion

This method returns the number of rows in the RowSet. To get the number of rows in the

data source on which the RowSet is based, use sourceRowCount.

Discussion

If the RowSet self does not already have a column named inColumn, a new column will

be added with the given name and data. If a column already exists with the same name,

its data is replaced.

If the size of inArray is less than rowCount, it is expanded accordingly. If the size of inArray

is larger than rowCount, any other columns are expanded accordingly. If maxRows >= 0,

the size of the columns is clipped to that.

This method is designed to be used in cases where the bulk of your data is non-

calculated but one column needs to be calculated.

rowCount version 3

rowCount(self)  Longint

Parameter Type Description

self RowSet  RowSet reference

Result Longint  Number of rows in RowSet

setColumnArray version 3

setColumnArray(self; inColumn; inArray)

Parameter Type Description

self RowSet  RowSet reference

inColumn Text  Virtual column to set

inArray Array  Column data
590 Chapter 12 Standard Libraries

RowSet Active4D v6.3
Discussion

This method functions like setColumnArray, but the column data comes from delimited

data instead of an array. If inDelimiter is not passed, it defaults to “,”.

Discussion

This method sets the auto relate one flag, which determines whether related one records

will be loaded when moving the cursor in a RowSet that was created with

newFromSelection.

The old value of the flag is returned.

setColumnData version 3

setColumnData(self; inColumn; inData {; inDelimiter})

Parameter Type Description

self RowSet  RowSet reference

inColumn Text  Virtual column to set

inData Array  Column data

inDelimiter Text  Row delimiter

setRelateOne
version 3

modified version 4.0

setRelateOne(self; inRelateOne)  Boolean

Parameter Type Description

self RowSet  RowSet reference

inRelateOne Boolean  True to load related one records

Result Boolean  Old value of flag
Chapter 12 Standard Libraries 591

Active4D v6.3 RowSet
Discussion

This method sets the timeout of self to inTimeout minutes after self ’s creation. In most

cases this method is unnecessary, as you can pass the timeout when you create a

RowSet.

Discussion

This method sorts the data in self according to the sort specification given in inSortMap.

The RowSet must have been created with:

3 RowSet.newFromCachedSelection

3 RowSet.newFromArrays

3 RowSet.newFromData

3 RowSet.newFromFile

inSortMap is a semicolon-delimited list of one or more column:order pairs, where column

is the name specified in the original column map when the RowSet was created, and

order is one of the comparison operators < > =. You can perform a multi-level sort by

passing more than one column with an order of < or >.

If order is <, the column is sorted in descending order. If order is >, the column is sorted in

ascending order. If order is =, the column is sorted neutrally along with the previous

column in the list.

Any columns in the RowSet that are not included in inSortMap will be sorted neutrally

along with the other columns.

setTimeout version 4.0

setTimeout(self; inTimeout)

Parameter Type Description

self RowSet  RowSet reference

inTimeout Number  Timeout in minutes

sort version 4.0

sort(self; inSortMap)

Parameter Type Description

self RowSet  RowSet reference

inSortMap Text  Specifies columns to sort and sort

order
592 Chapter 12 Standard Libraries

RowSet Active4D v6.3
Example

Discussion

This method returns the number of rows in the data source on which the RowSet is

based. To get the number of rows in the RowSet itself, use rowCount.

Discussion

If self has a timeout value <= 0, this method returns False.

Otherwise this method calculates the difference between the current timestamp and the

creation timestamp of self, and if the result is greater than self ’s timeout, True is returned,

else False.

$map := "lastname:<;firstname:>"
$rowset->sort($map)

// RowSet will be sorted by lastname descending
// and firstname ascending.

sourceRowCount version 3

sourceRowCount(self)  Longint

Parameter Type Description

self RowSet  RowSet reference

Result Longint  Number of rows in RowSet data source

Note: If the RowSet was created with newFromData/newFromFile and a subset of

rows, this method will return the same as getEnd.

timedOut version 4.0

timedOut(self)  Boolean

Parameter Type Description

self RowSet  RowSet reference

Result Boolean  True if RowSet has timed out
Chapter 12 Standard Libraries 593

Active4D v6.3 SessionHandler
SessionHandler

The SessionHandler library provides a ready to use session handler that stores sessions in

the database. This is necessary when you have multiple servers behind a load balancer,

because there is no guarantee any given server will serve all requests from a given user

once a session starts.

The methods in the SessionHandler library are documented here in case you want to

create your own session handler, either in 4D code or in a library, and to help you debug

any problems that might arise when using this library or the predefined 4D method-

based session handler.
594 Chapter 12 Standard Libraries

SessionHandler Active4D v6.3
Discussion

This method is mandatory, and is responsible for returning the next available internal

session id. This method is called when a new session is created.

If zero is returned, any attempt to work with the session will result in an error being

thrown and execution being aborted.

Discussion

This method is mandatory, and is responsible for returning the session data for the

session with the given id.

If no such session exists, an empty BLOB should be returned.

If a matching session is found, this method should wait until it can obtain a lock on the

session’s storage and leave it in a locked state so that no other processes can access the

session until the current process has finished.

This method is called every time a user makes a request that contains a session id cookie,

query parameter, or form field.

nextId v6.2

nextId  Longint

Parameter Type Description

Result Longint  Next internal session id

read v6.2

read(id)  BLOB

Parameter Type Description

id Longint  Internal session id

Result BLOB  Session data
Chapter 12 Standard Libraries 595

Active4D v6.3 SessionHandler
Discussion

This method is mandatory, and is responsible for saving the id, data and expires values. If

existing storage with the given id exists, it should be updated. In a library method, the

data parameter should be a reference parameter (prefixed with “&”) which avoids an

extra copy of the BLOB.

When finished, this method should release the lock on the session storage that was

obtained with the read method.

This method is called at the end of every request in which nextId or read is called. If False

is returned, the request fails and returns 500 (Internal server error) as the status code.

Discussion

This method is optional, and is responsible for deleting storage for the session with the

given id and releasing any locks on it.

This method is called at the end of a request in which abandon session has been called.

If False is returned, the request fails and returns 500 (Internal server error) as the status

code.

If this method is not implemented, be sure to implement some other mechanism for

cleaning up deleted and expired sessions.

write v6.2

write(id; data; expires)  Boolean

Parameter Type Description

id Longint  Internal session id

data BLOB  Session data

expires Real  Time when session will expire

Result Boolean  True for success

Note: expires is a datetime value that cannot be manipulated by 4D.

delete v6.2

delete(id)  Boolean

Parameter Type Description

id Longint  Internal session id

Result Boolean  True for success
596 Chapter 12 Standard Libraries

SessionHandler Active4D v6.3
Discussion

This method is optional, and is responsible for deleting storage for all session whose

expires time is less than maxExpires.

This method is called by the Active4D housekeeper at the interval defined by the

“session purge interval” configuration option. If False is returned, an error is logged in the

Active4D log.

If this method is not implemented, be sure to implement some other mechanism for

cleaning up deleted and expired sessions.

purge v6.2

purge(maxExpires)  Boolean

Parameter Type Description

maxExpires Real  Maximum valid expires value

Result Boolean  True for success
Chapter 12 Standard Libraries 597

Active4D v6.3 SessionHandler
598 Chapter 12 Standard Libraries

. .
CHAPTER 13

Debugging

Although Active4D does not have an interactive debugger, there are many tools you can

use to find out what is going on inside your code. This requires putting some extra

debug code in your scripts, but such is life.

The Basics
There are several basic techniques for peeking inside your code to see what is going on.

The technique you use will depend on what the code is doing and whether it is possible

to write debugging information to the page.

Using write

The simplest way to find out the internal state of Active4D is to use one of the write

commands to write debugging information to your page, like this:

Tracing execution

In some cases you will come across an error in your code which you cannot explain. In

such cases, often the line that caused the error is expecting some condition that was not

fulfilled, and the actual bug is in code that came earlier.

For example, consider the following code:

The error message you receive will be that Active4D was expecting a date in the

expression year of($c{"bar"}). Let’s pretend there is a lot of code and HTML between the

for ($i; 1; records in selection([Ingredients]))
 goto selected record([Ingredients]; true)
 writebr([Vendors]Name) // debug code
 // normal code
end for

$c := new collection
$c{"foo"} := "bar"
include("bar.a4d")

// in bar.a4d
writebr("%d-%d-%d" % (year of($c{"bar"}); \\
 month of($c{"bar"}); \\
 day of($c{"bar"})))
// above line fails, $c{"bar"} not set
Chapter 13 Debugging 599

Active4D v6.3
creation of $c and the write statement in bar.a4d, and you are sure something in there

was supposed to set $c{"bar"}. Obviously it isn’t happening, so you have to work your way

back from the line that caused the error and figure out what went wrong.

