
DESKWARE, INC.

De

CobolScript
veloper’s Guide

®

D E S K W A R E , I N C .

CobolScript® Developer’s Guide

Copyright © 2000 Deskware, Inc. All Rights Reserved.

Copyright © 1999, 2000 Deskware, Inc. All Rights Reserved.

This manual and its entire contents are copyrighted material. No part of this manual may be reproduced in any form or by any means,
either electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of
Deskware, Inc. Information contained herein is subject to change without prior notice. All names and data in this manual are fictitious
except where otherwise noted. The software described in this manual is furnished under a license agreement. The software may be used
or copied only in accordance with the terms of the agreement.

The term “CobolScript” is a registered trademark of Deskware, Inc. All other Deskware product names, including but not limited to the
terms “VACE” , “VACE Maintenance Workbench”, “CobolScript Standard Edition”, “CobolScript Professional Edition”,
“LinkMaker”, “AppMaker”, “CodeBrowser”, and “CobolScript Control Panel” are trademarks or registered trademarks of Deskware,
Inc.

Microsoft Windows and MS-DOS are registered trademarks of Microsoft Corporation.
Linux is a registered trademark of Linus Torvalds.
FreeBSD is a registered trademark of FreeBSD Inc. and Walnut Creek CDROM.
SunOS, Solaris, and Sun are registered trademarks of Sun Microsystems, Inc.
SQL*Loader and Oracle are registered trademarks of Oracle Corporation.

All other brand and product names mentioned herein are trademarks or registered trademarks of their respective holders.

Deskware, Inc.

Tampa, FL Belmont, CA

Main Phone: 813-969-2494
World Wide Web: www.deskware.com

www.cobolscript.com
Registered Developer Site: https://www.cobolscript.com/cgi-bin/cobolscript.exe?login.cbl

Enjoy your programming.

www.deskware.com
www.cobolscript.com

Table of Contents

Chapter 1 Introduction to CobolScript® / Installation Instructions……………. 1
CobolScript Features…………….…………….…………….…………. 2
About this Manual……………….…………….…………….…………. 3
Installing CobolScript…………….……………….…………….……… 4

Chapter 2 Getting Started with CobolScript®.…..……….…………….………… 9
Creating and Editing CobolScript Programs………………………...…... 9
Running CobolScript from the Command Line..………….….…………. 10
Running CobolScript in Interactive Mode..……….……….…….……… 14
Running CobolScript from a Web Server and Browser.………….……… 17

Chapter 3 CobolScript® Language Constructs……..…………………..………. 21
Literals and Literal Keywords..…….………….…………….….………. 21
Variables………………………...…………….…………….….………. 24
Data and Copybook Files………………………………………….…… 31
Expressions and Conditions….….…………….…………….….………. 34
Commands……………...…...…..…………….…………….….………. 39
CobolScript Reserved Words….………………………………………... 42
Statements…………………….….…………….…………….…………. 43
Sentences………………………....…………….…………….…………. 44
Comments……………….....……..….…………….…………….……… 45

Chapter 4 File Processing and I/O……………………………………………... 47
Describing Files and Defining Data Records…………………………... 48
Opening Files……...…………….…………….…………….…………. 48
Closing Files……...…………….…………….…………….…………... 48
Reading Records From Files..………………………………………….. 49
Overwriting a File……………………………………………………... 50
Appending Records to an Existing File………………………………… 50
Writing to a File by Updating Existing Records ………………………. 52
Relative and Absolute File Positioning………………………………… 53
Relational Database Interaction with CobolScript Standard Edition…… 55

Chapter 5 Building Web Based Systems………………………………………... 63
Interacting with a Web Server and Web Browser…………….…………. 64
Creating Virtual HTML………………………………………………… 65
Creating an HTML Form………………………………………………. 66
Capturing Input Data from a Web Page………………………………… 66
DISPLAY and DISPLAYLF…………………………………………… 68
Retrieving Web Pages....…………….…………….…………….……… 69

Chapter 6 Network and Internet Programming Using CobolScript®….…….… 71
Transferring Files using FTP…...……………………………………….. 71
Using Email Commands……………………………..………………….. 73
Using TCP/IP Commands……………………………………………… 75

Chapter 7 Advanced Internet Programming Techniques Using CobolScript®.. 83
Environment Variables..……….…………….…………….…………… 84
CGI Form Components……………..…………………………………. 86
Using Hidden Fields…………………………………………………….. 90
Sending Email from CobolScript Using CGI Form Input...…………….. 92
Using CobolScript to Transmit Files……..…………………………….... 93
Embedding JavaScript in CobolScript Programs….…………….………. 95

Chapter 8 Programming Techniques and Advanced CobolScript® Features…. 99
Designing a Modular Program..….…………….…………….…………. 99
Manipulating CobolScript Variables……………………………………. 101
Advanced CobolScript Features...…...…………….…………….……… 102

Chapter 9 CS Professional CodeBrowser™, AppMaker™, and Control Panel... 109
Feature Requirements..….…………………….…………….…………. 109
Using CodeBrowser……………………………………………………. 109
Building Executables with AppMaker.…………….…………….……… 112
Using the CobolScript Control Panel..…………….…………….……… 113

Appendixes

Appendix A Language Reference…………….…………….…………….………… 117
Appendix B Function Reference…………….…………….…………….………….. 159
Appendix C CobolScript® Constraints…………….…..……….…………….……... 175
Appendix D Sample CobolScript® Programs………………...……….……………. 177
Appendix E CobolScript® Picture Clauses…….….….…………….…………….… 181
Appendix F CobolScript® Basic Program Structure……………….……………... 187
Appendix G Setting Up ODBC and ODBC Data Sources for LinkMaker™…….. 195
Appendix H Using LinkMaker™ Embedded SQL in CobolScript® Professional.. 223
Appendix I CobolScript® Error Messages..………….…………….…………….… 231

Glossary………….…………….…………….…………….…………….…………….……... 259
Index…………….…………….…………….…………….…………….…………….……… 265

CobolScript® Developer’s Guide Page 1

Introduction to CobolScript® /
Installation Instructions

obolScript® is a powerful, easy to use, platform independent, internet-friendly programming
language. With it, you will be able to quickly develop and test web-based systems, interface
programs, and compact business applications. The natural syntax of CobolScript will help
you to start programming productively in a short amount of time, provided you’ve had at

least some exposure to other programming languages. This natural syntax, coupled with a variety of
network and internet-specific commands, makes CobolScript a great alternative to more cryptic or
complicated network programming languages. If you’re an experienced internet developer, we think
you’ll find that certain web programming tasks that used to be difficult with your old language will be
simple with CobolScript, and as a side benefit, your code will be more manageable and easier to
maintain. If you’ve avoided web programming in the past because of its apparent complexity,
CobolScript can open the door to a whole new style of application development for you, and can do
it with a relatively small effort.

CobolScript is available for Microsoft Windows®, SunOS®, FreeBSD®, and Linux®. Any program
developed and tested on one platform can be almost seamlessly ported to another supported
platform. And like all web systems, CobolScript web apps can be executed from any machine that
has a compatible browser and can access the web that is running CobolScript. For this reason, a well
coded, web-based CobolScript system will not require modification if client machines are changed or
upgraded, so long as the clients still have compatible browsers installed – a welcome change for
anyone who has had to modify applications with client front-ends specific to their operating system.

Alternatively, a single web client can run different CobolScript applications that reside on separate
servers. By linking small applications that are located on distinct servers to one another, you can
create a complete web system, and the processing for this single, larger system will be spread across
the servers. Figure 1.1 illustrates one possible architecture for such a system.

Chapter

1
C

I C O N K E Y

 Important point

Page 2 CobolScript® Developer’s Guide

CobolScript Features
In addition to the standard language commands and the internet processing commands available in
CobolScript, other features provide the means to quickly and easily create programs with a wide
range of functionality:

• Internetworking commands such as FTPPUT, FTPGET, SENDMAIL, and GETMAIL for
transferring files and emails from within a CobolScript program.

• File processing commands for reading and parsing both fixed-format and delimited data
files.

• Flexible naming syntax that allows underscores (_) and dashes (-) to be used
interchangeably in variable names, to support both modern variable naming as well as
COBOL-style variable naming.

• Advanced expression evaluator that does not require explicit spaces between expression
components, even for subtraction operations, for programmers who are used to coding
mathematical expressions in C or similar languages.

• Financial functions for calculating annuities and depreciation.
• Scientific, stochastic, and other higher math functions.
• Metric to English and English to metric system unit conversion functions.
• TCP/IP socket programming commands such as SENDSOCKET and

RECEIVESOCKET, for creating client-server communications programs without web
server software or FTP configuration.

• DNS commands such as GETHOSTNAME for incorporating internet information
retrieval into programs.

• PIC X(n) picture clause that automatically calculates variable size based on VALUE clause,
eliminating the need for time-consuming computations with FILLER variables, and an

Linux SunOS FreeBSDN T

W e b
Browser

\httpd\cgi-bin\
cobolscr ipt .exe

/httpd/cgi-bin/
cobolscr ipt .exe

/httpd/cgi-bin/
cobolscr ipt .exe

/httpd/cgi-bin/
cobolscr ipt .exe

 Figure 1.1 – A multi-server CobolScript application

CobolScript® Developer’s Guide Page 3

implied version of PIC X(n) that allows the FILLER keyword and picture clause to be
eliminated entirely.

• REPLICA variable declaration syntax that permits the same elementary data item to be used
in multiple group items.

• EXECUTE command for dynamic statement creation and execution.
• Intelligent error messaging that displays browser-based error messages when running

programs from a browser, and text-based error messages when running programs from the
command line, thereby speeding the debugging process.

Using these CobolScript features, you can develop programs to get and save web pages to text files,
transfer files via FTP, send simple emails, retrieve emails, accept data from web page forms, create
virtual HTML documents, and perform various file input and output operations.

CobolScript Professional Edition also contains a number of enhancements that enable professional
development with CobolScript:

• CobolScript AppMaker™, which makes it possible to create executables from CobolScript
programs.

• CobolScript CodeBrowser™, a browser-based utility to examine your code in colorized form.
• CobolScript LinkMaker™, a tool that enables you to directly embed SQL calls in your

CobolScript program to access any data source for which you have an ODBC driver. On
Unix platforms, LinkMaker™ is used in conjunction with UnixODBC, a freeware product.

• The CobolScript Control Panel, a graphical administration tool accessible from your web
server machine (so long as both CobolScript and web server software are installed), for
accessing other CS Professional features, and for administering your CS Professional system.

• Multidimensional array support.

About this Manual
This developer’s guide should serve as both a guide for learning to program with CobolScript, and as
a reference for your day-to-day programming. It should provide sufficient instruction for most
experienced programmers to learn to develop CobolScript applications; however, in certain instances
you may wish to find additional information:

• If you are completely new to the art of programming, you should probably familiarize
yourself with introductory programming principles as well. Understanding the basics of
programming will reduce the time it takes you to learn CobolScript.

• If you choose to program web applications using CobolScript, you should be familiar with
HTML. HTML is relatively easy to learn, and many good web sites and books exist on the
topic, so it would be redundant to include an HTML reference in this guide. A number of
‘WYSIWYG’ (What You See Is What You Get) software tools are also freely available and
can assist you in prototyping your system and creating the HTML that will be displayed by
your programs. Check www.download.com for the latest freeware and shareware
WYSIWYG tools.

http://www.download.com/

Page 4 CobolScript® Developer’s Guide

• Although web programming is addressed in this guide, you may also choose to seek more in-
depth coverage of the subject, if, for instance, you want background information about CGI
or about concepts not in this manual, such as cookie creation using CGI scripting.

• If you are interested in providing more real-time user feedback than is possible with just
CGI scripting, or you want to distribute some of your web served application’s processing to
client machines, consider learning more about an appropriate embedded language like
JavaScript. These languages’ scripts can be embedded in the HTML that is displayed by
your CobolScript programs, so you can provide real-time, client-based processing while still
using CobolScript. Our preferred client-side scripting language is JavaScript, since it loads
and executes relatively quickly, and will run on both Netscape Navigator® and Internet
Explorer®.

If you are looking for books on any of the above topics, we’ve found the Peachpit Press Visual
Quickstart Guide series to be affordable, concise, readable for beginners but not overly simplified, and
filled with good examples. Peachpit Press is on the Web at www.peachpit.com.

Installing CobolScript

System Requirements
A Pentium®-compatible machine (166 MHz and higher preferred) is required for the Windows®,
Linux®, and FreeBSD® versions of CobolScript, a RISC-processor machine for the SunOS® version.
32MB of RAM is recommended for CobolScript Standard, more for programs of substantial size.
64MB of RAM is recommended for CobolScript Professional Edition.

Installing CobolScript on a Windows®-compatible machine

����������	
��	
���	�	��������

Create a directory such as C:\DESKWARE or C:\COBOLSCRIPT where you will keep
CobolScript and your CobolScript programs. Download the file(s) to that directory from the
Deskware Registered User Web Site. If you have downloaded a zip file (with the extension .zip),
unzip it using WinZip or a similar product. The cobolscript.exe file is the CobolScript interpreter,
and the .cbl files are the sample CobolScript programs. As you have already discovered because you
are reading this, this manual is the file cbmanual.pdf, and requires that you have a free copy of
Adobe Acrobat Reader®, version 4.0 or higher, installed on your computer to read and print it.

�������������
����	�	��������

No special configuration is required for CobolScript to run. However, we recommend that you
modify your PATH environment variable in your AUTOEXEC.BAT file to point to the location of
the CobolScript engine. To do this, first save a copy of your old C:\AUTOEXEC.BAT file to a
backup file such as C:\AUTOEXEC.BAK, then open AUTOEXEC.BAT in a text editor such as
notepad, and modify the SET PATH= line. For example, if a line in your AUTOEXEC.BAT file
reads:

SET PATH=C:\MOUSE;%PATH%;C:\PP\BIN\WIN32

you would change it to:

http://www.peachpit.com/

CobolScript® Developer’s Guide Page 5

SET PATH=C:\MOUSE;%PATH%;C:\PP\BIN\WIN32;C:\DESKWARE

if you have saved the CobolScript engine to the C:\DESKWARE directory.

��������������	�	��������

CobolScript can be run from the command line. Start an MS-DOS prompt, and type:

cobolscript.exe

to run CobolScript and see the command line options. To run a specific program from the
command line, type:

cobolscript.exe <program-name>

where <program-name> is the name of the program you wish to run, along with a path if the
program is not in the current directory. For example:

cobolscript.exe test.cbl

cobolscript.exe ..\testdir\test.cbl

For more information on running CobolScript from the command line, turn to the next chapter,
Getting Started with CobolScript.

If you plan to do Web and CGI development, you will probably want to put CobolScript in your
web server’s CGI directory. Usually this directory has “cgi” or “cgi-bin” in the name, as in
c:\httpd\cgi-bin for the OmniHTTPd web server. Just place the cobolscript.exe file in this
directory. See the section titled Running CobolScript from a Web Server and Browser in
Chapter 2, Getting Started with CobolScript.

If you don’t already have a web server, OmniHTTPd is a freeware development-quality web server
for Windows 95/98/NT®. Search the web for “OmniHTTPd” to find a copy.

����������	�������������	���	����	 ������

If you have CobolScript Professional Edition and you want to access a database using LinkMaker™,
you will need to set up an ODBC data source on your computer. Refer to Appendix H for
complete instructions on how to do this.

Installing CobolScript on a Linux®, SunOS®/Solaris®, or FreeBSD® machine

����������	
��	
���	�	��������

Create a directory such as /deskware or /cobolscript where you will keep CobolScript and your
CobolScript programs. Download the file(s) to that directory from the Deskware Registered User
Web Site. If you have downloaded the complete file, un-tar it with the appropriate command
(depending on your OS). Below are some un-tarring examples:

tar -xvf linuxcob.tar

tar -xvf suncob.tar

tar -xvf bsdcob.tar

Page 6 CobolScript® Developer’s Guide

Similar steps should be followed with other tar files; just use the same syntax as above and substitute
the appropriate filename. The cobolscript.exe file is the CobolScript interpreter, and the .cbl files are
the sample CobolScript programs. As you have already discovered because you are reading this, this
manual is the file cbmanual.pdf, and requires that you have a free copy of Adobe Acrobat Reader®

4.0 or higher installed on your computer to read and print it. Because there is not a version of
Adobe Acrobat Reader® available for FreeBSD, if you have purchased this version of CobolScript
you will have to print the manual from an Acrobat®-compatible OS (Windows®, Linux®, IRIX®,
HP-UX®, AIX®, Solaris®, Macintosh®, etc.).