There are two strategies you can take:

3 Insert write to console commands at strategic points, allowing execution to continue

to the line that caused the error.

3 Dump debugging information and stopping execution before the error occurs.

Note that in the second case, you must stop execution, otherwise the debugging

information you dump will be replaced by the error message when the error occurs. To

stop execution, you would do something like this in a Fusebox fuse or layout:

Why return? Because return will halt execution only of the current include file. If you

halt execution entirely, the Fusebox core will not have a chance to continue execution to

the point where your debug output is actually written to the response buffer.

If you are not using Fusebox, you would do something like this:

In this case you want to use the exit command, which halts all execution.

Standard Library Methods
Active4D provides a wealth of library routines for dumping the current state of the

interpreter to the client browser. You will find them to be invaluable debugging tools.

a4d.console and a4d.debug

The a4d.debug library provides many handy methods for dumping information about

arrays, collections, RowSets, and selections, as well as other internal information.

There are times, however, when you cannot dump debugging information onto a page.

In such cases the a4d.console library provides similar functionality to the a4d.debug

library, but dumps its information to the Active4D debugging console.

Typically you would place a call to methods in these libraries in a script where you want

to view a snapshot of the relevant information.

For example, to view the contents of the current session, you only need one line of code:

a4d.debug.dump collection($c; ""; true)
return

a4d.debug.dump collection($c; ""; true)
exit

<% a4d.debug.dump session %>
600 Chapter 13 Debugging

Active4D v6.3
For details on the a4d.debug methods, see “a4d.debug” on page 437. For details on the

a4d.console methods, see “a4d.console” on page 432.

The Active4D Log
Active4D v6 has extensive logging of its internal operations to help you debug problems

that are difficult to trace otherwise.

Logs are kept in <database structure directory>/Logs/Active4D, where the “Logs”

directory is what would be returned by Get 4D folder(Logs Folder). Log files are rotated

automatically when they reach 1MB in size. A total of seven log files are kept, with

Active4D.0.log being the current log file, Active4D.1.log being the previous log file, and

so on up to Active4D.6.log.

Active4D logs the following types of information in the log file:

3 Information about the host environment

3 Loading of configuration files

3 Loading and unloading of libraries

3 License key file information

3 Internal and runtime errors

Each log entry occupies one logical line and looks something like this:

Log entries contain the date and time of the entry, followed by “Active4D:”, followed by

the entry type, followed by the message. For non-runtime error messages, the message

is prefixed with the module within Active4D where the message originated. For example,

the entry above originated in the “license” module.

When a runtime error occurs, the log message contains the error message, followed by

the location of the error. Here is a typical syntax error log entry:

The log entry types are:

3 info: General information about Active4D operations or environment, as well as

regular messages logged with the log message command

3 notice: “Official” announcements

3 warn: Conditions that may cause problems or errors and should be looked into

3 error: Internal or runtime errors that should be attended to, and error messages

logged with the log message command

3 debug: Detailed information about Active4D’s internal operations

Oct 20 09:37:57 Active4D: [info] license: matched IP address:
192.168.1.7

Oct 20 19:43:05 Active4D: [error] Syntax error:
/Users/aparajita/Active4D/demo.4dbase/web/dsp_basics.a4d, line 22
Chapter 13 Debugging 601

Active4D v6.3
Changing the Log Level

If the normal logging does not provide enough information to debug a problem, or if

you would like to disable logging altogether, you can change the log level.

To change the log level, follow these steps:

1 In a text editor, create a new plain text document.

2 In the document, enter the text “debug” or “off”.

3 Save the document as “log_level” in the Active4D log directory.

4 Restart 4D.

If Active4D finds “log_level” (or for backward compatibility, “log_debug_level”) in the log

directory and it contains “debug” or “off”, the log level is set accordingly.

3 When the log level is “debug”, you will see many log extra entries of type “debug”. This

level gives you detailed information about the inner workings of Active4D.

3 When the log level is “off”, logging is completely turned off.

The default log level can be restored either my moving, renaming or deleting the

“log_level” file or by deleting the text within the file, then restarting 4D.
602 Chapter 13 Debugging

Active4D v6.3
The Session Editor
One of the greatest strengths of Active4D is its session management, which you will

want to use heavily. Since much of your code will be working with sessions, you need

tools to see what is happening inside the session.

Active4D provides two tools for debugging sessions: a client-side session editor, and a

server-side session monitor.

Using the Session Editor

Once a session has been created on the server, you can use the client-side session editor

to view and edit the session. The session editor is completely contained in the Active4D

script “sed.a4d”. To use the session editor, follow these steps:

1 Place “sed.a4d” somewhere within your web root folder (or a subfolder thereof).

2 If you are using Fusebox, add a fuseaction in some circuit’s fbx_switch.a4d that will

include “sed.a4d”.

3 Open a new window or tab in your browser. If you are on Windows, this means

creating a new browser window or tab from within the browser, not launching a

new browser. Otherwise you will not be sharing the same session cookie.

4 Enter the URL of “sed.a4d” or of the fuseaction that will ultimately include it.

Once the session editor appears, you will see a screen something like this:

The upper part of the session editor contains the fields and controls you use to edit the

session. The lower part of the session editor displays the contents of the current session.

The elements of the session editor are:

3 Item key: Enter the name of the session item you wish to set or get the value of.

3 Value type: When setting an item, this popup determines what type of value will be

set. You may change the type of an existing session item by using this popup.
Chapter 13 Debugging 603

Active4D v6.3
3 Array index: If you are setting or getting an element of an array item, specify its index

here.

3 Value: When setting an item, you enter the value here. The text you enter is

converted according to the type set in the Value type popup menu. If you are setting

an array, you can enter multiple items. For example, to set a Longint item array with

four elements, select “Array Longint” from the Value type popup menu and enter “1 2 3

4” in this field.

3 Array separator: By default, a space is the array separator used to parse array

elements in the Value field. If you want to use another separator, enter the character in

this field. For example, to set a text array with two elements, “O give me” and “a home”,

you would enter “,” in the Array separator field and the text “O give me,a home” in the

Value field.

3 Set button: Use this button to set an item with the values you have specified. If no

item with the specified item key exists, a new item will be added to the current session

with the given key and value.

3 Get button: Use this button to retrieve the value of the specified item or item array

element.

3 Delete button: Use this button to delete the item specified by Item key.

3 Abandon button: Use this button to abandon the session entirely. After clicking this

button the display may not change, but the session has been abandoned. To update

the display, click the Get button after clicking Abandon.

3 Set Timeout button: The current timeout (in minutes) is always displayed in the field

to the left of this button. To change the timeout, enter a new number (fractional

minutes are allowed) in the field and click the button.

The Session Monitor
While the Session Editor is ideal for viewing and editing a single session during

development, once your web site is deployed you may want to see all of the current

sessions. This is what the Session Monitor is for.

Displaying the Session Monitor

If you are using the Active4D shell, or have installed the Active4D Insider group, the

Session Monitor is available via the Active4D menu. Once opened, the Session Monitor

looks something like this:
604 Chapter 13 Debugging

Active4D v6.3
Using the Session Monitor

In the upper part of this window is the session list, and it contains one entry for every

current session. There are four columns of information in the session list:

3 ID: The internal session ID.

3 Timeout: The timeout of the session in minutes.

3 Remaining: The time remaining before the session times out in HH:MM:SS format.

3 Size: The memory usage of the session.

The session list is sorted by time remaning by default. You can select the sort column by

clicking on the column header. The current sort column is indicated by being drawn in a

darker shade of gray.

Below the session list is summary information, which includes the number of sessions

and the total memory usage of all sessions.

The session list and summary information are updated every five seconds.

Abandoning a Session

When you click on a session in the session list, if the session has any time remaining, an

“Abandon” button appears. Clicking the button asks you to confirm, and if confirmed, the

session is abandoned as if the abandon session command was used within Active4D.

Viewing Session Data

You can view the data in a particular session by double-clicking on it in the list or by

selecting it and pressing Return. This displays the session data view, which looks

something like this:
Chapter 13 Debugging 605

Active4D v6.3
The upper part of the session data view displays all of the items in the session. The lower

part of the session data view displays a textual representation of the selected item.

Arrays are displayed as a CR-delimited list of elements.

Clicking on an item in the upper list displays its value below. To return to the session list,

click the List button or press Return.