�������������
����	�	��������

No special configuration is required for CobolScript to run. However, we recommend that you
modify your PATH environment variable to point to the location of the CobolScript engine. To do
this permanently (preferred), you can modify the appropriate line of your .profile file in your home
directory. For example, if a line in your .profile file reads:

PATH=/bin:/sbin

you should change it to:

PATH=/bin:/sbin:/deskware

in the case where CobolScript is in the /deskware directory. If you are going to run CobolScript
from your current directory only, make certain that "./" is also a component of the PATH variable.

To modify your PATH environment variable for the current session only, first type:

echo $PATH

at the command prompt to see the current value of your PATH environment variable. Next, on
Linux® or Sun® machines, at the command prompt type:

PATH=$PATH:/deskware

where /deskware is the path to the CobolScript interpreter. In FreeBSD, you should instead type:

setenv PATH oldpath:/deskware

or alternatively:

set path=oldpath:/deskware

where oldpath is the original value of the PATH variable, and /deskware is the path to the CobolScript
interpreter. Your path will be changed for the current session.

��������������	�	��������

CobolScript can be run from the command line. Bring up an xterm or command prompt, and type:

cobolscript.exe

CobolScript® Developer’s Guide Page 7

 to run CobolScript and see the command line options. To run a specific program from the
command line, type:

cobolscript.exe <program-name>

where <program-name> is the name of the program you wish to run, along with a path if the
program is not in the current directory. For example::

cobolscript.exe test.cbl

cobolscript.exe ../testdir/test.cbl

For more information on running CobolScript from the command line, turn to the next chapter,
Getting Started with CobolScript.

If you plan to do Web and CGI development using CobolScript, you will probably want to put
CobolScript in your web server’s CGI directory. Usually this directory has “cgi” or “cgi-bin” in the
name, as in /home/httpd/cgi-bin on Apache. Just place the cobolscript.exe file in this directory.

If you are doing CGI development and intend to read and write to files in your cgi-bin directory,
make certain that the permissions on these files (and on the cgi-bin directory, and its parent
directories) are correctly set. Use the chmod command at the command prompt to properly set file
permissions. If this is not done, you will encounter difficulties when running scripts from a web
browser, since these scripts generally run as user 'nobody', who does not have the same authority as
you do when you are logged in at a command prompt, creating these files.

���������������������	���	����	 ������

If you have CobolScript Professional Edition and you want to access a database using LinkMaker,
you will need to set up an ODBC data source on your computer. Refer to Appendix H for
instructions on how to set up UnixODBC (a freeware product from UnixODBC.org) so that you
can connect directly to your data source.

Page 8 CobolScript® Developer’s Guide

CobolScript® Developer’s Guide Page 9

Getting Started with CobolScript®

efore you dive headfirst into CobolScript programming, you will need to learn the basics,
like how to edit your CobolScript programs, how to run them, and how to debug them.
This chapter aims to answer the basic logistical questions of CobolScript coding that you
may have, as well as providing a background on CobolScript interactive mode, which contains

some useful debugging tools. With the information here, you’ll be ready to learn the CobolScript
language.

Just as a note, all of the screens shown in this chapter, with the exceptions of the Windows®-specific
information in Figures 2.1 and 2.2, are representative of any CobolScript platform; don’t worry about
whether the figure shows an MS-DOS screen or a Unix screen, because the syntax and output of the
illustration would be the same no matter what the platform.

Creating and Editing CobolScript Programs
Use a standard text editor to create and edit your CobolScript programs. In Windows®, editors such
as Notepad or Wordpad work well. If you use Wordpad, make certain you save your files as text

documents, and specify the extension when naming your program, as in Figure 2.1, or Wordpad will
save the file with a default extension of .txt. Also, in Wordpad you’ll find it easiest if you choose a

Chapter

2
B

I C O N K E Y

 Important point

Figure 2.1 – Saving a CobolScript program in the Microsoft® Wordpad Save As dialog box.

Page 10 CobolScript® Developer’s Guide

fixed-width font for your editing such as Courier New. This will allow you to later open your
programs in Notepad, MS-DOS EDIT, or in Unix without a loss of formatting. You will probably
find yourself using the aforementioned MS-DOS EDIT text editor (accessible by typing the word
edit at the DOS prompt) when debugging, because despite its old-fashioned appearance, it tracks
the current column and row positions of the cursor, which can allow you to quickly locate a program
line number. Figure 2.2 shows an EDIT screen, with the cursor positioned down and to the right of
center; the resulting Line and Column position values appear in the lower right corner of the screen.

If you choose to edit your programs in Unix, any editor that saves documents as plain ASCII text
will suffice. Like MS-DOS EDIT, vi is a useful editor because it provides the means to quickly
navigate to a particular line number. Teaching vi is beyond the scope of this manual, however, so
refer to a Unix or vi-specific reference for more information.

If you are using CobolScript Professional Edition, you will probably find CobolScript
CodeBrowser™ to be a useful tool for printing and examining your programs; CodeBrowser™ is
discussed in detail in chapter 9.

Running CobolScript from the Command Line
The simplest way to use CobolScript is by running a CobolScript program in command line mode.
To do this, type:

cobolscript.exe <program-name>

at the command prompt, where <program-name> is the name of the program you wish to run
(don’t literally enclose the program name in < >; we use this syntax to indicate that program-name is
an argument to the CobolScript executable, cobolscript.exe). This command assumes that you have
already included your CobolScript directory in your PATH environment variable, or alternatively,
that you are executing the command from within the CobolScript directory. If you need instructions

Figure 2.2 – The MS-DOS EDIT text editor, showing the current cursor position (Line and Column) in the
 lower right corner.

CobolScript® Developer’s Guide Page 11

on how to include your CobolScript directory in your PATH variable, refer to the Installing
CobolScript section of Chapter 1, Introduction to CobolScript / Installation Instructions.

If you’re using the Windows® version of CobolScript (rather than a Unix version), running from
command line mode means that you are running your CobolScript programs in an MS-DOS session.
However, it is important to note that although your CobolScript applications can be run from the
DOS prompt, CobolScript is not a DOS application; it is a native 32-bit application that excludes
Windows-specific graphical components in order to minimize the CobolScript engine’s footprint
and to provide cross-platform capability. Graphical development with CobolScript is achieved
through the use of a web server and browser-based applications, discussed in more detail in Chapters
6 and 8. See the section titled Running CobolScript from a Web Server and Browser later in the
chapter for more information on getting started in a web-based environment.

Running CobolScript from Windows® command-line mode, you can drop the extensions if you like,
and just type:

cobolscript <program-name>

Command line program execution will direct all output to the current command line window, and

therefore all output will be plain text. Several of the example programs contained with CobolScript
are designed to run in command line mode; figure 2.3 shows the output of the ARITHMETIC.CBL
example program in an MS-DOS prompt window.

CobolScript also comes with a number of command line options. If you aren’t already familiar with the
term, a command line option is a switch that you set at the time that you call an executable program,
which in this case is the CobolScript executable. These switches allow you to change some specifics
in the way that CobolScript runs, at the time you run it. If you type cobolscript.exe at the
command line prompt, without any program arguments specified, you will see a list of the
CobolScript command line options.

 Figure 2.3 – Executing CobolScript programs from the command line prompt.

Page 12 CobolScript® Developer’s Guide

Figure 2.4 illustrates this in an MS-DOS window (on other platforms, you would need to specify the
.exe extension to the CobolScript executable). The syntax of the CobolScript Standard Edition
command line options is as follows:

cobolscript.exe [-i|-l] <program-name> [-t|-dd|-ds]

• The -i option runs the interpreter in interactive mode; see below for more information on
running in interactive mode. When the -i option is used, if a program-name is not specified,
interactive mode will be entered with nothing in the program buffer. If program-name is
specified, interactive mode will be entered, and program-name will be loaded into the program
buffer.

• The -l option runs <program-name> and creates a listing of the program execution as a
separate log file with the name program-name.log. For example, if your program name is
test.cbl, and you type the following at the command prompt:

cobolscript.exe –l test.cbl

then a log file named test.log will be created in the working directory.

• The -t, -dd, and -ds options are options that come after the program name:
⇒ The -t option causes CobolScript to truncate (and ignore) all characters beyond the 72nd

column position when parsing the program; this mimics the way mainframe COBOL
works. Your program file is not affected, just the execution of the program. The default
(no –t specified) is for all characters in the program to be treated as code.

⇒ The -dd option causes CobolScript to recognize the double quote character (“) as the
string delimiter instead of the default, the accent symbol (`). To display a literal double
quote when using this option, your program must use the keyword DOUBLEQUOTE.
The -dd and -ds options are mutually exclusive.

⇒ The -ds option causes CobolScript to recognize the single quote character (‘) as the
string delimiter instead of the default, the accent symbol (`). To display a literal single

 Figure 2.4 – CobolScript Professional command line options.

CobolScript® Developer’s Guide Page 13

quote when using this option, your program must use the keyword SINGLEQUOTE.
The -dd and -ds options are mutually exclusive.

CobolScript Professional Edition also provides a utility to build executables from the command line,
CobolScript AppMaker™. The syntax for creating an executable using AppMaker is:

cobolscript.exe -b <program-name>

If your program successfully loads, an executable will be created from it and placed in the working
directory. For example, typing the following will create an executable named test.exe in the working
directory:

cobolscript.exe -b test.cbl

CobolScript Error Messages in Command Line Mode
It will be normal for you to encounter bugs in your code while you are testing your CobolScript
programs. In command line mode, error messages display directly to the screen in a text-based
format. The error messages are quite specific, and will usually help you pinpoint the source of the
problem with your code.

Multiple error messages are displayed when a single line of code causes multiple errors in the
CobolScript engine; in these cases, one of these multiple errors should be obviously more specific
than the others, and will better assist you in determining the problem than the more general
messages. Multiple error messages, however, never indicate that there are unrelated errors on
different lines of the program. This is because CobolScript is an interpreted language, and program
execution is halted as soon as a single error is encountered. For this reason, you must re-run your
program after correcting each error to determine if there are other errors in your code.

All error messages have an associated CobolScript Error Number, which displays along with the
error message when the error is encountered; all error messages are explained in detail in Appendix

Figure 2.5 – CobolScript command line error message.

Page 14 CobolScript® Developer’s Guide

F, CobolScript Error Messages, in order of this CobolScript Error Number.

After the last error message is displayed for a particular error, the text of the line that caused the error
is displayed, along with some line number information. The Source Line Number is the actual number
of the line in the program text file that caused the error. Use this line number to navigate to the line
of faulty code in your program with a text editor like MS-DOS EDIT or vi. The Internal Line Number
indicates the number assigned to the Instruction Pointer (IP) at the time of the error. This number
can be used when a program is run in interactive mode to determine the problem line, in
conjunction with the list and ip interactive mode commands. Finally, the Source Line is the text of
the line that caused the error. Figure 2.5 shows an example of a command line error and the
resulting error messages.

Running CobolScript in Interactive Mode
From CobolScript interactive mode, you can load a program, execute it, step through and animate its
execution, and examine the contents of your program’s variables as they are populated. These
features make interactive mode a great debugging tool. Interactive mode can be accessed by using
the -i command line option when running CobolScript from the command prompt. Refer to the
explanation of the CobolScript command line options above for the appropriate command line
syntax. Figure 2.6 shows the start of a CobolScript interactive mode session on SunOS; interactive
mode on other supported platforms is essentially the same.

Once you’ve started an interactive mode session, you’ll see the CobolScript interactive mode prompt
that looks like this:

cobolscript>

From this prompt, you can use all of the interactive mode commands, although some commands

Figure 2.6 - Interactive Mode in SunOS®

CobolScript® Developer’s Guide Page 15

will not work properly until a program has been loaded, and others will not work correctly until a
program has been run. To see a help screen-style list of these commands, type a question mark (?) at
the command prompt. Figure 2.7 shows a representation of this list of commands.

Interactive Mode Commands
The following list defines the interactive mode commands. Online command-specific help is also
available in interactive mode by typing help <command>.

Interactive Mode
Command Description
? Displays all of the commands available in interactive mode.

! `system command` Runs a system command on your machine. The system command must
be an operating system command in the appropriate syntax for your
operating system. Examples:

! dir

! `dir | more`

! `ls –al`

! `chmod 777 test.cbl`

animate <speed> Executes the code that is in the program buffer line by line, and displays
each line of code as it is executed. The speed parameter controls the speed
of the code interpreting and displaying process: the higher the number, the
slower the lines of code will be displayed.

break <linenumber> Sets a break point to halt program execution.
The break command has the following forms:

• break with no argument specified lists all current break points;
• break <linenumber> sets a break point in a program’s execution

at linenumber;

+---+
| CobolScript 2.01 Copyright (c) 1996-2000 Deskware, Inc. |
+---+
| COMMANDS: |
| |
| ? dump modules positions |
| ! <system command> dump positions q |
| animate <speed> dump variables run |
| break <linenumber> files save <filename> |
| clear help <command> stack |
| count ip stepoff |
| deskware list stepon |
| display <variable> load <filename> variables |
| dump listing modules ver |
| |
| |
+---+

 Figure 2.7 – Interactive Mode Help Screen example

Page 16 CobolScript® Developer’s Guide

Interactive Mode
Command Description

• break clear <linenumber> clears the existing break point at
linenumber;

• break clear all removes all existing break points.

clear Removes the contents of the current program buffer. After the clear
command is used, another program can be loaded into the buffer.

count Displays the number of lines of code in the program currently loaded in
the program buffer.

deskware Displays Deskware, Inc. contact information.

display <variable> Displays the contents of the specified variable. The display command can
be used after run, animate <speed>, or stepon has been used to execute
a loaded program.

dump variables
dump modules
dump positions
dump listing

Creates a text file dump of all variable contents, a module list, a program
listing, or a variable position listing, depending on the argument. Below are
the names of the files that are created by each command:

• dump variables - dump.var
• dump modules - dump.mod
• dump positions - dump.pos
• dump listing - dump.lst

files Displays all of the files that a program used as it was executed. The files
command can be used after run, animate <speed>, or stepon has been
used to execute a loaded program.

help <command> Displays command-specific help.

ip Displays the current value of the CobolScript internal instruction pointer.
This value is equivalent to the internal line number of the line that was just
processed.

list Displays the contents of the program buffer to the screen. The program
buffer contains the lines of program code that were loaded with the load
<filename> command.

load <filename> Loads the contents of the specified program file filename into the program
buffer. Once loaded, a program file can be executed by using the run or
animate <speed> command.

modules Displays all of the modules defined in the code that has been loaded into
the program buffer.

positions Displays all variables’ byte offsets. The positions command can be used

CobolScript® Developer’s Guide Page 17

Interactive Mode
Command Description

after a program has been executed using run or animate <speed>.

q Quits interactive mode.

run Executes code that has been loaded into the program buffer.

save <filename> Saves the current contents of the program buffer to a text file filename.

stack Displays the code lines that are currently on the CobolScript internal stack.

stepoff Turns off step mode that was set using the stepon command. After step
mode has been turned off, the run command will run programs normally,
without stepping.

stepon Places CobolScript in step mode. Once in step mode, the run command
will begin interactive execution of the loaded program. Interactive
execution means that the program is executed, one line at a time, by
pressing the ENTER key. As the program is interactively executed,
commands such as variables, files, ip, and stack can be used to display
current information.

variables Displays all of the variables used by a program, and the contents of those
variables. The variables command can be used after run, animate
<speed>, or stepon has been used to execute all or a portion of a loaded
program.

ver Displays version information for your CobolScript installation.

Running CobolScript from a Web Server and Browser
With proper installation and web server configuration, CobolScript programs residing in the
appropriate web server directory can be initiated by (and the output displayed in) a web browser. By
placing your CobolScript programs on a server and accessing them with a browser, you can create
graphical, efficient applications accessible from any computer with browser software installed on it,
so long as the browsing computer has visibility to the web server computer, either across a network
or the internet.

For your CobolScript web applications to run correctly, you should perform the following steps:

1. Place your programs, any text files used by your programs, and the CobolScript executable in
your web server’s cgi-bin directory. Consult your web server documentation if you do not know
where the cgi-bin directory is, or you want to modify its location.

2. On Unix servers, use the chmod command to change the permissions on the files that you
placed in the cgi-bin directory, as necessary. Since CGI scripts usually run as user ‘nobody’, the
permissions on these files generally must be set to allow any user to have the appropriate access
to all files used by your programs. As an example, suppose a CobolScript web program reads

Page 18 CobolScript® Developer’s Guide

from and writes data to a file named DATA.TXT. The file DATA.TXT must then permit both
reading and writing by any user, in order for the program to run successfully. In this case, typing

chmod 666 DATA.TXT

at the Unix command prompt will change DATA.TXT appropriately.

3. Make certain CGI scripting is turned on and permitted by your web server software; this is
necessary for CobolScript applications to run correctly. Consult your web server documentation
for information on how to enable CGI scripting if it is not already enabled.