The Active4D Debugging Console
Sometimes you can’t display a dump on the client browser because an error is occurring

which replaces the dump with an error message. In other cases it may be necessary to

print out some messages while execution is proceeding so you can trace the internal

state.

Active4D provides a server-side debugging console which can be written to during

execution. By default the console is disabled in a compiled database. To enable the

debugging console in a compiled database, do the following:

1 Open the method A4D_DebugInitHook.

2 Uncomment the line “`$ioDebug->:=True”, or if no such line exists, add such a line

(uncommented).

3 Close the method and recompile your structure.

Using the Debugging Console

To write debugging info to the server-side console, simply use the write to console

command, which takes an expression of any type and converts it to text.

This text is then appended to the end of the console’s output. If the console was not

previously visible, it is shown and brought to the front. Active4D takes care of showing
606 Chapter 13 Debugging

Active4D v6.3
the output from each write to console call on a new line; you do not have to add a

carriage return at the end yourself.

Here is what the console looks like:

You can turn the console on or off globally by clicking on the On checkbox. In addition,

you can have console messages prefixed by the time and/or IP address of the source by

checking the Time and IP checkboxes.

The console log is automatically cleared when it reaches 5K in size. If you want to clear it

before then, click the Clear button.

The debugging console works both with 4D standalone and with Client/Server. When

run under 4D Remote with 4D Server acting as the web server, console messages are

queued on Server and retrieved by the 4D Remotes on a first come, first serve basis. Each

4D Remote that has the console on checks the Server once per second to see if any

console messages are queued. If so, all of the queued messages are copied and removed

from the queue. Thus only one workstation may view any queued console messages.

Filtering Console Messages

You may configure the console to listen to messages only from certain IP addresses. To

do so, run the A4D_Prefs method (either directly or through a menu item) and click the

Console tab in the dialog. You will see a dialog something like this:
Chapter 13 Debugging 607

Active4D v6.3
The IP Filter section determines which messages are displayed in the console. If the None

radio button is selected, all console messages will be displayed. If you select the List radio

button, you may enter a carriage return-delimited list of IP addresses to listen to. To make

the filter list active, click the Apply button.

For example, the following list would cause the console to listen to only two IP addresses:

192.168.1.7

192.168.1.13

You may also use a * at the end of an IP address to indicate that any address within a

subnet is valid. For example, the address:

192.168.1.*

would allow the console to listen to any IP address within the range 192.168.1.0 through

192.168.1.255.

When you close the Preferences dialog, your filter list is saved to a preferences file on

your machine and is read back in the next time you launch the shell.

Tuning Console Refresh

If you are using the console on 4D Remote when 4D Server is the web server, the console

has to communicate with the server (using GET PROCESS VARIABLE) to get the latest

console mesages. Unfortunately, on Windows GET PROCESS VARIABLE causes CPU

usage to momentarily go over 30%. To reduce the impact of this, by default the console

only checks the server every 3 seconds.

You can change the refresh delay as follows:

3 Open the A4D_Config list in the Tool Box.

3 Look for the item “ConsoleRefreshDelay=N”, where N is a number.

3 Change the number to the desired number of seconds between console refreshes.

3 Close the Tool Box and restart 4D.
608 Chapter 13 Debugging

. .
CHAPTER 14

Error Handling

Active4D goes to considerable lengths to catch errors and display meaningful error

messages. If any errors occur during the execution of an Active4D program, execution is

immediately aborted and the error handler takes over. The error handler will do one of

two things:

3 Display a default error message.

3 Attempt to execute the current error page.

The Default Error Message
The default error message is designed to be a debugging aid. Using the information in

the error message, you can quickly determine the source of the error.

Here is what an error message looks like:

First Active4D shows you the call chain, starting from the least recent at the top to the

most recent at the bottom. Included files are all listed separately as part of the chain.

After the call chain, the offending line of code is displayed, followed with a message

describing what went wrong. The error-causing line is displayed with the following color

coding:

3 blue: Tokens already evaluated.

3 red: The offending token or the last token in the offending expression.

3 gray: Tokens not yet evaluated.

Note: This chapter describes execution error handling. For a description of http error

handling, see “HTTP Error Handling” on page 63.
Chapter 14 Error Handling 609

Active4D v6.3
This makes it easy to find the exact cause of the error.

Using a Custom Error Page
The default error message is fine when you are developing a web site, but for public

consumption it is not exactly user-friendly.

Active4D allows you to execute another Active4D script file when an execution error

occurs. This allows you to display a user-friendly message and maintain the look and feel

of your web site. Within an error handler, the response status is initially HTTP Status OK

(200). You can retrieve the error status that triggered the handler with the get error

status command.

The error page is not static HTML, but a fully dynamic Active4D file with full access to all

of Active4D’s features. Thus your error page could log error information to the database,

if you so choose.

You can dynamically set the file to use as the error page in two ways:

3 Set the “error page” option in Active4D.ini

3 Call set error page within Active4D

If the designated error page cannot be found, is in a forbidden directory, or an error

occurs during the execution of the error page, Active4D falls back to the default error

message.

The “error page” Option

The “error page” option in Active4D.ini allows you to specify a URL-style path to a file to

execute when an error occurs. The path is relative to the current root.

If you set an error page in Active4D.ini, all Active4D sessions will have their error page set

by default to the page you specify. In a production system you will most likely want to do

this to establish a “fail-safe” error page in case all else fails.

The “set error page” Command

Within an Active4D session, you may want to change the error page depending on the

current context. In this case you can use the set error page command within your

Active4D code.

Note: The line number for source files is the absolute line number within the file,

whereas the line number for a method is the line number of the body of that method,

not of the file containing the method. Since empty lines are stripped out of methods,

the line number does not include empty lines.

Note: A custom error page is executed within the context of the page that caused

the error, as if it were included at the point at which the error occurred.
610 Chapter 14 Error Handling

Active4D v6.3
The set error page command takes a Text parameter which is the same type of path you

use for the “error page” option in Active4D.ini. To get the current error page, should you

wish to save and restore the current error page setting, use the get error page

command.

Error Page Variables

Within the context of an error page execution, there are several local variables defined

for you to help you identify the source of the problem within your error page:

All of the above variables are Text except for $a4d_err_line_num, $a4d_err_type, and

$a4d_err_code, which are Longints.

The values used by $a4d_err_type have 4D constants defined so you can test against

them in your code. The error types are:

You may wish to use common Active4D code that will do something different in the

context of an error page. You can doing this by using the in error command. Within the

Name Description

$a4d_err_type A general classification of the error

$a4d_err_msg A description of what went wrong

$a4d_err_source_path The path to the file being executed, if any

$a4d_err_source_method The library and method name being executed, if any

$a4d_err_before_token The portion of the line before the token which

caused the error

$a4d_err_token The token which caused the error (or the closest

guess)

$a4d_err_after_token The remainder of the line after the offending token

$a4d_err_line_num The line number being executed at the time of the

error

$a4d_err_code The throw code if throw caused the error

Type Description

A4D Error Type Unexpected An error occurred that could not be classified by

Active4D

A4D Error Type Syntax A syntax error was encountered in your code

A4D Error Type Database A database engine error occurred during the

execution of a database command

A4D Error Type IO An I/O error occurred during the execution of a

document command or a file could not be found

A4D Error Type Critical A potentially fatal condition has occurred such as

running out of memory

A4D Error Type Runtime A runtime error such as a bad array index has

occurred
Chapter 14 Error Handling 611

Active4D v6.3
context of an error page execution this command returns the Boolean value True,

otherwise False.

If an error handler is exectuted because of a throw statement, you can retrieve the throw

code and message with the throw code and throw message commands.

Custom Error Handling in Fusebox

If an error occurs during the execution of a Fusebox application, the Fusebox core will

not finish executing. If you have set a custom error page, that page will be executed but

it will not be within the context of Fusebox.

Since you really want everything within a Fusebox application to operate within the

Fusebox context, what you really want is to execute a fuseaction when an error occurs. To

facilitate this, the fusebox library includes a special method for handling execution errors.

fusebox.handleErrorInline puts all of the $a4d_err variables listed above into

$attributes as items with the same name, but without the ‘$’ prefix. In addition, the

following items are added to $attributes:

Assume we have set the “error page” option in Active4D.ini to “act_handleError.a4d”.

Here is what act_handleError.a4d should look like:

Of course you may change “home.handleError” to whatever fuseaction you wish. The

fbx_switch.a4d of our home circuit would have a case like this:

The dsp_handleError.a4d display fuse would hopefully display some meaningful message

and perhaps log the error that occurred.

Within a fusebox error handler, the “fusebox page” option is temporarily ignored, which

allows you to execute non-fusebox scripts if you wish.

Name Description

a4d_err_url The full requested URL that led to the error

a4d_err_referer The HTTP referer of the original request

a4d_in_handler Boolean True

<% fusebox->handleErrorInline("home.handleError") %>

case of
 :($fusebox{"fuseaction"} = "handleError"
 include("dsp_handleError.a4d")

Note: Active4D v4.x used the method fusebox.handleError for handling errors. This

method still works but has been deprecated in favor of fusebox.handleErrorInline,

as the new method is executed without redirecting.
612 Chapter 14 Error Handling

Active4D v6.3
When fusebox itself throws an error, for example if it is given an invalid circuit name, it

executes throw with one of the following throw codes, which are defined as fusebox

library constants:

The Active4D Log
Active4D can log errors to a file called “Active4D.log”, located in a directory called

“Active4D logs” within the log directory. For information on the log directory, see “The

Active4D Log” on page 601.

Each log entry contains the date and time of the error, the severity of the error, where the

error occurred, and what went wrong.

You can determine which types of errors to log, or turn logging off altogether, by using

setting the “log level” option in Active4D.ini or by using the set log level command

within Active4D.

Setting the “log level” option sets the default log level for all future Active4D sessions.

Calling set log level within Active4D sets the log level dynamically within a single

Active4D execution.

Log Levels

There are four error log levels, each with an associated named constant. Each level has an

associated bit flag.

Code Description

fusebox.kMissingCircuitDefinitionsError fbx_circuits.a4d could not be found

fusebox.kEmptyCircuitDefinitionsError fbx_circuits.a4d was found but no circuits

were defined

fusebox.kMissingRootSettingsError The root fbx_settings.a4d could not be

found

fusebox.kMissingFuseactionError fusebox.conf.fuseaction is not defined

fusebox.kInvalidCircuitError The requested circuit cannot be found in

fbx_circuits.a4d

fusebox.kMissingSwitchError fbx_switch.a4d is missing in the target

circuit directory

fusebox.kInvalidActionError Set by the fusebox.invalidAction method

fusebox.kMissingLayoutError The layout file specified in fbx_layouts.a4d

cannot be found

Named constant Value Description

A4D Log Off 0 No messages are logged

A4D Log Critical Errors 1 Fatal runtime errors like out of memory
Chapter 14 Error Handling 613

Active4D v6.3
You can set exactly which types of errors are logged by adding the bit flags together and

using that value. If you are setting the log level within Active4D code, you can used the

named constants and also use the bitwise operators | (OR) or ^| (XOR) to set or clear one

flag. To turn logging off completely, set the log level to zero.

The default log level is 7, which logs all messages. You can retrieve the current log level

within Active4D with the get log level command.