4. After you have placed CobolScript and your CobolScript programs in your cgi-bin directory, you
can execute the programs on the server with your browser by placing a “?” between the
cobolscript.exe and the program’s filename in the browser URL. Figure 2.8 illustrates the
execution of a sample timesheet program initiated from a Netscape® browser, but running on a
FreeBSD® server with Apache web server software; note the address in the Location: (URL)
box, that runs the program uts.cbl in the cgi-bin directory with the syntax
“cobolscript.exe?uts.cbl”.

To generalize, any CobolScript program that has been placed, along with the CobolScript executable,
in the appropriate directory on your web server’s computer can be executed by using a URL of the
following form:

Figure 2.8 – CobolScript Web Application (Timesheet Program) Example

CobolScript® Developer’s Guide Page 19

http://<your ip address>/cgi-bin/cobolscript.exe?<program name>

You can see several more example of this on the Deskware samples web site at
http://www.cobolscript.com/cgi-bin/cobolscript.exe?samples.cbl.

CobolScript Error Messages in Web Browser Mode
Besides the standard command line error messaging system explained in the Running CobolScript
from the Command Line section in this chapter, CobolScript provides an integrated web-based
error messaging system. This messaging system is unique in that CobolScript determines whether
you are running a program from a web browser or the command line, and controls the display of the

error message accordingly. If you run a CobolScript program from you web browser and encounter
an error, you will see the CobolScript Error Number and error message displayed in a consistent
HTML-based format; if you run the same program from the command line and encounter the same
error, the number and messages will display in a text-based format.

The web based error message in figure 2.9 illustrates this HTML-based error messaging system. In
this particular example, a variable was misspelled in the GETENV statement, and was therefore
undefined and caused an error.

In certain cases when running CobolScript programs from a browser, you will see a completely blank
browser window, or an incomplete display of your HTML without a CobolScript error on the page.
These cases can indicate errors in your HTML code as well as a CobolScript error. Check the page
source from your browser to find any CobolScript error messages that are embedded in the HTML
but did not successfully display. Correct the CobolScript error(s) first; if the page still fails to display
properly, but there are no longer any CobolScript error messages in the page source, check your
HTML syntax.

 Figure 2.9 – Browser-based error message

http://www.cobolscript.com/cgi-bin/cobol.exe?samples.cbl

Page 20 CobolScript® Developer’s Guide

CobolScript® Developer’s Guide Page 21

CobolScript® Language Constructs
n CobolScript, there are several categories of constructs which form the foundation of the
language. This chapter defines these constructs and their specific CobolScript syntax. Since
CobolScript language constructs are not so different from the elementary components that
comprise most other computer languages, you may opt to focus your attention only on those

sections in this chapter that deal with material unfamiliar to you. Each CobolScript construct is
unique in at least a minor fashion, however, so refer back to the appropriate section here if you are
having difficulties with a particular construct.

With the exception of delimited string literals, all CobolScript alphanumeric syntax is case insensitive,
meaning uppercase letters, lowercase letters, and any combination of these will work for any
particular command, variable, or reserved word. This flexibility requires that you be cautious,
however, when defining your variables; see the Variables section for more information.

The CobolScript language constructs are divided into the following categories:

• Literals and Literal Keywords
• Variables
• Data and Copybook Files
• Expressions and Conditions
• Commands
• Reserved Words
• Statements
• Sentences
• Comments

We explain each of these categories individually in the following sections.

Literals and Literal Keywords
Literals are any numbers or character strings which are meant to be taken literally by your program.
Literals are perhaps best defined by what they aren’t: A literal is not a variable, which has values
substituted in for the variable name at the time the program is run, nor is a literal necessarily an
expression, which is mathematically evaluated to arrive at a resulting value (although literals can
comprise expressions). As you will see from the examples below, literals can only appear in places

Chapter

3
II C O N K E Y

 Important point

Page 22 CobolScript® Developer’s Guide

within statements or variable definitions where they are used as a source for information, and never
as a target, since a literal cannot change its value.

Numeric Literals
If a literal is numeric, and you want that numeric literal to be treated as a number by your program, it
should not be enclosed in any offsetting quotes or string delimiters. Also, a numeric literal should
not include any special formatting characters like commas or dollar signs; the only special characters
allowed within a numeric literal are the negative sign (-) and the decimal point, indicated with a
standard period (.). To use a numeric literal in your program, just insert the number, including any
negative sign and decimal point, into your statement or VALUE clause in the appropriate position.

If you use a numeric literal in a VALUE clause, the variable being defined must also be numeric.
Here are some examples of numeric literals in VALUE clauses in variable definitions:

1 variable_1 PIC $9,999.99 VALUE 2323.41.

1 variable_2 PIC S99,999.999 VALUE –32000.

If you have questions about the PIC clauses in the above variable definitions, picture clauses are
explained completely in Appendix E, CobolScript Picture Clauses.

Here are some examples of numeric literals in code statements:

MOVE 5 TO variable_1.

SUBTRACT 6.23 FROM number_var_1.

MULTIPLY 2 BY –6 GIVING result_var.

COMPUTE result_var = -2.25.

Alphanumeric Literals
Alphanumeric literals, also known as strings, are any delimited character or string of characters which
is to be taken literally by your program. Any character other than the string delimiting character,
which is normally the accent symbol, can appear within a delimited string. See the subsection below
for more information on string delimiters.

If you use an alphanumeric literal in a VALUE clause, the variable being defined must be of
alphanumeric (PIC X) type. Here are some examples of alphanumeric literals in VALUE clauses in
variable definitions:

1 variable_2 PIC XXX VALUE `123`.

1 FILLER PIC X(n) VALUE `<BODY><HR>
”#1” Web Page</BODY>`.

If you want further explanation of the types of PIC clauses used in the above variable definitions,
refer to Appendix E, CobolScript Picture Clauses.

Here are some examples of alphanumeric literals used in procedure statements:

MOVE `Y` TO variable_1.

IF condition_val = `E1qwT`

 CONTINUE

END-IF.

DISPLAY `Hello, ‘Ray’. `.

CobolScript® Developer’s Guide Page 23

The CobolScript String Delimiter
The string delimiter in any language is the character that is used to signal the beginning and the end
of alphanumeric literals. In most computer languages, the string delimiter is either the single or
double quote, so strings enclosed in their delimiters are commonly referred to as being quoted. In
CobolScript, however, the default string delimiter is the Gravè accent, or just plain accent (`). Since
CobolScript also has command line options to permit the use of the single or double quote as the
string delimiter (see the section titled Running CobolScript from the Command Line in Chapter
2, Getting Started with CobolScript for more details), we usually refer to alphanumeric literals simply as
being delimited to avoid confusion.

The accent key is the key located in the upper left corner of North American keyboards, below the
Esc key. Normally, both the tilde (~) and the accent (`) are on the same key. We selected the
accent as the default string delimiter for CobolScript because HTML, which must be displayed from
CobolScript web applications, requires the frequent use of double and single quotes; using a different
character for the CobolScript string delimiter simplifies the creation of these strings. The
alphanumeric literal in the following MOVE statement is standard HTML and illustrates this point
well:

MOVE `Test Page` TO url_var.

If you still prefer to use quotes, however, you can. Just create your program using either single or
double quotes as the string delimiters, and run the program using the appropriate command line
option. See the previously mentioned section in Chapter 2 for syntax information.

If you’re an experienced C programmer, you may be curious about whether the backslash (\) has
special meaning inside a CobolScript string. It doesn’t. This is primarily because CobolScript strings
must contain any client-side scripts that you choose to embed in your CobolScript-generated HTML.
These scripting languages each may attribute special meaning to certain characters inside a string, and
these special characters should not interfere with the original CobolScript string. Simply put, there is
no ‘escape’ character, backslash or other, in CobolScript that will cause the character following it to
be interpreted literally. Because of this, there is no direct way to display the current delimiter symbol
from within a delimited string – a special keyword, not enclosed in delimiters, must be used instead.

To display a literal of the accent symbol from within a CobolScript program that uses the accent as
the string delimiter, you must use the ACCENT keyword, as in:

DISPLAY ACCENT.

DISPLAY `The accent symbol: (` & ACCENT & `).`

The same rule applies if you are using double or single quotes as the string delimiter. When the
double quote is your string delimiter, use the DOUBLEQUOTE keyword to display the symbol, as
in:

DISPLAY DOUBLEQUOTE.

and when using the single quote as the string delimiter, use the SINGLEQUOTE keyword, as in:

DISPLAY SINGLEQUOTE.

Page 24 CobolScript® Developer’s Guide

Literal Keywords
Below is the complete list of literal keywords. Like ACCENT, DOUBLEQUOTE, and
SINGLEQUOTE, each of these keywords represents a specific ASCII character constant.

Keyword Symbol represented by
keyword

ACCENT `
CARRIGERETURN {equivalent of ASCII character

number 13}
CRLF {equivalent of ASCII character

number 13 + ASCII character
10; uses two bytes}

DOUBLEQUOTE "
LINEFEED {equivalent of ASCII character

number 10}
SINGLEQUOTE '
SPACE {all blanks}
SPACES {all blanks}
TAB {equivalent of ASCII character

number 9}
ZERO 0
ZEROS 0

Variables
Variables are information holders. In CobolScript, variables come in five basic forms, each of which
has its own characteristics and utility. These five forms are:

• Elementary data items, which can be either numeric or alphanumeric;
• Group-level data items;
• FILLER variables, which are really a special category of elementary data item;
• REPLICA variables;
• OCCURS clause variables.

No matter what the form, a variable must first be defined in a program, and then, as the term variable
implies, the variable’s contents can be assigned and reassigned throughout the body of a program.
In CobolScript, these value assignments are done with VALUE clauses and assignment statements.
VALUE clauses are optional components of elementary data item variable definitions that establish
an initial value for a variable; assignment statements are any procedure statements that modify a
variable’s contents.

A variable definition must follow certain rules of syntax, which are described below for each of the
variable forms. A variable definition may be placed anywhere within a CobolScript program,
meaning that variable definitions are not restricted to the Data Division as they are in COBOL.
However, you should not define the same variable more than once within a program.

CobolScript® Developer’s Guide Page 25

In CobolScript, variable names are not case sensitive, so WS-VAR, ws-var, and Ws-Var will all be
treated internally as the same variable. For this reason, only one of these names should be defined in
a program. Similarly, two variables that have the same alphanumeric name and differ only by
underscore and dash separators within the variable name, such as WS-VAR and WS_VAR, will be
treated interchangeably by certain CobolScript commands and should not both be defined in a single
program.

The Elementary Data Item
An elementary data item (also referred to as a ‘subvariable’ or just ‘elementary item’) is any basic
numeric or alphanumeric variable. An elementary data item cannot have subvariable components.
The syntax of a normal elementary data item variable definition is:

<level-number> <variable-name> PIC <picture-clause> [VALUE <value-literal>].

The level-number is a one- or two-digit number from 1 to 99. Think of the level number as
representing the outline position of a variable; the lower the level number, the higher the variable’s
rank in the outline, with 1 being the highest level. So long as you have defined at least one variable
with a level of 1 in your program, the variables with level numbers greater than 1 will all be
subvariables. This is best illustrated with an example:

1 text_input PIC X(40).

1 group_variable.

 2 components.

 3 component_1 PIC X(12).

 3 component_2 PIC $,999.99.

 2 val_1 PIC 99.

1 input_1 PIC X(25).

In the variable definitions above, text_input is both an elementary data item, because it doesn’t have
any subvariables beneath it, and is a level 1 variable. The variable group-variable is a group-level data
item (explained in the subsequent section), which has two subvariables, components and val_1. The
variable components is a group item itself, and has two subvariables, each of which are elementary
items. The variable val_1 is an elementary data item, as is input_1.

The variable-name of an elementary data item is the name that will be used throughout the program to
reference this particular variable.

The elementary data item variable’s type, format, and length are all determined by the value of the
picture-clause that immediately follows the PIC keyword. In CobolScript, all elementary item variables
are assigned a fixed number of bytes according to the size specified in the picture clause, so you must
allocate sufficient space for your variables when you create their picture clauses; otherwise, the
variable values will be truncated and information will be lost. A picture clause can be of two basic
types: numeric (PIC 9 format) or alphanumeric (PIC X format). The various picture clause formats,
and their meaning, are explained fully in Appendix E, CobolScript Picture Clauses.

If you want to initialize the elementary data item variable to a value at the time you define it, you can
include the VALUE keyword and follow it with a value-literal to assign to the variable. The value
literal must be of a type that matches the picture type of the variable; in other words, a variable with
a numeric picture clause must be assigned a numeric value literal, and a variable with an

Page 26 CobolScript® Developer’s Guide

alphanumeric picture clause must be assigned an alphanumeric literal. See the preceding section of
this chapter for more information on literals.

These are some example elementary item variable definitions:

1 string_variable PIC X(10) VALUE `abcdefghij`.

1 input_var PIC XX.

1 num_variable PIC $,999.99 VALUE 679.

The Group-Level Data Item
A group-level data item (also referred to as a ‘gldi’ or just ‘group item’) is a hierarchical parent
variable that is made up of other variables known as subvariables or component variables. Group
items are similar to record variables or data structures in other programming languages; they’re useful
because they enable you to reference and transfer whole groups of variables by citing a single,
succinct variable name. In CobolScript, group items are also used to define file records. See the
Data and Copybook Files section of this chapter for more information on file records.

The syntax of a group-level data item variable definition is:

<level-number> <variable-name>.

<subvariable-definition>.

.

.

.

As in elementary items, the level-number of a gldi indicates the variable’s position in the hierarchy; see
the definition of level number for elementary data items for more information.

The variable-name of a group item is the name assigned to the variable, just as in elementary data
items.

In group items, no PIC or VALUE clauses are allowed. This is because a gldi’s structure is defined
solely by its subvariable-definitions. A group-level data item’s subvariables can be group items
themselves, making possible multiple levels of grouping, or the subvariables can be elementary data
item variables.

Below is a standard group-level data item variable definition. In this example, group_variable is the
group item, and is composed of two elementary items:

1 group_variable.

 5 component_1 PIC XXX VALUE `mS1`.

 5 component_2 PIC $,999.99.

The FILLER Variable
The FILLER variable is a special type of elementary data item; it should only be used as a
subvariable to a group item, because it is always given the name FILLER, and cannot be directly
referenced. The syntax of a FILLER variable definition is:

<level-number> FILLER PIC <picture-clause> VALUE <value-literal>.

CobolScript® Developer’s Guide Page 27

The level-number and picture-clause are the same as those for a normal elementary data item, except
FILLER variables should never be level 1 variables (because they must be subvariables).

A VALUE clause should almost always be specified for a FILLER variable, since FILLERs generally
act as constants in a program. In cases where the FILLER variable is just acting as a placeholder, a
VALUE clause may not be necessary.

Once defined, FILLER variables can only be referenced and modified indirectly, through references
to their parent variable. They should be used in cases where there is no need for a direct reference,
such as when a component of a group item remains static throughout the program. In the example
below, a FILLER variable is one of three subvariables that comprise the group item variable
group_variable:

1 group_variable.

 5 component_1 PIC XXX VALUE `mS1`.

 5 FILLER PIC X(n) VALUE ` has a dollar value of `.

 5 component_2 PIC $,999.99.

!�����"���#$�%�
��&�'�(()��*
��
����

The special picture clause PIC X(n) can (and generally should) be used with any alphanumeric
FILLER variable for which you specify a VALUE clause. PIC X(n) automatically assigns a length to
the FILLER variable based on the length of the VALUE clause, so that you don’t have to calculate
the variable length yourself when creating the picture clause. For example, in group_variable above,
the FILLER variable is automatically assigned a length of 23 characters because the value clause is 23
characters long.

For more information on PIC X(n), see Appendix E, CobolScript Picture Clauses.

� ������"���#$�%�'�(()��*
��
����

FILLER variables using PIC X(n) can also be defined with a shorthand notation that eliminates the
FILLER keyword, picture clause, and VALUE keyword. This is best illustrated with an example:

1 group_variable.

 5 `Enter your name here: `.

In group_variable above, there is a single FILLER variable, with a value of `Enter your name here: `.
The above gldi is the exact equivalent of the following:

1 group_variable.

 5 FILLER PIC X(n) VALUE `Enter your name here: `.

This shorthand may only be used when the FILLER variable’s value is an alphanumeric that is set
off by delimiters.

REPLICA Variables
A REPLICA variable is a special type of elementary item variable that has the same name and level
number as a previously defined elementary item variable, and refers to the same physical variable in
memory as the originally defined variable. REPLICA variables are useful when defining multiple

Page 28 CobolScript® Developer’s Guide

group item variables that all require the same elementary item component; using a replica in these
cases avoids the task of moving values back and forth between these elementary items.