A4D Log User Messages 2 User message logged through the log

message command

A4D Log Execution Errors 4 Execution errors such as syntax errors

Named constant Value Description
614 Chapter 14 Error Handling

. .
APPENDIX A

Index of Commands

_form . 202

_query . 271

_request . 330

{} (appending index) . 142

{-<index>} (from end index). 142

% (formatting operator) . 363

%% (formatting operator) . 364

= . 311

A4D Abandon session . 419

A4D Base64 decode . 419

A4D Base64 encode . 419

A4D Blowfish decrypt . 420

A4D Blowfish encrypt . 420

A4D Execute <type> request. .66

A4D Execute 4D request. .70

A4D Execute BLOB request .69

A4D Execute BLOB. .73

A4D Execute file .72

A4D Execute stream request .70

A4D Execute text .73

A4D FLUSH LIBRARY . 420

A4D Get IP address . 421

A4D GET LICENSE INFO . 424

A4D Get MAC address . 422

A4D Get MAC address . 424

A4D Get root. 422

A4D GET SESSION DATA. 422

A4D GET SESSION STATS . 423

A4D Get time remaining . 424

A4D Get version . 425

A4D Import library. 425

A4D LOG MESSAGE . 425

A4D MD5. 426

A4D Native to URL path . 426

A4D RESTART SERVER . 426

A4D Set HTTP body callback . 427

A4D SET ROOT . 427

A4D STRIP 4D TAGS. 428

A4D URL decode path . 428
Appendix A Index of Commands 615

Active4D v6.3
A4D URL decode query. 428

A4D URL encode path . 429

A4D URL encode query. 429

A4D URL to native path. 429

abandon response cookie . 319

abandon session. 357

add datetime to json . 222

add element . 143

add function to json . 223

add rowset to json. 224

add selection to json . 226

add to json. 220

add to timestamp . 404

add. 446

add. 545

addArray . 449

addCSS. 558

addDateTime . 450

addDumpStyles . 559

addFunction . 451

addJavascript . 560

addJS . 560

addMetaTag . 562

addRowSet . 452

addSelection. 455

afterLast . 571

ALL RECORDS, FIRST/LAST/NEXT/PREVIOUS RECORD . . . 340

Append document . 389

append to array. 143

append . 471

applyToSelection . 482

ARRAY <type> . 144

arrayToList . 471

articleFor. 482

auth password . 411

auth type . 411

auth user. 411

authenticate . 412

auto relate . 340

base64 decode . 169

base64 encode . 170

beforeFirst . 571

blob to collection . 156

blob to session. 351

blobToCollection . 483

blobToSession . 483

blowfish decrypt. 171

blowfish encrypt. 172
616 Appendix A Index of Commands

Active4D v6.3
br. 509

buffer size. 301

build query string. 275

buildOptionsFromArrays . 509

buildOptionsFromLists . 510

buildOptionsFromOptionArray . 511

buildOptionsFromOptionList . 512

buildOptionsFromRowSet. 513

buildOptionsFromSelection. 514

call 4d method. 239

call method . 239

camelCaseText. 484

capitalize. 365

cell . 366

changeDelims . 472

checkboxState . 515

checkSession . 515

choose . 240

chopText. 484

clear array. 145

clear buffer. 301

clear collection . 160

clear object . 259

clear response buffer . 301

clear . 433

clearPersistent . 571

collection has . 166

collection to blob . 156

collection to object . 259

collection . 154

collectionItemsToQuery . 516

collectionToBlob. 485

collectionToQuery . 517

columnCount . 572

compare strings . 367

concat. 368

configuration . 333

contains. 472

containsNoCase . 473

convertJSONDates. 468

COPY ARRAY . 145

copy collection . 158

copy upload . 196

core . 551

count collection items. 167

count form variables . 205

count globals . 212

Count in array. 146
Appendix A Index of Commands 617

Active4D v6.3
count query params . 275

count request cookies . 291

count request infos . 294

count response cookies . 319

count response headers . 322

count session items . 356

count uploads . 197

Create document . 389

cud . 486

current file . 390

current library name. 187

current line number . 187

current method name . 187

current path . 390

current platform . 330

current realm . 412

currentRow . 572

Date . 182

day of year . 182

deep clear collection . 160

deep copy collection . 158

default directory . 391

define . 242

defined. 414

delete collection item . 167

DELETE FOLDER . 391

delete global. 213

delete response cookie . 319

delete response header . 323

delete session item . 356

Delete string . 368

delete . 596

deleteAt. 473

deleteSelection . 491

directory exists . 392

directory of . 392

directory separator . 392

dump array . 433

dump array . 438

dump collection . 434

dump collection . 439

dump configuration . 440

dump form variables . 435

dump form variables . 440

dump license info . 435

dump license info . 440

dump locals. 441

dump query params . 435
618 Appendix A Index of Commands

Active4D v6.3
dump query params . 441

dump request info. 436

dump request info. 442

dump request . 442

dump selection . 442

dump session stats . 444

dump session . 436

dump session . 443

dump . 573

dumpDefaults . 532

dumpLib . 545

dumpPersistent. 572

embedCollection . 517

embedCollectionItems . 519

embedFormVariableList . 519

embedFormVariables . 519

embedQueryParams . 520

embedVariables . 520

emptyTag . 521

enclose. 369

encode . 463

encodeArray . 463

encodeBoolean . 464

encodeCollection. 464

encodeDate. 466

encodeString . 466

end json array. 231

end json object . 232

end save output . 304

endArray . 459

endObject . 460

execute in 4d . 244

EXECUTE . 244

extension of . 393

Field name . 176

file exists . 393

filename of. 393

fill array . 146

filterCollection . 492

find. 473

findColumn . 573

findNoCase . 474

findRow . 573

first not of . 370

first of . 371

first . 474

first . 574

for each/end for each. 216
Appendix A Index of Commands 619

Active4D v6.3
for each/end for each. 245

form variables has . 202

form variables . 202

format string. 371

formatUSPhone. 492

formVariableListToQuery. 521

full requested url . 330

fuseboxNew . 546

get auto relations. 341

get cache control . 325

get call chain. 188

get collection array size . 162

get collection array . 161

get collection item count. 163

get collection item . 163

get collection keys. 164

get collection . 161

get content charset. 327

get content type. 327

get current script timeout . 336

get error page . 191

get error status . 191

get expires date . 326

get expires . 325

get field numbers. 176

get field pointer . 177

get form variable choices . 203

get form variable count . 204

get form variable . 203

get form variables . 205

get global array size . 210

get global array . 209

get global item . 210

get global keys . 211

get global . 208

get http error page . 192

Get indexed string . 298

get item array. 218

get item key . 217

get item type . 217

get item value . 217

get license info . 331

get local. 414

get log level. 192

get output charset. 305

get output encoding . 306

get platform charset. 335

Get pointer . 247
620 Appendix A Index of Commands

Active4D v6.3
get query param choices . 272

get query param count . 273

get query param . 272

get query params. 274

get request cookie. 290

get request cookies. 291

get request info. 293

get request infos. 293

get request value . 296

get response buffer. 302

get response cookie domain . 316

get response cookie expires. 316

get response cookie http only . 317

get response cookie path . 318

get response cookie secure . 318

get response cookie . 313

get response cookies . 314

get response header. 321

get response headers. 321

get response status. 328

get root . 394

get script timeout . 336

get session array size . 352

get session array . 352

get session item . 353

get session keys . 353

get session stats . 360

get session timeout. 360

get session . 351

get throw code . 248

get throw message . 248

get time remaining . 332

get timestamp datetime . 406

get upload content type . 197

get upload encoding . 197

get upload extension. 198

get upload remote filename . 198

get upload size . 199

get utc delta . 183

get version . 332

getAt . 474

getColumn. 574

getData . 575

getDefaults . 532

getEmptyFields . 522

getEnd . 575

getMailMethod . 493

getPersistentList . 575
Appendix A Index of Commands 621

Active4D v6.3
getPictureDescriptor . 493

getPointerReferent . 494

getRow. 576

getSMTPAuthorization . 494

getSMTPAuthPassword . 495

getSMTPAuthUser . 495

getSMTPHost . 495

getStart . 576

getStarts . 533

getTimeout . 576

getTitle. 562

getUniqueID . 522

getURLFactory . 551

getVariablesIterator . 522

global . 248

globals has. 208

globals . 208

GOTO RECORD. 341

GOTO SELECTED RECORD . 342

gotoRow . 577

handleError . 551

handleErrorInline . 552

hide session field . 359

hideField . 523

hideUniqueField . 523

html encode . 375

identical strings. 372

image.a4d (script file). 261

import. 249

in error . 192

include into . 250

include . 250

insert into array . 147

Insert string . 372

insertAt . 475

interpolate string . 373

invalidAction . 553

is a collection . 166

is an iterator . 218

is array . 148

isAfterLast . 577

isBeforeFirst. 578

isFirst. 578

isFuseboxRequest . 553

isLast . 578

join array . 148

join paths . 394

json encode. 234
622 Appendix A Index of Commands

Active4D v6.3
json to text. 233

last not of . 373

last of . 374

last . 475

last . 579

left trim . 374

len. 476

library list . 188

listToArray . 476

load collection . 157

local datetime to utc . 183

local time to utc . 184

local variables. 415

lock globals . 213

log message . 193

longint to time. 251

mac to html . 375

mac to utf8 . 376

makeFuseboxLinks . 533

makeLinks . 534

makeURL. 554

max of. 257

maxRows . 579

md5 sum. 174

merge collections. 159

method exists. 252

min of . 257

more items. 216

MOVE DOCUMENT. 395

move. 579

multisort arrays . 149

multisort named arrays. 150

native to url path . 395

new collection . 154

new global collection. 155

new json . 220

new local collection . 155

new . 446

new . 537

new . 546

newFromArray. 538

newFromArrays. 580

newFromCachedSelection . 581

newFromData . 582

newFromFile. 583

newFromRowSet . 538

newFromSelection . 539

newFromSelection . 584
Appendix A Index of Commands 623

Active4D v6.3
next item. 216

next . 540

next . 589

nextID. 496

nextId . 595

nil pointer. 252

object to collection . 259

Open document . 396

ORDER BY FORMULA . 269

ORDER BY . 268

ordinalOf. 496

param text . 376

parameter mode. 333

parse json . 236

parse . 467

parseConfig. 497

persistent . 589

Position . 378

postHandleError . 554

prepend. 476

previous. 540

previous. 589

purge . 597

qualify. 477

QUERY BY FORMULA . 178

query params has. 271

query params . 271

QUERY SELECTION BY FORMULA. 179

QUERY SELECTION. 178

QUERY . 177

QUERY/QUERY SELECTION . 268

random between . 257

read . 595

RECEIVE PACKET . 396

ReceiveCallback .71

redirect . 253

regex callback replace . 278

regex find all in array . 279

regex find in array . 280

regex match all . 282

regex match . 281

regex quote pattern . 283

regex replace . 284

regex split. 287

request cookies . 290

request info . 293

request query . 334

requested url . 397
624 Appendix A Index of Commands

Active4D v6.3
require . 253

resize array. 150

resolve path . 397

RESOLVE POINTER . 254

response buffer size . 301

response cookies . 313

response headers. 321

rest . 477

reverseArray . 499

right trim. 379

rowCount . 590

save collection . 157

save output . 303

save upload to field. 199

saveFormToSession . 523

SELECTION/SELECTION RANGE TO ARRAY 150

selectionRangeToCollection . 499

selectionToCollection . 499

SEND PACKET . 398

sendFuseaction . 555

sendMail . 501

session has. 355

session id . 357

session internal id . 357

session local . 358

session query . 358

session to blob. 350

session . 350

sessionToBlob . 503

set array. 151

set cache control . 325

set collection array . 165

set collection . 164

set content charset . 328

set content type . 327

set current script timeout . 336

SET DOCUMENT POSITION . 398

set error page. 193

set expires date . 326

set expires . 326

set global array . 212

set global . 211

set http error page. 194

set local . 415

set log level . 194

set output charset . 304

set output encoding. 305

set platform charset . 334
Appendix A Index of Commands 625

Active4D v6.3
SET QUERY DESTINATION . 179

set response buffer . 302

set response cookie domain . 315

set response cookie expires . 316

set response cookie http only . 317

set response cookie path . 317

set response cookie secure. 318

set response cookie . 314

set response header . 322

set response status . 328

set script timeout . 335

set session array . 355

set session timeout . 359

set session . 354

setAt . 478

setColumnArray . 590

setColumnData . 591

setDefaults. 541

setDivId . 547

setMailMethod . 503

setRelateOne . 591

setSeparator . 547

setSMTPAuthorization. 504

setSMTPHost. 504

setTimeout. 592

setTitle . 563

setURLFactory . 555

sleep . 254

slice string . 380

sort . 478

sort . 592

sourceRowCount . 593

split path. 398

split string . 381

start json array . 230

start json object . 231

startArray . 458

startObject . 459

STRING LIST TO ARRAY . 299

String . 382

Substring . 383

Table name . 179

throw . 255

time to longint. 255

timedOut . 593

timestamp date. 405

timestamp day. 407

timestamp difference. 404
626 Appendix A Index of Commands

Active4D v6.3
timestamp hour . 408

timestamp millisecond . 409

timestamp minute. 408

timestamp month . 407

timestamp second. 409

timestamp string . 405

timestamp time. 406

timestamp year . 407

timestamp . 403

toJSON . 461

trim . 383

truncateText . 504

type descriptor . 416

undefined. 416

unlock globals . 213

unlockAndLoad. 505

upload to blob. 200

url decode path. 384

url decode query . 384

url decode . 384

url encode path. 385

url encode query . 385

url encode . 385

url to native path . 399

utc to local datetime . 184

utc to local time . 184

utf8 to mac . 386

validateTextFields . 524

validEmailAddress . 524

validPrice . 506

valueCount . 479

valueCountNoCase . 479

valueList . 479

variable name . 417

warnInvalidField . 525

week of year . 185

write blob . 307

write gif . 264

write jpeg . 265

write jpg . 266

write json . 233

write jsonp. 234

write png . 266

write raw . 310

write to console . 189

write . 307

write . 462

write . 547
Appendix A Index of Commands 627

Active4D v6.3
write . 563

write . 596

writeBold . 525

writebr . 309

writeln . 309

writep . 310

writep . 462

yearMonthDay. 507
628 Appendix A Index of Commands

. .
APPENDIX B

ISO Language

Codes

Afrikaans af

Albanian sq

Basque eu

Bulgarian bg

Belarusian be

Catalan ca

Chinese zh

Chinese (Taiwan) zh-tw

Chinese (PRC) zh-cn

Chinese (Hong Kong) zh-hk

Chinese (Singapore) zh-sg

Croatian hr

Czech cs

Danish da

Dutch (Standard) nl

Dutch (Belgian) nl-be

English en

English (United States) en-us

English (British) en-gb

English (Australian) en-au

English (Canadian) en-ca

English (New Zealand) en-nz

English (Ireland) en-ie

English (South Africa) en-za

English (Jamaica) en-jm

English (Belize) en-bz

English (Trinidad) en-tt

Estonian et

Faeroese fo

Farsi fa

Finnish fi

French (Standard) fr

French (Belgian) fr-be

French (Canadian) fr-ca

French (Swiss) fr-ch

French (Luxembourg) fr-lu

Gaelic gd

German (Standard) de

German (Swiss) de-ch

German (Austrian) de-at

German (Luxembourg) de-lu

German (Liechtenstein) de-li

Greek el

Hindi hi

Hungarian hu

Icelandic is

Indonesian in

Italian (Standard) it

Italian (Swiss) it-ch

Japanese ja

Korean ko

Latvian lv

Lithuanian lt

Macedonian mk

Malaysian ms

Maltese mt

Norwegian no

Polish pl

Portuguese (Brazilian) pt-br

Portuguese (Standard) pt

Rhaeto-Romanic rm

Romanian ro

Romanian (Moldavia) ro-mo

Russian ru

Russian (Moldavia) ru-mo

Serbian sr

Slovak sk

Slovenian sl

Sorbian sb

Spanish es

Spanish (Mexican) es-mx

Spanish (Guatemala) es-gt

Spanish (Costa Rica) es-cr

Spanish (Panama) es-pa
Appendix B ISO Language Codes 629

Active4D v6.3
Spanish es-do

Spanish (Venezuela) es-ve

Spanish (Colombia) es-co

Spanish (Peru) es-pe

Spanish (Argentina) es-ar

Spanish (Ecuador) es-ec

Spanish (Chile) es-cl

Spanish (Uruguay) es-uy

Spanish (Paraguay) es-py

Spanish (Bolivia) es-bo

Spanish (El Salvador) es-sv

Spanish (Honduras) es-hn

Spanish (Nicaragua) es-ni

Spanish (Puerto Rico) es-pr

Sutu sx

Swedish sv

Swedish (Finland) sv-fi

Thai th

Tsonga ts

Tswana tn

Turkish tr

Ukrainian uk

Urdu ur

Vietnamese vi

Xhosa xh

Yiddish ji

Zulu zu
630 Appendix B ISO Language Codes

. .
APPENDIX C

Named Constants

Grouped by Function

Constant Value

HTTP Status OK 200

HTTP Status No Content 204

HTTP Status Found 302

HTTP Status See Other 303

HTTP Status Not Modified 304

HTTP Status Bad Request 400

HTTP Status Unauthorized 401

HTTP Status Forbidden 403

HTTP Status Not Found 404

HTTP Status Request Timeout 408

HTTP Status Request Too Large 413

HTTP Status Server Error 500

A4D Log Off 0

A4D Log Critical Errors 1

A4D Log User Messages 2

A4D Log Execution Errors 4

Position From Start 1

Position From End 2

Position From Current 3

A4D Encoding None 0

A4D Encoding Quotes 1

A4D Encoding Tags 2

A4D Encoding Ampersand 4

A4D Encoding Extended 8

A4D Encoding HTML 8

A4D Encoding All 65535

A4D Error Type Unexpected 1
Appendix C Named Constants 631

Active4D v6.3
A4D Error Type Syntax 2

A4D Error Type Database 3

A4D Error Type IO 4

A4D Error Type Critical 5

A4D Error Type Runtime 6

A4D Request Remote Addr 1

A4D Request Host Addr 2

A4D Request Host Port 3

A4D Request Secure 4

A4D Response Version 1

A4D Response Status 2

A4D Response Path 1

A4D Response Mod Date 2

A4D Response Mod Time 3

A4D Charset None 0

A4D Charset Mac 1

A4D Charset Win 2

A4D Charset ISO Latin1 3

A4D Charset Shift_JIS 4

A4D Charset GB2312 5

A4D Charset UTF8 6

A4D Not Executable -1

A4D Parameter Mode Separate 0

A4D Parameter Mode Form 1

A4D Parameter Mode Query 2

A4D License Type Trial 0

A4D License Type Developer 1

A4D License Type Deployment 2

A4D License Type OEM 3

A4D License Type Special 4

A4D Regex Split No Empty 1

A4D Regex Split Capture Delims 2

Constant Value
632 Appendix C Named Constants

Active4D v6.3
Alphabetical

Constant Value

A4D Charset GB2312 5

A4D Charset ISO Latin1 3

A4D Charset Mac 1

A4D Charset None 0

A4D Charset Shift_JIS 4

A4D Charset UTF8 6

A4D Charset Win 2

A4D Encoding All 65535

A4D Encoding Ampersand 4

A4D Encoding Extended 8

A4D Encoding HTML 8

A4D Encoding None 0

A4D Encoding Quotes 1

A4D Encoding Tags 2

A4D Error Type Critical 5

A4D Error Type Database 3

A4D Error Type IO 4

A4D Error Type Runtime 6

A4D Error Type Syntax 2

A4D Error Type Unexpected 1

A4D License Type Deployment 2

A4D License Type Developer 1

A4D License Type OEM 3

A4D License Type Special 4

A4D License Type Trial 0

A4D Log Critical Errors 1

A4D Log Execution Errors 4

A4D Log Off 0

A4D Log User Messages 2

A4D Not Executable -1

A4D Parameter Mode Form 1

A4D Parameter Mode Query 2
Appendix C Named Constants 633

Active4D v6.3
A4D Parameter Mode Separate 0

A4D Regex Split Capture Delims 2

A4D Regex Split No Empty 1

A4D Request Host Addr 2

A4D Request Host Port 3

A4D Request Remote Addr 1

A4D Request Secure 4

A4D Response Mod Date 2

A4D Response Mod Time 3

A4D Response Path 1

A4D Response Status 2

A4D Response Version 1

HTTP Status Bad Request 400

HTTP Status Forbidden 403

HTTP Status Found 302

HTTP Status No Content 204

HTTP Status Not Found 404

HTTP Status Not Modified 304

HTTP Status OK 200

HTTP Status Request Timeout 408

HTTP Status Request Too Large 413

HTTP Status See Other 303

HTTP Status Server Error 500

HTTP Status Unauthorized 401

Position From Current 3

Position From End 2

Position From Start 1

Constant Value
634 Appendix C Named Constants

	Table of Contents
	Introduction
	What is Active4D?
	HTTP Web Server
	Server-Side
	HTML-Embedded
	Scripting Language
	Development Environment

	An Example
	What Can Active4D Do?
	Database and Protocol Support

	A Brief History of Active4D

	Installation
	Plugin
	Resource Files

	Active4D Shells
	Active4D Folder
	Web Folder

	Demo
	Key Files
	Key File Installation

	Key File Info
	Version Checking

	License Types
	Timeouts
	Trial License
	Deployment License
	OEM License

	Installation Options
	Starting a Database from Scratch
	Installing into a Non-Active4D Database
	Updating an Existing Active4D 4.x/v5 Database
	Installing the Predefined Session Handler

	Post-Installation Configuration
	Configuring for 4D’s Web Server
	Configuring for NTK
	Configuring 4D Remote as a Web Server

	Using the Pre- and Post-Execute Hooks
	Pre-Execute Hook
	Post-Execute Hook

	Configuration
	Config File Search Path
	Configuration Files
	The Default Directory
	Path Format
	The Standard Search Path and Path Lists
	Active4D.ini
	ExtensionMap.ini
	Realms.ini
	VirtualHosts.ini

	Security
	Source Code Security
	Web Server Security = Source Code Security
	Circumventing Active4D

	Potential Attacks
	Executing/Accessing Non-Web Files
	The “safe script dirs” Config Option
	Misusing Document Commands
	The “safe doc dirs” Config Option
	Spoofing Form Variables
	The “auto create vars” Config Option
	Uploading Huge Files

	HTTP Server
	What Is a Web Server?
	Active4D + Network Layer = Web Server

	HTTP Fundamentals
	Active4D HTTP Request Handling
	Executable vs. Non-executable Files
	Request Header Parsing
	POST/PUT and File Upload Handling
	Executable Request Handling
	Non-Executable Request Handling