REPLICA variables are defined with a level number, variable name, and the REPLICA keyword.
PIC and VALUE clauses are not permitted in a REPLICA variable because they are not meaningful;
this information is defined by the original variable (also called the replica parent), whose definition
always precedes the REPLICA variable definition. Similarly, no VALUE clauses are permitted in
replicas, and both the replica and the replica parent must be elementary item variables with the same
level number. Here’s the basic REPLICA variable syntax:

<level-number> variable_name REPLICA.

And here’s a simple example of REPLICA usage:

1 group_variable_1.

 5 component_1 PIC XXX VALUE `mS1`.

 5 ` has a dollar value of `.

 5 component_2 PIC $,999.99 value 125.99.

1 group_variable_2.

 5 `The value in the component_1 replica variable is: `.

 5 component_1 REPLICA.

 DISPLAY group_variable_1.

 DISPLAY group_variable_2.

 MOVE `q72` TO component_1.

 DISPLAY group_variable_1.

 DISPLAY group_variable_2.

In the above example, the normal, full definition of component_1 occurs in the group_variable_1
group item definition; the second component_1, defined in group_variable_2, is a replica of the
original component_1. Thus, component_1 inside group_variable_1 is the replica parent, and
component_1 inside group_variable_2 is the replica. The output of the code above is:

mS1 has a dollar value of $125.99

The value in the component_1 replica variable is: mS1

q72 has a dollar value of $125.99

The value in the component_1 replica variable is: q72

The OCCURS Clause Variable
In CobolScript, the OCCURS clause variable is a special type of variable, either elementary or group
item, that defines arrays of each of its subvariables. The OCCURS clause syntax excels over other
types of array definition syntax when defining record arrays; this is because arrays of records fit
naturally within the syntax of an OCCURS clause group item definition.

The syntax of an OCCURS clause group item variable definition is:

CobolScript® Developer’s Guide Page 29

<level-number> <variable-name> OCCURS <n> TIMES.

<elementary-item-definition> or <group-item-definition>.

.

.

.

The syntax of an OCCURS clause elementary item variable definition is:

<level-number> <variable-name> OCCURS <n> TIMES PIC <picture-clause>

 VALUE <value-literal>.

An OCCURS clause variable is defined the same way as its underlying form (elementary or group
item), except for the OCCURS clause. This clause is initiated by the OCCURS keyword; in the case
of the OCCURS group item, it indicates that the subvariables that comprise this group are recurring.
In the case of the OCCURS elementary item, it indicates that this particular variable is recurring. In
either case, the number of times the OCCURS variable(s) recur is indicated by a positive (strictly
greater than zero) integer value n, which can either be a numeric literal or a numeric variable.

When referencing an OCCURS variable, you must use an index to indicate which of the recurring
variables you mean. The index must be an integer with a value from 1 to n. So, if the OCCURS
variable is defined using either of these forms:

1 occurs_variable OCCURS 10 TIMES.

 5 component_1 PIC 99.

 5 component_2.

 10 component_2_1 PIC XX.

 10 component_2_2 PIC 99.
or,

1 component_1 OCCURS 10 TIMES PIC 99.

Then, component_1 is a recurring variable (along with component_2 and its subvariables in the
group item example), and its index can be any number or variable with an integer value from 1 to 10,
inclusive. So, to reference the third OCCURS variable of component_1 in a statement, we would
use the syntax:

component_1(3)

or, alternatively:

component_1(integer_variable)

where integer_variable is an integer numeric variable that is equal to 3 at the time it is referenced.
We can also use the syntax:

component_1(expression)

where expression is any valid mathematical expression that evaluates to a positive integer, such as the
following expression, which again assumes a value of 3 for integer_variable:

component_1(((2^2)+integer_variable)%3)

Page 30 CobolScript® Developer’s Guide

The group item component_2 and its two subvariables, component_2_1 and component_2_2, can
be referenced the same way as component_1; thus, all of the following forms are permissible:

component_2(3)

component_2_1(3)

component_2_1(integer_variable)

component_2_2(((2^2)+integer_variable)%3)

Specifying a VALUE clause for an elementary item that recurs initializes all OCCURS elements to
the value-literal. For example, in the gldi below, component_1(1) through component_1(5) will
have initial values of 05, and component_2_1(1) through component_2_1(5) will have initial values
of `me`. Specifying a value clause for an OCCURS elementary data item has the same net effect, as
in the second OCCURS clause definition below:

1 occurs_variable OCCURS 10 TIMES.

 5 component_1 PIC 99 VALUE 5.

 5 component_2.

 10 component_2_1 PIC XX VALUE `me`.

 10 component_2_2 PIC 99.
or,

1 component_1 OCCURS 10 TIMES PIC 99 VALUE 5.

Note that CobolScript Standard Edition only permits single-level OCCURS clauses. In other words,
two-dimensional and higher arrays are not supported by the Standard Edition. This means that an
OCCURS clause gldi that has any OCCURS clause subvariables is not permitted in the Standard
Edition. See below for an explanation of multidimensional array usage in CobolScript Professional
Edition.

+������ ����	�
��,��
���!������	�	��������"�	�����	�
�

If you are programming with CobolScript Professional Edition, you can define OCCURS clause
variables that contain other OCCURS clause subvariables. This type of variable is also known as a
multidimensional array because its individual elements comprise an array that has more than one index
argument, or dimension. Let’s take a look at a basic multidimensional array definition using
CobolScript Professional:

1 day_of_week OCCURS 7 TIMES.

 5 hour_of_day OCCURS 24 TIMES.

 10 fahr_temp PIC ---9 VALUE –300.

 10 barom_pressure PIC 99.99 VALUE 0.

In the definition above, 168 total instances of the fahr_temp and barom_pressure variables are
created and initialized. Each elemental variable corresponds to a temperature and barometric
pressure reading for a specific hour of the day on a specific day of the week. The value in a specific
element is referenced using a two-argument array reference with the dimensions separated by
commas, as in the following statement:

DISPLAY fahr_temp(1, 13).

CobolScript® Developer’s Guide Page 31

This statement corresponds to displaying the temperature value for 1:00 PM on Sunday, assuming
Sunday is treated as the first day of the week.

The same range of argument syntax is permissible in multidimensional arrays as in one-dimensional
arrays, so that the following are all valid references, assuming var_idx1 and var_idx2 are both
properly defined:

fahr_temp(7, var_idx2)

hour_of_day(6+1, var_idx2)

barom_pressure(var_idx1, var_idx2)

fahr_temp(var_idx1+1, var_idx2-1)

Additional array dimensions are declared using additional nested OCCURS clauses:

1 a OCCURS occurs_num TIMES.

 5 b PIC X VALUE `b`.

 5 c.

 10 d PIC 9 VALUE 1.

 10 e PIC XX VALUE `ee`.

 5 f OCCURS 2 TIMES PIC XX VALUE `ff`.

 5 g OCCURS 3 TIMES.

 10 h PIC XX VALUE `hh`.

 10 i OCCURS 4 TIMES.

 20 j PIC X VALUE `j`.

 20 k PIC X VALUE `k`.

 20 l OCCURS 2 TIMES PIC XX VALUE `ll`.

 20 m OCCURS 2 TIMES.

 30 n PIC X VALUE `n`.

Referencing syntax for variables with more than two dimensions is just an extension of the two
dimension case, with additional commas separating the additional array dimensions:

MOVE `p` TO n(1,2,3,1).

DISPLAY `n(1,2,3,1) after move = ` & n(1, 1+1, occurs_num-1, 1).

There is no technical limit to the number of array dimensions that can be used in CobolScript
Professional; however, the limit on the number of variables that may be declared in a single program
creates a practical upper bound on the number of array dimensions. At any rate, careful
programming will rarely warrant the use of more than three dimensions. Although exceptions may
apply in certain mathematical programming cases, and in cases involving intentional denormalizing
of data constructs, very large dimension arrays should generally be avoided in order to keep your
programs comprehensible.

Data and Copybook Files
Like variables, data and copybook files hold information that can be used in a CobolScript program.
Of course, files are external entities, and as such are independent of the program and are stored
separately on disk. Files also have a total capacity that is generally only limited by your disk space,
rather than being controlled by program limitations (although there are limits on individual record
sizes in data files).

Page 32 CobolScript® Developer’s Guide

Data Files
A CobolScript data file is just a special type of ASCII text file that contains data records. Records are a
long string of data values, or fields. Each record is terminated with a linefeed.

Records have a specific layout, so that each record has the same number of fields, and each specific
field within a record shares formatting characteristics with the field in the same position in the other
records in the data file. For example, if the fifth field in a record is a numeric with the value 000311,
then the fifth fields in the other records in the file will also be six byte numerics. An example
delimited data file with a delimiter of ‘|’ and several records in it might look like this:

12051999|al@bbnb.net|Reynolds|Al|10 Meisenheimer Drive|Womack|MI|49332|

12051999|smith@ffdfff.com|Smith|Roy|511 Critical Pass|Boca Raton|FL|33983|

07061999|misterm@wyyyee.edu|M|Mr|302489|Rejkyavik||54663-211|

Data files can be either token-delimited or fixed format. In a delimited file, a single byte delimiter
character of your choice is used to separate individual fields from one another, while in a fixed
format file, a fixed number of bytes is assigned to each field, so there is no need for a delimiter.

To enable a particular data file to be processed by a program, you must first describe the file. This is
done with the FD (File Description) statement. The FD statement has the following syntax:

FD <filename> RECORD IS <length> BYTES.

The filename argument is the alphanumeric literal or variable that indicates the name and path of the
data file. It’s best to keep your data files in the same directory as the CobolScript engine if you
frequently move your code between machines with Windows file systems and ones with Unix file
systems. This is because the directory symbol is different for these file systems (‘\’ versus ‘/’) and
your code will then require that you change this symbol every time you switch between the two
platforms.

It’s important that you specify the correct length argument, since this tells CobolScript where to end
the record. A record is terminated with a carriage return-linefeed combination for Windows
machines, and just a linefeed for Unix platforms; these terminating characters, however, are not
included in the length argument, so that the same file can be described by the same FD statement,
regardless of platform.

The length argument can be either a numeric variable or a numeric literal. In either case, it should
have a positive (strictly greater than zero) integer value.

The length of a fixed width record is always equal to the sum of the lengths of the fields that
comprise it; calculating the length of a delimited record is a bit more involved, but not difficult. The
minimum length that you must use for a CobolScript delimited record, provided your delimiter
requires one byte of storage, is always equal to the formula:

Sum of lengths of individual record fields + (number of fields in record)

In delimited files, CobolScript right-pads the records with spaces, so that each record is still the exact
number of bytes specified in the length argument. This fact is relevant if you process a delimited
data file created with another application: Although reading and appending to that file will work fine
in CobolScript, updating existing records will not, since each record has a different size. For more
on this topic, see Chapter 4, File Processing and I/O.

CobolScript® Developer’s Guide Page 33

Once you’ve described a file, you must define a record variable with subvariables that represent each
component field in the record. In CobolScript, you define record variables like any other group-level
data item. You can define file record variables anywhere within a program, so long as the record
definition appears prior to any file processing statements that make use of the record such as READ
and WRITE. It’s important to not leave any fields out of your record definition, and to define them
with the proper format and length, especially if they are fixed-length format. An incorrect or
incomplete record definition will cause your record subvariables to be populated with the wrong
fields, and your data will be messed up, to say the least.

A FD statement for a fixed-width record, followed by the record definition for the file, might look
like this:

1 filename_var PIC X(n) VALUE `file.dat`.

1 bytes_var PIC 999 VALUE 100.

FD filename_var RECORD IS bytes_var BYTES.

1 record_var.

 5 rv_field_1 PIC X(50).

 5 rv_field_2 PIC X(10).

 5 rv_field_3 PIC X(40).

Data file manipulation is discussed in detail in Chapter 4, File Processing and I/O.

Copybook Files
Copybook files are external code files that can be loaded into a CobolScript program via a single
statement. The contents of the copybook file are then treated as if they were part of the program.
Copybooks are most commonly used to store variable definitions, especially record variable
definitions, since the same data file is often used by multiple programs. Using a copybook to store a
record variable definition reduces programming effort and eliminates the possibility of discrepancies
in the definition across programs. Copybooks also work well for storing group-level data items that
contain HTML that you want to replicate across your CobolScript CGI programs.

Copybook files are included in a program with the COPY or INCLUDE statement. These
statements are special in that they can be located anywhere within a program. This allows the code
in a copybook to be substituted into the program at any location, wherever the COPY or
INCLUDE statement is placed.

In the following example, an INCLUDE statement is inserted into a program to include the file
testvars.cpy, which is located in the parent directory of the CobolScript engine’s directory, on a
Windows machine:

 FD test.dat RECORD IS 17 BYTES.

 INCLUDE `..\testvars.cpy`.

Although it’s possible to include a path in the INCLUDE statement like this example does, it’s
inadvisable if you frequently move your code between machines with Windows file systems and
ones with Unix file systems. The directory symbol is different for these file systems (‘\’ versus ‘/’)
and your code will then require that you change this symbol every time you switch between the two
platforms.

Page 34 CobolScript® Developer’s Guide

 When we examine the contents of testvars.cpy, we see that this file contains a few simple variable
definitions that can then be referenced by the calling program:

1 content_length PIC 9(5).

1 eof PIC 9.

1 occurs_var OCCURS 5 TIMES.

 5 occurs_var_1 PIC 999.

Assuming that it follows the INCLUDE statement in our original program, the following MOVE is
legitimate because the definition for eof is now included in the program’s variables:

MOVE 1 TO eof.

For more information on the COPY and INCLUDE statements, see their respective entries in
Appendix A, Language Reference.

Expressions and Conditions
Expressions and conditions can appear in multiple locations in a CobolScript program. Positional
string reference and array arguments can be expressions; CobolScript COMPUTE statements, which
assign a value to a single variable, permit the use of mathematical expressions in the assigning value;
the CobolScript DISPLAY and DISPLAYLF statements allow expressions as arguments, and the
expressions are then evaluated before the result is displayed; and the IF statement and all variations
of the PERFORM .. UNTIL statements evaluate conditions. Below are the CobolScript rules of
syntax and evaluation for expressions and conditions. See Appendix A, Language Reference, for the
exact syntax of COMPUTE, DISPLAY, IF, and PERFORM.

Expressions
In CobolScript, an expression is any mathematical formula that has a single-value solution. An
expression can consist of any other expressions, numeric literals, variables, functions, or assignment
statements using mathematical operators. All variables used in an expression must be properly
defined with a numeric picture clause prior to the expression’s statement, because the variables’
values will be substituted in prior to evaluating the expression. Functions, which are mathematical
operations such as sine, cosine, present values, and the natural log, are described fully in Appendix B,
Function Reference.

�	�	����������� ������	���
�	��

Symbol Meaning Example Example result
+ Add 5 + 2 7
- Unary negative sign -4 -4
- Subtract 5 - 2 3
* Multiply 2 * 2 4
/ Divide 7 / 7 1
^ Raise to a power 2^4 16
\ Express in scientific notation 2\2 2 * 10^2 = 200
% Modulus, or mod 10%4 2
= Equals 1 = 3 0

CobolScript® Developer’s Guide Page 35

Symbol Meaning Example Example result
NOT = Not equal to 1 NOT = 3 1

> Greater than sign 18 > 1 1
1 > 18 0
1 > 1 0

< Less than sign 18 < 1 0
1 < 18 1
1 < 1 0

>= Greater than or equal to 18 >= 1 1
1 >= 18 0
1 >= 1 1

<= Less than or equal to 18 <= 1 0
1 <= 18 1
1 <= 1 1

AND Logical AND 2 AND 0 0
5 AND 3 1
0 AND 0 0

OR Logical OR 1 OR 0 1
0 OR 0 0
3 OR 7 1

XOR Logical exclusive OR 1 XOR 0 1
0 XOR 0 0
3 XOR 7 0

NOT Logical NOT NOT 1 0
NOT 0 1
NOT 9 0

������	��	���
��	��

Operations are not necessarily performed from left to right in an expression; instead, they are
evaluated in an order that depends on the relative rank of the operation, so long as no parentheses
are used. The order in which operations are performed in an expression, from first performed to last
performed, is:

Order Operation(s)
1 - (unary negative sign)
2 ^ (power)
3 \ (scientific notation)
4 % (mod)
5 /, * (divide, multiply)
6 +, - (add, subtract)
7 >, <, >=, <= (greater than, less than, greater than or equals,

 less than or equals)
8 =, NOT = (equals, not equals)
9 NOT (logical not)
10 AND (logical and)
11 XOR (logical exclusive or)
12 OR (logical or)

Page 36 CobolScript® Developer’s Guide

Rather than memorizing the order of operations, we recommend that you always use parentheses in
your expressions. This will ensure that operations are performed in the order that you wish, and will
avoid confusion for anyone else who reads or maintains your code.

)-
 �����-������	��

Expression Meaning
5 The number 5.
X The value of the variable X.