	Configuration
	Active4D.ini
	Cors.ini
	ExtensionMap.ini

	User Authentication
	Realms.ini

	Virtual Hosting
	VirtualHosts.ini
	A Virtual Host Example

	HTTP Error Handling
	Customizing the Error Handling

	Invoking Active4D
	Types of Execution
	Request Execution
	A4D Execute <type> request Parameters

	A4D Execute <type> request
	A4D Execute BLOB request
	A4D Execute 4D request
	A4D Execute stream request
	ReceiveCallback
	Direct Execution
	Uses for Direct Execution

	A4D Execute file
	A4D Execute text
	A4D Execute BLOB

	Interpreter
	Flow of Execution
	Embedding Source Code
	Input Parsing

	Language Syntax
	English Only
	Source Code Structure
	Case Sensitivity
	Expression-based
	Comments

	Identifiers
	Custom Named Constants

	Data Types
	Compiler Declarations
	Process/Interprocess Variables
	Array Support
	Pointer Support
	Extended Boolean Expressions
	Literals
	String Literals
	String Interpolation
	Heredoc Strings
	Date Literals
	Time Literals
	User-defined Constants
	Typing of Values

	Operators
	Unary/Assignment Operators
	Super Assign
	In and Not In Operators
	Regular Expression Operators
	String Format Operators
	Picture Operators
	Pointer Dereference Operator
	+ Operator
	Character Reference Operator [[]]
	Indexing Operator {}
	Boolean Operator |

	Control Structures
	for each/end for each
	break
	return
	continue
	exit
	Examples

	Working with Paths
	URL-Style (Posix) Paths
	Absolute vs. Relative Paths
	Path Utilities
	Path Limits

	Including Other Files
	Uses of Included Files
	Including Only Once

	Calling 4D Methods
	Parameter Passing
	Indirect Method Calls (aka Poor Man's method pointers)

	Collections
	Collection Handles
	Local vs. Global Collections
	Using Collections
	Referencing Collection Values
	Embedded Collections
	Element Referencing
	Iterating Over a Collection

	HTTP Data Access
	Request Data
	_query and _form Collections
	Testing Form Buttons
	Response Data

	Working with Character Sets
	Platform Character Set
	Output Character Set
	Output Encoding
	HTTP Request Decoding
	Informing the Browser of Your Output Character Set
	Working with Files

	Error Handling
	Script Timeout

	Methods
	Defining Methods
	Method Declaration
	Method Name
	Method Parameter Declaration

	Method Parameters
	Parameter Type
	Scope
	Referencing “Global” Local Variables
	Pass by Reference
	Default Parameters
	Returning Values

	Libraries
	Library Search Path
	Library Definition
	Importing Libraries
	Import Configuration
	Import Errors
	Automatic Re-Import

	Library Namespace
	Name Resolution
	Library scope
	The “global” library
	Private methods
	Library-private collections

	Library Initialization/Deinitialization
	Storing collections in library-private data

	Creating a Poor Man’s Class
	Limitations

	Event Handlers
	Event Handler Methods
	On Application Start
	On Request
	On Authenticate
	On Session Start
	On Execute Start
	On Execute End
	On Session End
	On Application End

	Modifying the Active4D Library

	Command Reference
	4D Commands
	Using a Default Table

	Active4D Commands
	Command Syntax
	Unicode and Charsets
	Arrays
	{} (appending index)
	{-<index>} (from end index)
	add element
	append to array
	ARRAY <type>
	clear array
	COPY ARRAY
	Count in array
	fill array
	insert into array
	is array
	join array
	multisort arrays
	multisort named arrays
	resize array
	SELECTION/SELECTION RANGE TO ARRAY
	set array

	BLOBS
	Collections
	collection
	new collection
	new local collection
	new global collection
	collection to blob
	blob to collection
	save collection
	load collection
	copy collection
	deep copy collection
	merge collections
	clear collection
	deep clear collection
	get collection
	get collection array
	get collection array size
	get collection item
	get collection item count
	get collection keys
	set collection
	set collection array
	is a collection
	collection has
	count collection items
	delete collection item

	Cryptography
	base64 decode
	base64 encode
	blowfish decrypt
	blowfish encrypt
	md5 sum

	Database
	Trigger Errors
	Field name
	get field numbers
	get field pointer
	QUERY
	QUERY BY FORMULA
	QUERY SELECTION
	QUERY SELECTION BY FORMULA
	SET QUERY DESTINATION
	Table name

	Date and Time
	UTC Commands
	Date
	day of year
	get utc delta
	local datetime to utc
	local time to utc
	utc to local datetime
	utc to local time
	week of year

	Debugging
	current library name
	current line number
	current method name
	get call chain
	library list
	write to console

	Error Handling
	get error page
	get error status
	get http error page
	get log level
	in error
	log message
	set error page
	set http error page
	set log level

	File Uploads
	How File Upload Works
	Referencing File Uploads
	The Importance of Filename Extensions
	Upload Auto-Deletion
	copy upload
	count uploads
	get upload content type
	get upload encoding
	get upload extension
	get upload remote filename
	get upload size
	save upload to field
	upload to blob

	Form Variables
	When Form Variables Are Query Params (and vice versa)
	Posting JSON Data
	Posting Raw Data
	Multiple-choice Form Fields
	_form
	form variables
	form variables has
	get form variable
	get form variable choices
	get form variable count
	get form variables
	count form variables

	Globals
	Locking and Unlocking the Globals
	globals
	globals has
	get global
	get global array
	get global array size
	get global item
	get global keys
	set global
	set global array
	count globals
	delete global
	lock globals
	unlock globals

	Iterators
	Using for each
	Using Iterators
	Iterator Validity
	for each/end for each
	more items
	next item
	get item key
	get item value
	get item type
	get item array
	is an iterator

	JSON
	new json
	add to json
	add datetime to json
	add function to json
	add rowset to json
	add selection to json
	start json array
	end json array
	start json object
	end json object
	json to text
	write json
	write jsonp
	json encode
	parse json

	Language
	call 4d method
	call method
	choose
	define
	EXECUTE
	execute in 4d
	for each/end for each
	Get pointer
	get throw code
	get throw message
	global
	import
	include
	include into
	longint to time
	method exists
	nil pointer
	redirect
	require
	RESOLVE POINTER
	sleep
	throw
	time to longint

	Math
	max of
	min of
	random between

	ObjectTools
	clear object
	collection to object
	object to collection

	Pictures
	Using the image.a4d Script
	image.a4d (script file)
	Loading from the 4D picture library
	Loading from the database via query
	Loading from the database via record number
	Loading from a file
	Loading from an Active4D method call
	Loading from a 4D method call
	Examples

	write gif
	write jpeg
	write jpg
	write png

	Queries
	QUERY/QUERY SELECTION
	ORDER BY
	ORDER BY FORMULA

	Query Params
	Query Params Items
	Duplicate Query Parameters
	_query
	query params
	query params has
	get query param
	get query param choices
	get query param count
	get query params
	count query params
	build query string

	Regular Expressions
	Pattern Syntax
	Using Regular Expressions
	regex callback replace
	regex find all in array
	regex find in array
	regex match
	regex match all
	regex quote pattern
	regex replace
	regex split

	Request Cookies
	request cookies
	get request cookie
	get request cookies
	count request cookies

	Request Info
	request info
	get request info
	get request infos
	count request infos

	Request Value
	get request value

	Resources
	Get indexed string
	STRING LIST TO ARRAY

	Response Buffer
	buffer size
	response buffer size
	clear buffer
	clear response buffer
	get response buffer
	set response buffer
	save output
	end save output
	set output charset
	get output charset
	set output encoding
	get output encoding
	write
	write blob
	writebr
	writeln
	writep
	write raw
	=

	Response Cookies
	Cookie Fields
	response cookies
	get response cookie
	get response cookies
	set response cookie
	set response cookie domain
	get response cookie domain
	set response cookie expires
	get response cookie expires
	set response cookie http only
	get response cookie http only
	set response cookie path
	get response cookie path
	set response cookie secure
	get response cookie secure
	count response cookies
	delete response cookie
	abandon response cookie

	Response Headers
	response headers
	get response header
	get response headers
	set response header
	count response headers
	delete response header

	Response Properties
	get cache control
	set cache control
	get expires
	set expires
	get expires date
	set expires date
	get content type
	set content type
	get content charset
	set content charset
	get response status
	set response status