X + Y
or

X+Y

The value of the variable X plus
the value of the variable Y.

X+Y + Z The value of the variable X plus
the value of the variable Y plus
the value of the variable Z.

(((X+Y)/Z)%3) ^1.86 -
SQRT(X)

The variable X plus the variable Y,
all divided by Z,
all mod’ed by 3,
all raised to the power of 1.86,
all minus the square root of the variable X (SQRT is a
function).

3\2 3 multiplied by 10 to the power of 2,
equivalent to 3 * (10^2).

 ROUNDED(X*Y*Z-
Q/5/4^0.34)

The variable X multiplied by the variable Y multiplied
by the variable Z,
all minus the value of:
 The variable Q divided by 5 divided by the value
 of:
 4 to the power of 0.34.

The result is passed as an argument to the
ROUNDED function, and is rounded to the nearest
integer.

X + SIN(PI(0)/2) The variable X plus the sine of π/2 radians (SIN and
PI are both mathematical functions).

)-������	���	��������	�������

• Any level of nesting using parentheses is permitted.
• There is a finite length of expression permitted; generally speaking, keep your expressions

small enough to be easily understandable and you will avoid this limit. If you do encounter
the limit, divide your expression up into multiple assignment statements.

• There is a finite length of individual token (argument not separated by spaces) permitted.
Insert spaces between expression components if you encounter this limit.

• Spaces are not required between expression components if a symbol (non-word)
mathematical operator is separating the components; however, you should generally use
spaces when performing subtraction operations on variables with dashes or underscores in
their names. To illustrate, the expression “VAR-1 minus six” can be written two different
ways, but the first method is preferred:

CobolScript® Developer’s Guide Page 37

⇒ (VAR-1 - 6)
⇒ (VAR-1-6)

This is because if both VAR-1 and VAR-1-6 are defined variables, the meaning of the
second example becomes unclear to anyone reading the code. In CobolScript, longer
variable names are always substituted prior to shorter names, so that the second case above
would always evaluate to the variable VAR-1-6. Even if both variables were defined, the
first example would still evaluate to the quantity (VAR-1) minus 6, which is the desired
result in this case.

• Alphanumeric variables or literals in expressions that are within COMPUTE statements are
not allowed, even if the argument is in the context of a truth test. Thus, the statement:

COMPUTE total = (alnum_var = `Y`).

is illegal because it contains an alphanumeric variable (alnum_var) and an alphanumeric
literal (`Y`), even though the expression would evaluate to a numeric result. To set values
based on a test of alphanumerics, embed the assignment within an IF condition.

Conditions
Conditions are expression-like logic tests in IF and PERFORM .. UNTIL statements that evaluate to
a numeric result. In CobolScript, conditions are less restrictive than expressions are, because
conditions allow alphanumeric variables or literals to be included in tests. Like regular expressions,
though, conditions must still evaluate to a single-value result. This numeric result determines
whether the condition has evaluated to TRUE or FALSE; a result of exactly zero (0) is FALSE,
while any other result is considered to be TRUE. Thus, the conditional statement below will evaluate
to TRUE because the value of the condition is -40:

IF (4 + 6) *(-4) THEN

.����
���	�����	�������

There are some general rules that govern conditions , no matter what form they take:

• As mentioned above, a condition will evaluate to FALSE only if its value is zero. Any other
numeric result is TRUE.

• A condition must evaluate to a numeric result. Alphanumeric results are invalid.
• Any level of compound condition nesting using parentheses is permitted.
• There is a finite length of condition; generally speaking, keep your condition’s component

expressions small enough to be easily understandable and you will avoid this limit. If you do
encounter the limit, assign the value of one or some of your expressions to a variable prior
to evaluating the condition. Then, your condition can include the variable in place of the
lengthy expression. If you cannot do this because you are evaluating alphanumerics, break
your condition up into multiple conditions instead, and nest your IF statements.

• There is a finite length of individual token (component of condition which is not separated
by spaces) permitted. Insert spaces between condition components if you encounter this
limit.

• There is no support for implied subjects or implied operators in CobolScript conditions.
You must completely write out your conditions. (If you’re not familiar with these terms,

Page 38 CobolScript® Developer’s Guide

don’t worry. They are COBOL constructs that don’t really have an equivalent in other
computer languages.)

�	�����	������
-

CobolScript conditions come in two types: General logic tests, or Type I conditions, and tests of the
type of value contained in an alphanumeric variable or literal, which are Type II conditions. This is
the allowed syntax for both types of conditions, and rules specific to each condition type:

/�������	�����	��0

<Expression>

NOT <Expression>

<Expression> AND <Expression>

<Expression> OR <Expression>

<Expression> XOR <Expression>

<Expression> [IS] [NOT] = <Expression>

<Expression> [IS] [NOT] EQUAL [TO] <Expression>

<Expression> [IS] [NOT] > <Expression>

<Expression> [IS] [NOT] GREATER [THAN] <Expression>

<Expression> [IS] [NOT] < <Expression>

<Expression> [IS] [NOT] LESS [THAN] <Expression>

<Expression> [IS] [NOT] >= <Expression>

<Expression> [IS] [NOT] <= <Expression>

����������������	�/�������	�����	��0

• All Type I conditions may have numeric literals, numeric variables, alphanumeric
variables, or string literals in their component expressions.

• Alphanumeric comparisons of letters assigns a greater value to letters that come later
in the English alphabet. Therefore:

`Z` > `A` evaluates to TRUE;

`A` = ` ` evaluates to FALSE.

• Comparison of alphanumeric values to numeric values is permitted, but will default
to an alphanumeric to alphanumeric comparison. Thus, the following condition and
others like it will evaluate to TRUE:

`9` = 9

/��������	�����	��0

<Alphanumeric-val> [IS] [NOT] NUMERIC

<Alphanumeric-val> [IS] [NOT] ALPHABETIC

����������������	�/��������	�����	��0

• Type II conditions are tests to determine whether the characters contained within an
alphanumeric variable or literal are NUMERIC or ALPHABETIC.

CobolScript® Developer’s Guide Page 39

• A NUMERIC value is any valid number, including any negative sign and decimal
point. NUMERIC values may not include spaces; a value such as `5 ` will not be
considered numeric.

• An ALPHABETIC value is any value that falls within the ranges A-Z and a-z, or is a
space.

• All Type II conditions may operate only on alphanumeric variables or string literals.

Commands
A command is the reserved word or words that form the foundation of a single procedural
statement. In this section, we divide the commands into categories that can help give you a basic
idea of what CobolScript commands can be used for. Refer to Appendix A, Language Reference, for
detailed syntax rules governing each command as it is used in a complete statement.

General Program Control Commands
This group of commands is used to direct program flow, populate variables, and include code
modules from external files in a program. Check the Language Reference for a command to
determine its CobolScript syntax and its full capability.

ACCEPT DISPLAY INCLUDE PERFORM..VARYING

ADD DISPLAYLF INITIALIZE STOP RUN

COMPUTE DIVIDE MOVE SUBTRACT

CONTINUE GOBACK MULTIPLY

COPY IF PERFORM

File Processing Commands
These commands execute file input and output operations on normal text files. Files in fixed width
and delimited formats can be read into normal group-level data items, and normal group-level data
items can be populated and then written to delimited or fixed-width files. Note that these
commands will only operate on ASCII files; no proprietary data formats are supported in
CobolScript.

CLOSE POSITION REWRITE

OPEN READ WRITE

������������������������
������������������������
������������������������

����������������������
����������������������
����������������������

Page 40 CobolScript® Developer’s Guide

LinkMakerTM Database Interactivity Commands
This group of CobolScript Professional Edition commands can be used to establish a connection
with an external database, and directly embed SQL (Structured Query Language) in your programs
to interact with that database. See Appendix H, CobolScript Professional Edition Embedded SQL, for
more information on interacting with a database in your programs and on the general syntax of
embedded SQL.

CLOSEDB EXEC SQL OPENDB

Web Processing Commands
This group of commands can be used to simplify CGI programming and interaction with a web
server. The ACCEPT DATA FROM WEBPAGE command gets CGI data that has been passed to
it via the POST method from HTML forms; DISPLAYFILE enables binary files to be sent to the
web visitor, while DISPLAYASCIIFILE sends ASCII text files; GETENV gets information about
the web server; and GETWEBPAGE gets the content of a web page at a specified address.

ACCEPT DATA FROM
WEBPAGE

DISPLAYASCIIFILE DISPLAYFILE GETENV GETWEBPAGE

Basic Email Commands
Simple emails may be sent and received using these commands. You must have an email (POP)
account in order to use GETMAIL and GETMAILCOUNT. You must have access and
permission to use an SMTP server to utilize SENDMAIL. A specific set of error-trapping variables
is mandatory when using these commands; these variables can be used to redirect program flow
when errors are encountered in the mail transfer process.

GETMAIL GETMAILCOUNT SENDMAIL

FTP Commands
CobolScript provides standard FTP commands, so that you don’t have to access the command shell
in order to invoke and conduct file transfers. You can use these commands to send and receive files
from within your CobolScript applications. A specific set of error-trapping variables is mandatory
when using these commands; these variables can be used to redirect program flow when errors are
encountered in the file transfer process.

FTPASCII FTPCD FTPCONNECT FTPPUT

FTPBINARY FTPCLOSE FTPGET

������������������
������������������
������������������

����������������
����������������
����������������
����������������

����������
����������

������������������������
������������������������
������������������������

����������������������
����������������������
����������������������

���������������������
���������������������
���������������������

�����������������������
�����������������������
�����������������������
�����������������������FTP

CobolScript® Developer’s Guide Page 41

TCP/IP Commands
This group of commands provides the means to do TCP/IP socket programming using
CobolScript. Socket programming is useful for building data interfaces over a network, and for
other types of network communication tasks. A specific set of error-trapping variables is mandatory
when using these commands; these variables can be used to redirect program flow when errors are
encountered with a particular command.

ACCEPTFROMSOCKET CONNECTTOSOCKET GETHOSTNAME RECEIVESOCKET

BINDSOCKET CREATESOCKET GETTIMEFROMSERVER SENDSOCKET

CLOSESOCKET GETHOSTBYNAME LISTENTOSOCKET SHUTDOWNSOCKET

Unix Shell-style Commands
These commands either mimic a Unix shell command (BANNER and CALENDAR), provide a
unique twist on a shell command (GETBANNER and GETCALENDAR), or allow interaction
with the host environment (CALL).

BANNER CALL GETCALENDAR

CALENDAR GETBANNER

Dynamic Processing Command
This command enables dynamic execution of CobolScript statements that are held within variables.
This allows statements to be created ‘on the fly’ and is a basic construct of AI programming.

EXECUTE

TCP/IP

Page 42 CobolScript® Developer’s Guide

CobolScript Reserved Words
This is a list of the reserved words in CobolScript, which includes commands, keywords, special
division and section words, and words reserved for future use in later releases of the CobolScript
engine. Not all words listed here necessarily have meaning to the current version of the CobolScript
engine, but you should not use any of these exact words as variable or module names. This list does
not include CobolScript function names, but you should also avoid naming any variables with the
same name as any function. The complete list of functions is in Appendix B, Function Reference.
ACCENT ELSE IF SENDSOCKET

ACCEPT ELSIF INTO SENTENCE

ACCEPTFROMSOCKET END IS SET

ADD ENDIF INCLUDE SHUTDOWNSOCKET

ALPHABETIC END-EXEC INITIALIZE SINGLEQUOTE

AND END-IF LENGTH SLEEP

AT END-PERFORM LESS SOURCE

AUTHOR ENVIRONMENT LINEFEED SPACE

BANNER EQUAL LISTENTOSOCKET SPACES

BINDSOCKET EQUALS MOVE SQL

BY EVALUATE MULTIPLY STOP

BYTES EXEC NEXT SUBTRACT

CALENDAR EXECUTE NOT TAB

CALL FD NUMERIC THAN

CARRIAGERETURN FILE OBJECT THEN

CLOSE FILLER OCCURS TIME

CLOSEDB FROM OFFSET TO

CLOSESOCKET FTPASCII OPEN STOP

COMPUTE FTPBINARY OPENDB SUBTRACT

COMPUTER FTPCD OR TAB

CONFIGURATION FTPCLOSE PERFORM THAN

CONNECTTOSOCKET FTPCONNECT PIC THEN

CONTINUE FTPGET POSITION TIME

COPY FTPPUT PROCEDURE TO

CREATESOCKET GETBANNER PROGRAM-ID UNTIL

CRLF GETCALENDAR READ UPDATING

DATA GETENV READING USING

DATE GETHOSTBYNAME RECEIVESOCKET VALUE

DAY GETHOSTNAME RECORD VARYING

DAY-OF-WEEK GETMAIL RELATIVE WEBPAGE

DELIMITED GETMAILOUNT REMAINDER WITH

DISPLAY GETTIMEFROMSERVER REPLICA WORKING-STORAGE

DISPLAYASCIIFILE GETWEBPAGE REWRITE WRITE

DISPLAYFILE GIVING ROUNDED WRITING

DISPLAYLF GOBACK RUN XOR

DIVIDE GREATER SECTION ZERO

DIVISION IDENTIFICATION SENDMAIL ZEROS

DOUBLEQUOTE

CobolScript® Developer’s Guide Page 43

Statements
A statement joins a CobolScript command with arguments and other keywords to form a single,
distinct operation. You can also think of a statement as being a ‘step’ in a program, since the
CobolScript engine executes code in a statement-by-statement manner. Sometimes a statement is
just a single-word command without arguments, as in the following two cases:

FTPASCII

CONTINUE

Normally, however, statements are composed of commands, arguments, and any additional
keywords that are required to complete the statement, as in:

MOVE source_var TO target_var

COMPUTE target_var = Y + 1

DIVIDE 10 BY 3 GIVING div_result REMAINDER remain_result

GETENV USING `CONTENT-LENGTH` content_variable

All statements, like sentences, must begin after column 7 (the seventh character counting from the
left-hand side of your text program file), meaning that the leftmost character in a statement should
be in column 8 or higher.

You should indent statements that are nested within conditionals with a consistent offset for each
successive level of nesting to make your code more legible. Appropriate indentation looks like this:

MOVE 20 to x.

PERFORM UNTIL (x < 2)

 COMPUTE target_var = SQRT(x)

 IF target_var < SQRT(2) THEN

 DISPLAY `x is less than 2`

 ELSE

 IF target_var > (SQRT(4)+1) THEN

 DISPLAY `x is greater than 9`

 END-IF

 END-IF

 MOVE target_var TO x

END-PERFORM.

A statement can be spread across multiple lines of your program if you wish, so long as all individual
arguments and keywords within the statement remain intact. A statement should not, however,
begin on the same line as a previous statement. The following lines, for example, are valid
CobolScript code:

Page 44 CobolScript® Developer’s Guide

IF truth_test_var

 COMPUTE

 target-var = SQRT (x)

 + 1

 IF target-var

 < SQRT (2)

 DISPLAY `X is less than 2`

 ELSE

 DISPLAY `X > 2`

 END-IF

END-IF.

The following is not valid CobolScript code, since more than one statement is on a single line:

IF truth_test_var COMPUTE target_var = (6 + 2) END-IF.

You should be able to see by now that statements are really just a combination of the program
elements previously discussed in this chapter, like commands, variables, expressions, conditions, and
literals, in a way that makes sense to the CobolScript engine. For the exact syntax of each
command’s respective statement, see Appendix A, Language Reference.

Sentences
A program sentence is any phrase, statement, or group of statements in a program that is terminated
with a period.

All sentences must begin after column 7 (the seventh character counting from the left-hand side of
your text program file), meaning that the leftmost character in a statement should be in column 8 or
higher.

In CobolScript, each of the following items constitutes a discrete and complete sentence, and
therefore requires a period to terminate it:

• All Division and Section titles, as in ‘PROCEDURE DIVISION.’ and ‘WORKING-
STORAGE SECTION.’; see Appendix F, CobolScript Basic Program Structure, for more
information on Divisions and Sections;

• The ‘PROGRAM-ID.’ and ‘AUTHOR.’ keywords in the Identification Division are each
complete sentences on their own. Also, the argument to each of these keywords is a
complete sentence;

• The ‘SOURCE COMPUTER.’ and ‘OBJECT COMPUTER.’ phrases in the Environment
Division are each complete sentences on their own. The argument to each of these phrases
is a complete sentence as well;

• All complete FD (File Description) entries;
• All variable definitions, whether group-level data item or elementary data item;
• Module (code paragraph) names;
• All complete statements that are not between PERFORM..END-PERFORM (an in-line

perform) or IF..END-IF.

CobolScript® Developer’s Guide Page 45

• If a statement is nested within an in-line perform or conditional, periods must not be used.
The sentence in these cases terminates with the ‘END-PERFORM.’ or the ‘END-IF.’
keywords. If there are multiple levels of nesting, only the outermost level should be
terminated with a period, as in the example that we used previously to demonstrate proper
indentation:

MOVE 20 to x.