	Script Environment
	_request
	full requested url
	current platform
	get license info
	get time remaining
	get version
	configuration
	parameter mode
	request query
	set platform charset
	get platform charset
	set script timeout
	get script timeout
	set current script timeout
	get current script timeout

	Selecting Records
	Loading Related Records
	Configuring Related Record Auto-loading
	Compatibility with Active4D 2.0.x
	Examples
	auto relate
	ALL RECORDS, FIRST/LAST/NEXT/PREVIOUS RECORD
	get auto relations
	GOTO RECORD
	GOTO SELECTED RECORD

	Sessions
	Session Lifetime
	Session ID
	Session Events
	When Active4D Sends Session Cookies
	Cookieless Sessions
	Memory Caching of Sessions
	Session Timeout and Memory Usage
	Monitoring Memory Usage
	Session Configuration
	Session Handlers
	session
	session to blob
	blob to session
	get session
	get session array
	get session array size
	get session item
	get session keys
	set session
	set session array
	session has
	count session items
	delete session item
	abandon session
	session id
	session internal id
	session local
	session query
	hide session field
	set session timeout
	get session timeout
	get session stats

	Strings
	URL Encoding/Decoding
	String Commands and Unicode
	% (formatting operator)
	%% (formatting operator)
	capitalize
	cell
	compare strings
	concat
	Delete string
	enclose
	first not of
	first of
	format string
	identical strings
	Insert string
	interpolate string
	last not of
	last of
	left trim
	html encode
	mac to html
	mac to utf8
	param text
	Position
	right trim
	slice string
	split string
	String
	Substring
	trim
	url decode
	url decode path
	url decode query
	url encode
	url encode path
	url encode query
	utf8 to mac

	System Documents
	Document Paths
	Document Command Enhancements
	Affected Commands
	Error Codes
	Working With Large Files
	Append document
	Create document
	current file
	current path
	default directory
	DELETE FOLDER
	directory exists
	directory of
	directory separator
	extension of
	file exists
	filename of
	get root
	join paths
	MOVE DOCUMENT
	native to url path
	Open document
	RECEIVE PACKET
	requested url
	resolve path
	SEND PACKET
	SET DOCUMENT POSITION
	split path
	url to native path

	Timestamps
	Timestamp Format
	Timestamp Time
	Timestamp Normalization
	Using Timestamps with Optimistic Locking
	timestamp
	add to timestamp
	timestamp difference
	timestamp string
	timestamp date
	timestamp time
	get timestamp datetime
	timestamp year
	timestamp month
	timestamp day
	timestamp hour
	timestamp minute
	timestamp second
	timestamp millisecond

	User Authentication
	auth password
	auth type
	auth user
	authenticate
	current realm

	Variables
	defined
	get local
	local variables
	set local
	type descriptor
	undefined
	variable name

	Plugin Commands
	A4D Abandon session
	A4D Base64 decode
	A4D Base64 encode
	A4D Blowfish decrypt
	A4D Blowfish encrypt
	A4D FLUSH LIBRARY
	A4D Get IP address
	A4D Get MAC address
	A4D Get root
	A4D GET SESSION DATA
	A4D GET SESSION STATS
	A4D GET LICENSE INFO
	A4D Get MAC address
	A4D Get time remaining
	A4D Get version
	A4D Import library
	A4D LOG MESSAGE
	A4D MD5
	A4D Native to URL path
	A4D RESTART SERVER
	A4D Set HTTP body callback
	A4D SET ROOT
	A4D STRIP 4D TAGS
	A4D URL decode path
	A4D URL decode query
	A4D URL encode path
	A4D URL encode query
	A4D URL to native path

	Standard Libraries
	Using the Standard Libraries
	a4d.console
	clear
	dump array
	dump collection
	dump form variables
	dump license info
	dump query params
	dump request info
	dump session

	a4d.debug
	dump array
	dump collection
	dump configuration
	dump form variables
	dump license info
	dump locals
	dump query params
	dump request
	dump request info
	dump selection
	dump session
	dump session stats

	a4d.json
	new
	add
	addArray
	addDateTime
	addFunction
	addRowSet
	addSelection
	startArray
	endArray
	startObject
	endObject
	toJSON
	write
	writep
	encode
	encodeArray
	encodeBoolean
	encodeCollection
	encodeDate
	encodeString
	parse
	convertJSONDates

	a4d.lists
	append
	arrayToList
	changeDelims
	contains
	containsNoCase
	deleteAt
	find
	findNoCase
	first
	getAt
	insertAt
	last
	len
	listToArray
	prepend
	qualify
	rest
	setAt
	sort
	valueCount
	valueCountNoCase
	valueList

	a4d.utils
	applyToSelection
	articleFor
	blobToCollection
	blobToSession
	camelCaseText
	chopText
	collectionToBlob
	cud
	deleteSelection
	filterCollection
	formatUSPhone
	getMailMethod
	getPictureDescriptor
	getPointerReferent
	getSMTPAuthorization
	getSMTPAuthPassword
	getSMTPAuthUser
	getSMTPHost
	nextID
	ordinalOf
	parseConfig
	reverseArray
	selectionRangeToCollection
	selectionToCollection
	sendMail
	sessionToBlob
	setMailMethod
	setSMTPAuthorization
	setSMTPHost
	truncateText
	unlockAndLoad
	validPrice
	yearMonthDay

	a4d.web
	br
	buildOptionsFromArrays
	buildOptionsFromLists
	buildOptionsFromOptionArray
	buildOptionsFromOptionList
	buildOptionsFromRowSet
	buildOptionsFromSelection
	checkSession
	checkboxState
	collectionItemsToQuery
	collectionToQuery
	embedCollection
	embedCollectionItems
	embedFormVariableList
	embedFormVariables
	embedQueryParams
	embedVariables
	emptyTag
	formVariableListToQuery
	getEmptyFields
	getUniqueID
	getVariablesIterator
	hideField
	hideUniqueField
	saveFormToSession
	validateTextFields
	validEmailAddress
	warnInvalidField
	writeBold

	Batch
	Batch Attributes
	Creating a Batch
	How Batches Are Calculated
	Generating Batch Links
	Iterating Through Rows
	dumpDefaults
	getDefaults
	getStarts
	makeFuseboxLinks
	makeLinks
	new
	newFromArray
	newFromRowSet
	newFromSelection
	next
	previous
	setDefaults

	Breadcrumbs
	Using Breadcrumbs
	Customizing Breadcrumbs Appearance
	add
	dumpLib
	fuseboxNew
	new
	setDivId
	setSeparator
	write

	fusebox
	An Overview of Fusebox
	Why Should I Use Fusebox?
	How Do I Learn Fusebox?
	Active4D’s Fusebox Implementation
	Configuring Fusebox
	core
	getURLFactory
	handleError
	handleErrorInline
	invalidAction
	isFuseboxRequest
	makeURL
	postHandleError
	sendFuseaction
	setURLFactory

	fusebox.head
	How To Use This Library
	addCSS
	addDumpStyles
	addJavascript
	addJS
	addMetaTag
	getTitle
	setTitle
	write

	RowSet
	Enter the RowSet
	Using RowSets
	Subsetting Source Rows
	RowSet Cursors
	Persistent RowSets
	Which RowSet to Use
	afterLast
	beforeFirst
	clearPersistent
	columnCount
	currentRow
	dumpPersistent
	dump
	findColumn
	findRow
	first
	getColumn
	getData
	getEnd
	getPersistentList
	getRow
	getStart
	getTimeout
	gotoRow
	isAfterLast
	isBeforeFirst
	isFirst
	isLast
	last
	maxRows
	move
	newFromArrays
	newFromCachedSelection
	newFromData
	newFromFile
	newFromSelection
	next
	persistent
	previous
	rowCount
	setColumnArray
	setColumnData
	setRelateOne
	setTimeout
	sort
	sourceRowCount
	timedOut

	SessionHandler
	nextId
	read
	write
	delete
	purge

	Debugging
	The Basics
	Using write
	Tracing execution

	Standard Library Methods
	a4d.console and a4d.debug

	The Active4D Log
	Changing the Log Level

	The Session Editor
	Using the Session Editor

	The Session Monitor
	Displaying the Session Monitor
	Using the Session Monitor

	The Active4D Debugging Console
	Using the Debugging Console
	Filtering Console Messages
	Tuning Console Refresh

	Error Handling
	The Default Error Message
	Using a Custom Error Page
	The “error page” Option
	The “set error page” Command
	Error Page Variables
	Custom Error Handling in Fusebox

	The Active4D Log
	Log Levels

	Index of Commands
	ISO Language Codes
	Named Constants
	Grouped by Function
	Alphabetical