PERFORM UNTIL (x < 2)

 COMPUTE target_var = SQRT(x)

 IF target_var < SQRT(2)

 DISPLAY `x is less than 2`

 ELSE

 IF target_var > (SQRT(4)+1)

 DISPLAY `x is greater than 9`

 END-IF

 END-IF

 MOVE target_var TO x

END-PERFORM.

Comments
Comments are text that has no effect on your program’s execution. Comments must begin with an
asterisk (*) in column 7 (the seventh character counting from the left-hand side of your program
file). Therefore, any line in a program that has an asterisk in column 7 will be ignored by the
CobolScript engine, no matter what other text is on that line.

Well-placed, meaningful comments are critical to the readability and overall worth of your program.
Explaining difficult-to-understand or non-intuitive code with a good comment will ultimately save
you and anyone who edits your code a large amount of time.

Page 46 CobolScript® Developer’s Guide

CobolScript® Developer’s Guide Page 47

File Processing and I/O
ccessing and manipulating disk-resident data are tasks that must be performed by any
application that has long-term information storage requirements. Almost all business
applications utilize or manipulate external information in some form, and many scientific
programs also have data input and output, so any good programming language must

incorporate commands to enable the processing of data that is external to the program.

All native CobolScript data processing is done with ASCII text files, commonly referred to as flat files;
this flat file processing is the primary focus of this chapter. CobolScript will correctly process data
files that are either fixed field width or single-character delimited. If the data in the file is delimited,
the parsing of the fields is handled internally by CobolScript.

The data records in CobolScript data files are stored sequentially, meaning one after another.
Sequential organization is the most straightforward approach to organizing records within a file; the
operations that can be performed on such a file are necessarily basic, and in CobolScript, input and
output commands are restricted to entire-file operations (OPEN and CLOSE), entire-record
operations (READ, WRITE, REWRITE), and an operation that moves the file pointer
(POSITION). Nevertheless, if you have previously only dealt with relational database access
methods to retrieve or modify data, you should pay special attention to this chapter, since data access
methods such as direct SQL calls are strictly a CobolScript Professional Edition feature and are not
available from within CobolScript Standard Edition.

It is, however, possible for CobolScript Standard Edition to interact with a relational database, if the
RDBMS (relational database management system) supports stored procedures, these procedures can
be called from the system prompt, and the RDBMS is able to direct the output from stored
procedure calls to flat files. Our interaction technique, which uses a combination of stored
procedure calls and intermediate flat files, is described in the last section of this chapter. Since your
actual technique will vary depending on the relational database that you use and any firewall that may
exist on your network, the information in this section is presented at a more conceptual level than
the other sections in the chapter.

If you are programming with CobolScript Professional Edition, and you want to directly interact
with a relational database using CobolScript LinkMaker™’s embedded SQL capability, refer to
Appendixes G and H for instructions on configuring and using LinkMaker™.

Chapter

4
A

I C O N K E Y

 Important point

Page 48 CobolScript® Developer’s Guide

Describing Files and Defining Data Records
Before any processing can be done on a data file, you must first describe it using an FD statement,
and you must create a record variable that defines the individual fields within each data record. See
the Data and Copybook Files section of Chapter 3 for more details on describing a file and
defining a data record.

Opening Files
Before you can begin reading data from a file or writing data to a file, you must first open the file.
Opening a file lets the operating system know that you intend to perform an input or output
operation on that file, and prepares the file for subsequent operations. You can open a file in
CobolScript for reading, writing, updating, or appending.

If you open a file for writing and the file already exists, its contents will be destroyed and a new file
created in its place. Opening a file for reading, updating, or appending, however, will not destroy the
file’s contents.

The DELIMITED WITH clause can be added to an OPEN statement to indicate that a data file is
delimited, meaning that fields are separated with a single-character delimiter that is specified after the
WITH keyword. The absence of the DELIMITED WITH phrase indicates that the data file has
fixed width fields, which will be separated based on the individual field sizes in the record definition.

Below are some examples of each variation of the OPEN statement, with and without the
DELIMITED WITH clause:

OPEN test_file FOR READING.

OPEN `test.dat` FOR READING DELIMITED WITH `|`.

OPEN `test_file FOR WRITING.

OPEN test_file FOR WRITING DELIMITED WITH `,`.

OPEN `test.dat` FOR APPENDING.

OPEN test_file FOR APPENDING DELIMITED WITH `,`.

If you’re working in a Unix environment, you must have the appropriate permissions set for your
data files; specifically, read as well as write permissions must be set on all data files for all file
processing options. Even files that are only opened for reading must have Unix write permissions
set, because early versions of CobolScript used OPEN FOR READING to update records as well
as to read them; to be backward compatible, current versions of CobolScript still support this
format.

Closing Files
After you have finished working with a file, you must close it. Closing a file releases the file
descriptor to the operating system; failing to close a file will cause the file to be locked and appear
unavailable to other applications. Here is an example of the CLOSE statement:

CLOSE `test.dat`.

CobolScript® Developer’s Guide Page 49

In the following CobolScript program, we simply open and close a file. Since it is opened for
writing, the file will be created if it does not already exist, or overwritten if it does already exist.

1 io_file PIC X(n) value `IO.DAT`.

FD io_file RECORD IS 100 BYTES.

OPEN io_file FOR WRITING.

CLOSE io_file.

Reading Records From Files
The READ statement reads one data record from the data file and loads it into the target record
variable. A single READ will read data until it reaches a line terminator, at which point it stops.
The line terminator is the ASCII character or character combination that is used by your operating
system to indicate the end of a line, usually either the carriage return or carriage return and linefeed
characters in combination. The line terminator is not included in the record data.

The AT END clause of the READ statement is an error-trapping routine that recognizes when the
end-of-file marker has been reached, and executes a specific statement when this condition is met.
We have chosen to use a MOVE statement in this example; any simple one-line statement, such as
DISPLAY or COMPUTE, could be substituted for the MOVE. The clause should be used in most
cases; if the AT END clause is not specified, reaching the end of a data file will cause a CobolScript
error.

Once a data record has been read and the target record variable populated, the component fields of
the record variable can be used like any other variable. Below is some example code that utilizes the
READ statement:

1 test_file PIC X(n) VALUE `TEST.DAT`.

FD test_file RECORD IS 100 BYTES.

1 input_record.

 5 ir_component_1 PIC X(50).

 5 ir_component_2 PIC X(50).

1 eof PIC 9 VALUE 0.

OPEN test_file FOR READING.

PERFORM UNTIL EOF

 READ test_file INTO input_record

 AT END MOVE 1 TO eof

 DISPLAY `Record component 1 is: ` & ir_component_1

END-PERFORM.

CLOSE test_file.

Page 50 CobolScript® Developer’s Guide

Overwriting a File
To overwrite a file, just open it for writing and write the new output to the file using the WRITE
statement. Writing will put data from a source literal or variable into a single record in the file. In
this example, the fields comprising RECORD-VARIABLE are assumed to have already been
populated:

OPEN test_file FOR WRITING DELIMITED WITH `|`.

WRITE record_variable TO test_file.

CLOSE test_file.

Appending New Records to an Existing File
To append records to the end of an existing file, open the file for appending and write each record to
the file using the WRITE statement. Each WRITE statement will add the source record to the file
as the last sequential data record. Here’s the code for several appends to a delimited data file:

1 test_file PIC X(n) VALUE `test.dat`.

1 bytes_num PIC 99 VALUE 10.

FD test_file record is bytes_num bytes.

OPEN test_file FOR APPENDING DELIMITED WITH `,`.

WRITE `12345` TO test_file.

WRITE `1234` TO test_file.

WRITE `123` TO test_file.

CLOSE test_file.

The following output (highlighted in gray) will be written to the file test.dat:

12345, `

1234, `

123, `

Each of the three records above is made up of three components: the source literal from the
WRITE statement that created that record, followed by the comma delimiter, and then followed by
enough spaces to make the total length of the record equal to ten characters. Note that even when
files are opened as delimited files, CobolScript still right-pads the record with spaces until it is the
total length declared in the FD statement (in this case, ten bytes). This padding is an intentional
feature of CobolScript, because it simplifies the task of individually updating delimited data records.
This also has relevance if you intend to update delimited data records created outside of CobolScript;
see the next section on updating records for more information.

If the DELIMITED WITH option is absent from our code block, as in the following:

OPEN test_file FOR APPENDING.

Then, assuming that the FD statement and everything else in our original block of code does not
change, the following output will be written to test.dat:

CobolScript® Developer’s Guide Page 51

12345 `

1234 `

123 `

Now let’s look at a slightly more complex case with a record variable that is made up of two fields.
First, we’ll describe the file and define the record variable:

1 test_file PIC X(n) VALUE `test.dat`.

1 bytes_num PIC 99 VALUE 9.

FD test_file record is bytes_num bytes.

1 record_var.

 5 field_1 PIC X(4).

 5 field_2 PIC X(5).

Next, we’ll open the file and write some records. Note that this is a fixed width file, because there is
no DELIMITED WITH clause in our OPEN statement:

OPEN `test.dat` FOR APPENDING.

MOVE `1` TO field_1.

MOVE `test` TO field_2.

WRITE record_var TO test_file.

MOVE `test` TO field_1.

MOVE `1` TO field_2.

WRITE record_var TO test_file.

CLOSE test_file.

The code above would produce the following output in the file test.dat:

1 test`

test1 `

Note that each field inside a fixed width file has, not surprisingly, a fixed width. Therefore, the
second field in the above example always begins in the fifth character of the record, regardless of the
size of the first field.

Now let’s take a look at what happens if we append delimited records instead of fixed width ones.
We’ll first modify the original OPEN statement to handle comma-delimited data:

OPEN test_file FOR APPENDING DELIMITED WITH `,`.

Our record should be two bytes larger than the fixed width record to account for the two comma
delimiters that will be in each record, so we must also modify the VALUE clause in our bytes_num
variable declaration:

1 bytes_num PIC 99 VALUE 11.

We could also have changed our bytes_num value with a MOVE statement, so long as it preceded
our FD. Either way, with the two above modifications, our code would write the following to
test.dat:

Page 52 CobolScript® Developer’s Guide

1,test, `

test,1, `

You can see that, unlike the fixed width file, the starting position of each individual field within a
delimited record varies.

Writing to a File by Updating Existing Records
In certain situations, you will probably want to update a record that already exists in a data file
without appending an additional record to the file. To update a record in a data file, you should first
open the file for update using the UPDATING keyword, as in:

OPEN test_file FOR UPDATING.

Next, you should perform reads until you have read the record that you wish to update. Then, using
the REWRITE statement, you can overwrite the old record, as in the following:

REWRITE record_variable TO test_file.

Here’s some code that demonstrates this technique more completely:

1 eof PIC 9 VALUE 0.

1 rec_found PIC 9 VALUE 0.

1 rec_position PIC 999999.

1 test_file PIC X(n) VALUE `TEST.DAT`.

FD test_file record is 9 bytes.

1 record_var.

 5 field_1 PIC X(4).

 5 field_2 PIC X(5).

1 customer_of_interest PIC X(n) VALUE `Dave`.

1 new_field_2_val PIC X(n) VALUE `Davie`.

OPEN test_file FOR UPDATING.

PERFORM VARYING rec_position FROM 1 BY 1 UNTIL eof OR rec_found

 READ test_file INTO record_var

 AT END MOVE 1 TO eof

 IF field_1 = customer_of_interest

 MOVE 1 TO rec_found

 MOVE new_field_2_val TO field_2

 REWRITE record_var TO test_file

 END-IF

END-PERFORM.

CLOSE test_file.

IF eof

 DISPLAY `Customer record of interest was not found.`

END-IF.

CobolScript® Developer’s Guide Page 53

Because CobolScript right-pads delimited records with spaces, each record is the exact number of
bytes specified in the length argument to the initial FD statement. This allows any CobolScript data
record, whether fixed format or delimited, to be updated in a simple and efficient manner with a
simple record overlay, and without requiring any complex file reorganization for each update.
However, if you process a delimited data file created with another application such as a Microsoft
Excel CSV (comma-separated values) file, CobolScript updates to this file will usually not work
properly, since each record in the file will have a different byte length (reads and appends to the
unmodified file will work correctly, however). The data must be copied to a different file via a
CobolScript program before records can be individually updated. Here’s an example of a program
that does this (available in the sample program RECCOPY.CBL):

 1 input_file PIC X(n) value `INPUT.CSV`.

 FD input_file RECORD IS 100 BYTES.

 1 input_record.

 5 ir_input_1 PIC X(33).

 5 ir_input_2 PIC X(32).

 5 ir_input_3 PIC X(30).

 5 ir_input_4 PIC X.

 1 output_file PIC X(n) value `OUTPUT.CSV`.

 FD output_file RECORD IS 100 BYTES.

 1 eof PIC 9 VALUE 0.

 OPEN input_file FOR READING DELIMITED WITH `,`.

 OPEN output_file FOR WRITING DELIMITED WITH `,`.

 PERFORM UNTIL eof

 READ input_file INTO input_record AT END MOVE 1 TO eof

 WRITE input_record TO output_file

 END-PERFORM.

 CLOSE input_file.

 CLOSE output_file.

 GOBACK.

Relative and Absolute File Positioning
If you regularly process a large number of records in flat files, you’re probably aware of the time-
consuming nature of sequential searches. As your file sizes increase, sequential search times increase
by a proportional amount; if file sizes grow unchecked, search times will eventually become
unacceptably long. In fact, this is perhaps the most critical limitation of flat file databases, and it is
what prompts many organizations to opt instead for relational databases, more so than data
granularity, manageability, or other considerations.

In CobolScript, flat file search times can be reduced by using the POSITION statement. This
statement positions the file pointer at the beginning of a particular record within a text data file in a
single step. If a data file uses a sequential numeric value as the record key value, a record within the
file can be randomly (directly) accessed given that key value.

For COBOL developers, the POSITION statement functionality is similar to relative file processing.

Page 54 CobolScript® Developer’s Guide

POSITION works with standard text data files. The POSITION statement has two forms:

POSITION data_file AT RECORD record_number.

POSITION data_file RELATIVE OFFSET number_of_records.

The record_number value in the AT RECORD clause must be a positive integer in the range:

(1 <= record_number <= total number of records in file)

The record_number value (and hence the number of records in your data file) cannot exceed
2,147,483,647.

The number_of_records value used with the RELATIVE OFFSET clause must be an integer. This
value indicates the number of records, counting from the current record, that the file pointer should
be moved. Thus, a value of 1 will shift the file pointer one record forward in the data file; a value of
–1 will shift the file pointer one record back. The number_of_records value must fall within the
absolute range:

 (-2,147,483,647 <= number_of_records <= 2,147,483,647)

Furthermore, a number_of_records value that causes the file pointer to be positioned before the
beginning of the data file or after the end of the data file will cause a CobolScript error.

When using the POSITION statement, the number of bytes specified in the BYTES clause of the
FD statement for your file must exactly match the number of bytes in the data file record; this value
is used to reposition the file pointer, and a BYTES value that is larger or smaller than the actual data
record size will cause the file pointer to be incorrectly positioned.

The following POSITION example uses the AT RECORD clause to access a particular record
based on a sequential key value. The record is then read and displayed. After this, the file pointer is
repositioned to the record prior to the record first read by using the RELATIVE OFFSET clause of
POSITION:

1 filename_var PIC X(n) VALUE `datafile.txt`.

1 bytes_num PIC 99 VALUE 50.

FD filename_var RECORD IS bytes_num BYTES.

1 record_variable.

 5 order_nbr PIC 99999.

 5 data_var PIC X(45).

1 key_val PIC 99999 VALUE 24331.

OPEN filename_var FOR READING.

POSITION filename_var AT RECORD key_val.

READ filename_var INTO record_variable.

CobolScript® Developer’s Guide Page 55

IF order_nbr = key_val

 DISPLAY `For order number ` & order_nbr & `, data = ` & data_var

ELSE

 DISPLAY `Problem with order_nbr values in data file; check file.`

END-IF.

POSITION filename_var RELATIVE OFFSET –2.

READ filename_var INTO record_variable.

IF order_nbr = (key_val-1)

 DISPLAY `For order number ` & order_nbr & `, data = ` & data_var

ELSE

 DISPLAY `Problem with order_nbr values in data file; check file.`

END-IF.

CLOSE filename_var.

STOP RUN.

Relational Database Interaction with CobolScript Standard
Edition
CobolScript Standard Edition can interact with a relational database if the database supports batch
interaction from the system prompt, and if the database is able to direct the output from these batch
interactions to ASCII text files. Ideally, the database will also support stored procedures. For table
inserts, a batch row-loading utility such as Oracle’s SQLLoader will simplify the job.

We’ve devised a technique for database interaction with CobolScript Standard which we describe
further below, but it may not work with your system since every database product is different.

Instead, we recommend you use the LinkMaker™ feature of CobolScript Professional Edition to
embed SQL calls directly into your CobolScript code. If you have CobolScript Professional, read
Appendixes G and H for further information on configuring LinkMaker™ and embedding SQL
directly in your programs.

Note that network security configurations and firewalls may restrict your access to your database
across your network. Even if you have complete access to your database, if you are using your
CobolScript engine as a server-side language to complement your web server, you should be careful
about which pieces of your database are made visible to the internet through SQL or stored
procedure calls, especially if your database has sensitive data in it.

Regarding database security and information protection, in general, these are complicated topics
beyond the scope of this manual. In larger organizations, network and database administration staff
should normally be sought out and included in the decision-making process whenever there is the
risk, however slight, of revealing sensitive information to the outside world. Most network
administrators will appreciate it if you approach them prior to attempting to implement your idea.

We’ll look at the three main SQL table interactions here (select, insert, and update). We exclude delete
because in most production database cases, deletes are best handled by first updating a table row as
‘to be deleted’, and then deleting all such rows later in a batch stored procedure. Our explanations
assume that you are already familiar with SQL and your particular relational database software. You
should also have an understanding of how to write shell scripts for your operating system.

Page 56 CobolScript® Developer’s Guide

The Unix shell scripts that are included in this section are meant only as conceptual guidelines for
your development; the database login portions of these scripts won’t directly work with any one
relational database product without at least minor modification.

Selects (Queries)
Select statements come in two forms, from a CobolScript perspective: Those that have static SQL,
and those that require input from a CobolScript program.

��
�����������

Static selects are table queries that don’t require any external parameters. It is just the SQL statement
that remains static in a static query; the query results can change, even if the database remains
unchanged between queries. This is because time constraints can be included in a static query, as in
the following SQL statement:

SELECT customer_name

FROM customer_table

WHERE last_updated_datetime > (NOW – 1)

Assuming that the database is capable of converting the expression ‘NOW – 1’ into the datetime
equivalent of 24 hours prior to now, there is no need for this query to incorporate external inputs. A
Unix shell script that directs the output of this static query to a text file would look something like
the script below:

#!/bin/ksh

sqllogin ‘userid/passwd’ <<EOF >queryresult.dat

 SET HEADING OFF

 SET ECHO OFF

 SET BREAK OFF

 WHENEVER SQLERROR pkg_output.screen_write(‘Database error’|SQLERROR)

 SELECT customer_name

 FROM customer_table

 WHERE last_updated_datetime > (NOW – 1)

 EOF

Two different approaches can be used to gather the result set from a static query inside a
CobolScript program:

• The first approach is to run the query script in batch mode (on a daily basis, for instance)
outside of the CobolScript program. Then, the CobolScript program only needs to open the
data file and process the data. This approach puts the least strain on the database and on
your system, and returns a query result in the quickest time. The drawback to this method is
that the data is not current at the time the CobolScript program is executed.

• Alternatively, you can call the shell script from within a CobolScript program using the
CALL statement, and then open and read the resulting data from the shell script’s output file
using normal file processing methods. Here’s some code that does this, along with a minor
bit of code that takes advantage of the error trapping included in the above shell script.

CobolScript® Developer’s Guide Page 57

Assume the shell script above is named query.sh, and is in the same directory as our
CobolScript engine:

CALL `query.sh >error.txt`.

OPEN `error.txt` FOR READING.

READ `error.txt` INTO ERROR-REC AT END MOVE `Y` TO WS-EOF.

CLOSE `error.txt`.

MOVE `N` TO WS-EOF.

IF ERROR-REC(1:14) = `Database error` THEN

 DISPLAY ERROR-REC

ELSE

 OPEN `queryresult.dat` FOR READING

 PERFORM UNTIL WS-EOF = `Y`

 READ `queryresult.dat` INTO QUERY-REC AT END MOVE `Y` TO WS-EOF

 DISPLAY QUERY-REC

 END-PERFORM

 CLOSE `queryresult.dat`

END-IF.

STOP RUN.

The results returned by this approach are essentially real-time. The drawback to this type of query is
that it accesses the database every time this program is run.

���
 ����������

Dynamic selects are table queries that require external parameters, as in the following SQL
statement:

SELECT customer_name

FROM order_table

WHERE customer_id = $customer_id_var

AND order_number > $order_number_var

Here, the fields $customer_id_var (the value assigned to the shell script variable customer_id_var)
and $order_number_var are passed in to the query from an external source (in this case, the shell
script).

Here’s our new shell script to handle the above query:

#!/bin/ksh

customer_id_var=$1

order_number_var=$2

sqllogin ‘userid/passwd’ <<EOF >queryresult.dat

 SET HEADING OFF

 SET ECHO OFF

 SET BREAK OFF

 WHENEVER SQLERROR pkg_output.screen_write(‘Database error’|SQLERROR)

Page 58 CobolScript® Developer’s Guide

 SELECT customer_name

 FROM order_table

 WHERE customer_id = $customer_id_var

 AND order_number > $order_number_var

 EOF

This script is dependent on two input parameters ($1 and $2), which are then assigned to our two
variables. The variable values are inserted into the WHERE clause, thereby changing our query
condition and result based on external values.

Unlike static queries, dynamic selects must always be performed at the time the calling program is
run, since their result set depends directly on parameters passed in from the calling program. Here’s
a portion of the CobolScript code to call the above shell script:

 MOVE `‘101101’` TO cust_id.

 MOVE `22345` TO order_nbr.

* We build our CALL argument below. All of the following target

* variables are assumed to be components of the group item

* input_group.

 MOVE `query.sh ` TO input_arg_1.

 MOVE cust_id TO input_arg_2.

 MOVE ` ` TO input_arg_3.

 MOVE order_nbr TO input_arg_4.

 MOVE ` >error.txt` TO input_arg_5.

* At this point, input_group has a literal value of

* `query.sh ‘101101’ 22345 >error.txt`. The two literals that follow

* query.sh are our two shell script parameters that will be used

* inside the WHERE clause of the query.

 CALL input_group.

 OPEN `error.txt` FOR READING.

 READ `error.txt` INTO error_rec AT END MOVE 1 TO eof.

 CLOSE `error.txt`.

 MOVE 0 TO eof.

 IF error_rec(1:14) = `Database error` THEN

 DISPLAY error_rec

 ELSE

 OPEN `queryresult.dat` FOR READING

 PERFORM UNTIL eof

 READ `queryresult.dat` INTO query_rec AT END MOVE 1 TO eof

 DISPLAY query_rec

 END-PERFORM

 CLOSE `queryresult.dat`

 END-IF.

 STOP RUN.

CobolScript® Developer’s Guide Page 59

By building the CALL argument in this manner, you can easily pass the values in CobolScript
variables as parameters to shell scripts. These parameters can then be used in select statement
conditions that are inside the shell script.

Inserts
We’ll be doing database inserts a bit differently than we handled queries, since inserts tend to be
involve much more text input than dynamic select statements do.

A batch ASCII file loading utility will simplify the task of inserting database rows from CobolScript
input. The insert example that we give below assumes that such a utility is available for you to use.

Here’s the important CobolScript code for our insert:

 FD `order.dat` RECORD IS 57 BYTES.

 1 order_rec

 5 rec_cust_id PIC X(10).

 5 rec_order_nbr PIC 9(6).

 5 rec_order_val PIC 99999.99.

 5 rec_tax_val PIC 99999.99.

 5 rec_salesperson_nbr PIC 9(5).

 5 rec_date_and_time_val PIC X(14).

 1 order_info.

 5 cust_id PIC X(10).

 5 order_nbr PIC 999999.

 5 order_val PIC 99999.99.

 5 tax_val PIC 99999.99.

 5 salesperson_nbr PIC 99999.

 5 date_and_time_val.

 10 date_val PIC X(8).

 10 time_val PIC X(6).

* First we assign our values to be inserted. This is a simplification;

* It’s likely that you would first collect at least some of this data

* from the user on a web page form or from keyboard input.

 MOVE `‘101101’` TO cust_id.

 MOVE `22345` TO order_nbr.

 MOVE 199.95 TO order_val.

 MOVE 12.90 TO tax_val.

 MOVE 1226 TO salesperson_nbr.

 ACCEPT date_val FROM DATE.

 ACCEPT time_val FROM TIME.

 MOVE order_info TO order_rec.

 OPEN `order.dat` FOR WRITING DELIMITED WITH `,`.

 WRITE order_rec TO `order.dat`.

 CLOSE `order.dat`.

Page 60 CobolScript® Developer’s Guide

 CALL `sqlins configfile.txt order.dat >loadinfo.txt`.

 DISPLAYASCIIFILE `loadinfo.txt`.

 STOP RUN.

Most batch loading utilities take a configuration file input and produce one or several file outputs.
Normally, the configuration file names all the other files involved, such as the input data file, the
output information file, and an output ‘bad’ record file that contains all data records that were not
successfully inserted in the. In the CALL statement above, however, we include the order.dat and
loadinfo.txt files to enhance your understanding of this operation, since we don’t provide a
configuration file example.

Consult your load utility’s documentation for information on how to construct the load
configuration file.

Updates
Database updates are perhaps the most code-intensive operations to perform using CobolScript.
The technique we employ to do updates uses portions of both our dynamic select and our insert
operation techniques.

We’ll use the following update statement as our starting point:

UPDATE order_table

SET customer_name = $customer_name_var

 ,order_val = $order_val_var

 ,salesperson_nbr = $salesperson_nbr_var

 ,update_timestamp = TO_DATE(‘DDMMYYYYhh24miss’, $date_and_time_val)

WHERE customer_id = $customer_id_var

AND order_number = $order_number_var

As was the case in our dynamic select example, the fields that are preceded by a $ sign are passed in
to the update statement as shell script variable values. This time, however, we’ll use an interim file to
transfer these variables from the CobolScript program to the shell script, rather than pass all of these
variables as parameters to the shell script.

The new shell script will extract all of our relevant variables from a data file that we generated in
CobolScript. Since we’re looking at the shell script before we examine our CobolScript program,
assume for now that the data file update.dat is a comma-delimited file that contains our field data in
a single record, and in the following order:

customer_name_var,order_val_var,salesperson_nbr_var,date_and_time_val,customer_id_var,order_number_var

The shell script is below. Note that we’ve chosen to use the Unix cut command to extract our
CobolScript variable values from update.dat. Consult your man pages for an explanation of this
command:

#!/bin/ksh

customer_name_var=`cut –f 1 –d ‘,’ update.dat`

order_val_var=`cut –f 2 –d ‘,’ update.dat`

salesperson_nbr_var=`cut –f 3 –d ‘,’ update.dat`

date_and_time_val=`cut –f 4 –d ‘,’ update.dat`

CobolScript® Developer’s Guide Page 61

customer_id_var=`cut –f 5 –d ‘,’ update.dat`

order_number_var=`cut –f 6 –d ‘,’ update.dat`

sqllogin ‘userid/passwd’ <<EOF >updateresult.dat

 SET HEADING OFF

 SET ECHO OFF

 SET BREAK OFF

 WHENEVER SQLERROR pkg_output.screen_write(‘Database error’|SQLERROR)

 UPDATE order_table

 SET customer_name = $customer_name_var

 ,order_val = $order_val_var

 ,salesperson_nbr = $salesperson_nbr_var

 ,update_timestamp = TO_DATE(‘DDMMYYYYhh24miss’,

 $date_and_time_val)

 WHERE customer_id = $customer_id_var

 AND order_number = $order_number_var

 EOF

And here’s our CobolScript code to call the above shell script. Assume that the shell script is named
update.sh and is located in the working directory of the CobolScript program:

 FD `update.dat` RECORD IS 59 BYTES.

 1 order_rec.

 5 customer_name_var PIC X(10).

 5 order_val_var PIC 99999.99.

 5 salesperson_nbr_var PIC 9(5).

 5 date_and_time_val PIC X(14).

 5 customer_id_var PIC X(10).

 5 order_number_var PIC 9(6).

 1 order_info.

 5 customer_name_var PIC X(10).

 5 order_val_var PIC 99999.99.

 5 salesperson_nbr_var PIC 9(5).

 5 date_and_time_val.

 10 date_val PIC X(8).

 10 time_val PIC X(6).

 5 customer_id_var PIC X(10).

 5 order_number_var PIC 9(6).

* First we assign our values to be updated. This is a simplification;

* It’s likely that you would first collect at least some of this data

* from the user on a web page form or from keyboard input.

 MOVE `Larry Melman` TO customer_name_var.

 MOVE 199.95 TO order_val_var.

 MOVE 1226 TO salesperson_nbr_var.

 ACCEPT date_val FROM DATE.

 ACCEPT time_val FROM TIME.

 MOVE `‘101101’` TO customer_id_var.

 MOVE `22345` TO order_number_var.

Page 62 CobolScript® Developer’s Guide

 MOVE order_info TO order_rec

 OPEN `update.dat` FOR WRITING DELIMITED WITH `,`.

 WRITE order_rec TO `update.dat`.

 CLOSE `update.dat`.

* Since all of our variables were written to a file to be used by the

* shell script, we don’t pass any parameters to the shell script when

* we call it.

 CALL `update.sh>error.txt`.

 OPEN `error.txt` FOR READING.

 READ `error.txt` INTO error_rec AT END MOVE 1 TO eof.

 CLOSE `error.txt`.

 MOVE 0 TO eof.

 IF error_rec(1:14) = `Database error` THEN

 DISPLAY error_rec

 ELSE

 DISPLAYASCIIFILE `updateresult.dat`.

 END-IF.

 STOP RUN.

Although the code for the update technique is a bit more involved than the code for our select and
insert techniques (primarily because we use a data file interface with the shell script in the update,
rather than passing parameters to the script), it’s still relatively straightforward. Of course, if you
don’t exceed the shell script parameter limit, an update script can still be called using parameters, just
like the dynamic select example.

CobolScript® Developer’s Guide Page 63

Building Web-Based Systems
his chapter will describe techniques that can be used for building web-based systems with
CobolScript. Since CobolScript is an interpreted language, it lends itself well to the
debugging and tweaking that are often necessary when outputting HTML documents.
You’ll find that it’s very easy to write small pieces of CobolScript code and then run and re-

run the code in your web browser to see if you get the desired results. CobolScript also has syntax
specifically designed to simplify and quicken the development of web systems, such as the ACCEPT
DATA FROM WEBPAGE statement, the GETENV command, and the GETWEBPAGE
command, all of which are described in this chapter.

If you’re still confused about why you need a language other than HTML to create web pages, the
answer is that you don’t, if all that you’re interested in doing is displaying static web pages. However,
if you want your site visitors to interact with your web pages in any way; if you want to display or not
display certain HTML based on conditions; or if you want to build a web-based system, then a
programming language like CobolScript, not just a markup language like HTML, is required.
Furthermore, as you become more familiar with web programming., you will discover that using a
web server and standard browsers to run CobolScript web-based systems that are internal to your
organization (intranets) can be an efficient and economical alternative to systems that have a client-
side component that must be individually installed and managed on each user’s machine.

CobolScript normally communicates with a web server through CGI (the Common Gateway
Interface). The Common Gateway Interface is a type of protocol; it defines a method of interaction
between the web server and external programs, which are normally run by the web server in only
two situations:

• When a form on an active web page is submitted;
• When a URL that calls a program (as opposed to a URL that calls a static web page) is typed

into the Location: text box, or its equivalent, in a browser.

When data from a web page is sent to a CobolScript program, the data is encoded in accordance
with the CGI protocol. The CobolScript engine can automatically decode this data stream when it
has been submitted via the Post method and place each field of data in a corresponding CobolScript
variable. This makes CobolScript a very easy programming language to use for web and internet
development. Instead of building interfaces to web servers, you can focus your programming efforts
on the business logic that belongs in your code.

To run the program examples in this chapter, or to run any CobolScript web programs, for that
matter, you must have access to a web server. You must also have installed the CobolScript engine

Chapter

5
T

I C O N K E Y

 Important point

Page 64 CobolScript® Developer’s Guide

on the same machine as your web server software, ideally in the web server’s cgi-bin directory. If
you have installed the CobolScript engine on your PC, you can install web server software on your
PC as well, which will allow you to test your web development code without uploading it to a
different machine. By using a web server on your own PC, you won’t even need an internet or
network connection to run your code. The Apache web server and derivatives work well for Unix
platforms, and OmniHTTPd is a good web server for Windows. Both are free. For further
information on how to install CobolScript for use with a web server, see the Installing CobolScript
section of Chapter 1, Introduction to CobolScript/Installation Instructions. Refer to the section Running
CobolScript from a Web Server and Browser in Chapter 2, Getting Started with CobolScript, for
general information on steps you must take for your programs to be capable of being run from a
browser.

Interacting with a Web Server and Web Browser
Figure 5.1 provides a (simplified) representation of the normal methods by which CobolScript
interacts with a web server and browsers. The browser sends data to the server when a CGI form is
submitted or a free-text URL calling a program is completed, and this information is then passed
directly from the server to CobolScript. The CobolScript engine interprets the inputs and makes
them available to your CobolScript program. Your program then creates custom web page content,
either based on the browser inputs or other information, and delivers this content back to the
browser (actually, this delivery is done via the web server, but this interaction is excluded from the
diagram for the sake of clarity) in the form of virtual HTML. Virtual HTML differs from static

Web Server

Web Browser

Virtual HTML
Document

CobolScript
program

CobolScript Program-Calling Events

CGI form embedded
in HTML web page

is submitted

Free text typed into
URL, Enter key

pressed

Program Inputs
from Browser

P
ro

g
ra

m
 O

u
tp

u
t

Browser Program Inputs

Figure 5.1 – A representation of CobolScript program interactions with a web browser and web server.

CobolScript® Developer’s Guide Page 65

HTML in that virtual HTML is HTML code that has been output by a program, while static HTML
resides in an independent HTML file. There is no syntactical difference between the two.

Creating Virtual HTML
Creating a virtual HTML document is simply a matter of displaying valid HTML to standard output.
The example program below, which we’ll call hello1.cbl, is very simple CobolScript code that will do
just this, without any conditions or input processing.

To run the example, first place it in your web server’s cgi-bin directory. Then, if you are running
your browser and your web server on the same machine, and 127.0.0.1 is your web server’s loopback
address (the IP address that a machine typically uses to refer to itself), execute the program by typing
http://127.0.0.1/cgi-bin/cobolscript.exe?hello1.cbl in your browser’s URL window. If your web
server is on a different machine than your browser but you know your server IP address, just
substitute that address for 127.0.0.1.

You can also run this program from a command line by simply typing the following at the command
prompt:

cobolscript.exe hello1.cbl

This will display the raw HTML output to your command line screen.

Here’s the hello1.cbl code:

DISPLAY `Content-type: text/html `.
DISPLAY LINEFEED.

DISPLAY `<HTML><BODY>`.

DISPLAY `<CENTER>Hello World</CENTER>`.

DISPLAY `</BODY></HTML>`.

GOBACK.

You can see that the first text we display is the MIME header, which is this exact literal:

`Content-type: text/html`

This is followed immediately by the display of a LINEFEED character. Displaying a MIME header,
followed by a linefeed, indicates to the web server that the program output that will follow the
header will be a certain MIME type of input. In this case (and in the vast majority of your CGI
programming), the MIME type is text/html, which means that we intend to output HTML content.
The web server will recognize this MIME type and pass the remainder of our output on to the
browser as HTML.

It’s very important to remember to display the correct MIME header, followed by a line with only a
linefeed, in the beginning of your CobolScript CGI programs. Failing to do this may prevent
anything at all from displaying in your browser when you attempt to run your programs; depending
on how your web server is configured, you may or may not get an appropriate error message in your
browser window.

http://127.0.0.1/cgi-bin/cobol.exe?hello.cbl

Page 66 CobolScript® Developer’s Guide

After the program has displayed all of the HTML (which is then transferred by the web server to the
browser), it executes the GOBACK command to terminate processing, and your browser window
will have the phrase “Hello World” in it.

Creating an HTML Form
If you want to create a web page that will allow your users to enter data, the simplest way to do this
is by using an HTML form. Forms allow you to create text boxes, text areas, list boxes, check boxes,
and radio buttons to collect data, reset buttons to clear data entries, and submit buttons to submit
the data to a receiving program. See Chapter 7 for a detailed discussion on how to use each of the
form components in programs.

The FORM tag, along with its end tag, are used to demarcate the form, which is essentially a data
input area inside an HTML document. Every form has an associated action; this action is specified
in the ACTION component of the FORM tag. The ACTION argument is an URL that names a
CGI program that will be executed when the browser user submits the form. In the case of the
program below, which we’ll name hello2.cbl, the action is /cgi-bin/cobolscript.exe?hello2.cbl. In
this example, when you submit the form on your web browser, it will run the hello2.cbl program
again. Of course, since incoming data is not processed by this program, the data typed in the text
box is lost after the form is submitted.

Here’s the code for hello2.cbl:

DISPLAY `Content-type: text/html`.

DISPLAY LINEFEED.

DISPLAY `<HTML><BODY>`.

DISPLAY `<CENTER>Hello World</CENTER>`.

DISPLAY `<FORM ACTION=”/cgi-bin/cobolscript.exe?hello2.cbl” `

 & `METHOD=POST>`.

DISPLAY `<INPUT TYPE=TEXT NAME=”my_variable”>`.

DISPLAY `<INPUT TYPE=SUBMIT VALUE=”Click here to Submit”>`.

DISPLAY `</FORM>`.

DISPLAY `</BODY></HTML>`.

GOBACK.

The program above uses a simple text box (created by INPUT TYPE=TEXT) to collect
information. You’ll notice that the text box has a NAME argument associated with it, and that the
name is my_variable; this is the CGI field name. The CGI field name is the name of a CGI variable
that will hold the contents of the text box when the form is submitted from the web page.

Capturing Input Data from a Web Page
At this point, you’re probably wondering how the data from the CGI variable gets into a variable in a
CobolScript program. In CobolScript, when your program needs to get form data from a web page,
you just use a special form of the ACCEPT statement called ACCEPT DATA FROM WEBPAGE.
Here’s an example:

CobolScript® Developer’s Guide Page 67

ACCEPT DATA FROM WEBPAGE.

This command will get the CGI data that was submitted, parse it, decode it, and place the contents
in CobolScript variables that have the same names as the incoming CGI variables.

To accept data from a CGI form into a CobolScript program, you must define variables to capture
the contents of the incoming CGI variables. The CobolScript variables must have the same names
as the CGI variables. The program in this section, which we’ll call hello3.cbl, accepts a CGI variable
called “my_variable” into a like-named CobolScript 40 byte alphanumeric variable that we’ll define
here:

1 my_variable PIC X(40).

1 content_length PIC 9(05).

If you look at our hello3.cbl code segment below, you’ll notice that we use the GETENV command
before we accept the CGI data from the web page. This command gets the value of the web server
environment variable that is specified as the GETENV argument and places its contents into a
CobolScript variable. The environmental variable CONTENT_LENGTH holds the CGI query
string’s actual length. The query string is the raw data stream that the POST method uses to send
data to a target program, so if this the length of this string is greater than zero, we know that there is
data to accept. It’s good practice to get the value of CONTENT_LENGTH at the beginning of
your CobolScript program, because by doing this, you know whether or not there is CGI data
waiting for you to process. If the value of CONTENT_LENGTH is zero, then you know that the
user is simply running your web based application for the first time and has not submitted a form on
it. If CONTENT_LENGTH is greater than zero, then you know that the user has submitted a
form from your application.

The ACCEPT DATA FROM WEBPAGE command handles all of the parsing of the POST
method-submitted data internally, so you don’t have to worry about decoding the CGI data passed
to the web server.

Here’s the rest of the code for hello3.cbl:

GETENV USING `CONTENT_LENGTH` content_length.

IF content_length > 0

 ACCEPT DATA FROM WEBPAGE

END-IF.

DISPLAY `Content-type: text/html`.

DISPLAY LINEFEED.

DISPLAY `<HTML><BODY>`.

DISPLAY `<CENTER>Hello World</CENTER>`.

DISPLAY `my_variable: ` & my_variable.

DISPLAYLF `<FORM ACTION=”/cgi-bin/cobolscript.exe?hello3.cbl” `

 & `METHOD=”POST”>`

DISPLAY `<INPUT TYPE=”TEXT” NAME=”my_variable” VALUE=”`

 & my_variable & `”>`.

DISPLAYLF `<INPUT TYPE=”SUBMIT” VALUE=”Click here to Submit”>`

DISPLAYLF `</FORM>`.

DISPLAY `</BODY></HTML>`.

Page 68 CobolScript® Developer’s Guide

Again, if CONTENT-LENGTH is greater than zero, there is CGI data waiting to be accepted, and
therefore the ACCEPT DATA FROM WEBPAGE statement should be executed. This statement
will look at the CGI data stream being sent from the web server, decode it, and match the CGI form
variable names with CobolScript variable names. That is why both the CobolScript variable and the
form field are named my_variable. Because these two names correspond, the data associated with
the form field my_variable will be moved to the contents of the CobolScript variable my_variable. All
decoding and parsing of the CGI data stream is performed automatically.

Important note: The maximum elementary variable size in CobolScript is 2,000 bytes. If you happen
to have an individual CGI field that has contents greater than 2,000 bytes, only the first 2,000 bytes
of data will be stored in any target CobolScript variable that is an elementary data item. The rest will
be truncated.

DISPLAY and DISPLAYLF
The DISPLAY and DISPLAYLF commands differ most significantly in the way they handle group
items. This has special relevance in the context of CGI development, since you may or may not
want your HTML output to have line breaks in it that makes it more readable. The differences in
the two are:

• The DISPLAY command will print a literal or the contents of any variable to standard
output. After all of the arguments to DISPLAY have been displayed, a linefeed character
displays, terminating the output. In the case of a group-level data item DISPLAY, all
individual components of the group item will print on the same line.

• The DISPLAYLF command will print a literal or the contents of a variable to standard
output, followed by an ASCII line feed character between each individual component of a
group-level data item, or each individual argument, if multiple arguments are specified. After
all of the arguments have been displayed, another linefeed character is displayed to complete
the output.

Let’s take a look at how DISPLAY and DISPLAYLF each display the following group-level data
item. Note the use of the Implied PIC X(n) FILLER variables (explained in the Variables section
of Chapter 3):

1 form_var.

 5 `<FORM ACTION=cobolscript.exe?test.cbl METHOD=POST>`.

 5 `<INPUT TYPE=TEXT NAME=field1>`.

 5 `<INPUT TYPE=SUBMIT VALUE=Submit>`.

 5 `</FORM>`.

The statement DISPLAY form_var will produce the following output (all on a single line):

<FORM ACTION=cobolscript.exe?test.cbl METHOD=POST><INPUT TYPE=TEXT NAME=field1><INPUT TYPE=SUBMIT VALUE=Submit></FORM>

CobolScript® Developer’s Guide Page 69

The statement DISPLAYLF form_var will produce the following output:

<FORM ACTION=cobolscript.exe?test.cbl METHOD=POST>

<INPUT TYPE=TEXT NAME=field1>

<INPUT TYPE=SUBMIT VALUE=Submit>

</FORM>

Retrieving Web Pages
If you ever need to build an application that retrieves web pages, you can use the GETWEBPAGE
command. It connects to a web server, retrieves a given web page, and saves it to a user-specified
file.

The program below called WEB.CBL demonstrates the usage of the GETWEBPAGE command.
It utilizes a standard data structure called TCPIP-RETURN-CODES. This group level data item
will be populated with information from the specific web server you are accessing. TCPIP-
RETURN-CODE is a number, while TCPIP-RETURN-MESSAGE is a string. Typically a
successful return code for this operation will be zero, and the return message will contain a string
describing the number of bytes received for a particular web document.

Here’s a portion of the code for WEB.CBL:

1 TCPIP-RETURN-CODES.

 5 TCPIP-RETURN-CODE PIC 9(07).

 5 TCPIP-RETURN-MESSAGE PIC X(255).

MOVE `www.deskware.com` TO host_name.

MOVE `/cobol/cobol.htm` TO web_page_name.

MOVE `web.txt` TO file_name.

DISPLAY `<` host_name `>`.

DISPLAY `<` web_page_name `>`.

DISPLAY `<` file_name `>`.

GETWEBPAGE USING host_name web_page_name file_name.

DISPLAY `TCPIP-RETURN-CODES: ` TCPIP-RETURN-CODES.

GOBACK.

The host name in this example is a fully qualified domain name – www.deskware.com. It is also
acceptable to specify a raw IP address as the host name argument. The file name argument is used
to create a file with the HTML that you are retrieving. The named file is overwritten each time the
GETWEBPAGE command is executed.

Page 70 CobolScript® Developer’s Guide

CobolScript® Developer’s Guide Page 71

Network and Internet
Programming Using CobolScript®

hile a combination of static HTML pages and basic CGI programs written in nearly any
programming language can address the on-line requirements of internet information
systems, few languages can satisfactorily address the interface and networking
requirements of internet systems, at least not without compromising platform

independence. With CobolScript, however, you can transfer files, receive and deliver email
messages, and conduct point-to-point communications with other computers, all by using standard
CobolScript commands. Because these commands all use the TCP/IP protocol or extensions such
as FTP, SMTP, and HTTP, cross-platform communication is handled the same way as same-
platform communication.

This chapter provides some basic examples of how to transfer files, send and receive emails, and
program TCP/IP sockets. By learning and expanding on these examples, you will be able to create,
in CobolScript code, the interfaces that your system requires.

Transferring Files using FTP
Sharing files is one of the fundamental motivations for networking computers. FTP (File Transfer
Protocol) is a protocol for transferring files over a TCP/IP network. FTP is an effective way to
share data between heterogeneous network hosts. CobolScript has commands that allow you to
program FTP clients to transfer files to and from FTP servers.

Most computers on the Internet support FTP access. Before you can build a program that will
access files on these FTP servers, however, you will need the following:

• The name of the system on the network that has the files you want to obtain, or on which
you want to place files. In other words, you need to know the fully qualified domain name
or IP address of the host that you want to transfer files from and to.

• A valid user name and password to use on the remote computer. Many remote computers
will allow anonymous ftp, which allows you restricted FTP access by using the user name
anonymous and your email address as the password.

FTP is extremely useful for transmitting data rapidly between sites that need to share information
system data. Using FTP eliminates many usual considerations when transferring files. By using FTP:

Chapter

6
W

I C O N K E Y

 Important point

Page 72 CobolScript® Developer’s Guide

• You won’t need to worry about requiring both hosts to use the same types of disks or tapes
to transfer files;

• You won’t have to break up a file into several smaller files because the larger file won’t fit on
a single disk or as an email attachment.

CobolScript programs that transfer files using FTP commands can be scheduled to run at regular
time intervals. This is allows you to have unattended file transfers between hosts.

When you try to connect to a remote computer using FTP, you will need to supply a valid user name
and password. The CobolScript command FTPCONNECT is the command you should use to
login to an FTP server. Here’s an example:

MOVE `deskware.com` TO host_name.

MOVE `anonymous` TO user.

MOVE `interpreter@deskware.com` TO password.

FTPCONNECT USING host_name user password.

After you have connected to an FTP server, you should set the transfer type. This is done with the
FTPASCII or FTPBINARY commands. If you will be transferring plain ASCII text files, you
should use FTPASCII. By doing this, the server knows to convert the files to an ASCII format that
your client computer can read. This is important because ASCII files on Windows machines are line
terminated with carriage return and line feed ASCII characters, and on Unix-based machines, ASCII
files are line terminated with only line feed characters. If you are connecting to a mainframe, text
files are stored in EBCDIC format. Using the FTPASCII command before you transfer text files
will ensure that you receive them in the ASCII format that is native to your client machine. Using
the FTPASCII command is as simple as the following statement:

FTPASCII.

If you need to transfer binary data such as word processing documents or spreadsheet files, you
should use the FTPBINARY command before transmitting files. This ensures that no ASCII
translation is performed on your file during the transfer.

Another useful command is FTPCD. It allows you to change the directory on the FTP server that
you are connecting to. Here’s an example:

FTPCD USING `\ftp\data\interfaces`.

You should make sure that you use the correct directory naming structure for the FTP host that you
are connecting to. The above example is a directory name on a Unix based host. If it were a
Windows based server, you might use something like `C:\datafiles\output`, or on a mainframe you
might use `’idy2v.data.acct’`.

The FTPGET and FTPPUT commands actually perform the file transfer operations. You should
use FTPGET to get a file from an FTP server, and FTPPUT to send a file to an FTP server. Here
are examples of these commands in complete statements:

CobolScript® Developer’s Guide Page 73

FTPGET USING `order.dat`.

DISPLAY `FTPGET TCPIP-RETURN-CODES: ` & TCPIP-RETURN-CODES.

FTPPUT USING `order.dat`.

DISPLAY `FTPPUT TCPIP-RETURN-CODES: ` & TCPIP-RETURN-CODES.

Using Email Commands
Although you may never have thought of email as a system interfacing tool, this is in fact what it is,
because email allows users to send and receive messages from a local machine to recipients on
destination hosts, regardless of platform. Even if the email message is only textual, and is only meant
to be read by the recipient and not cause any direct system action, the delivery and receipt of the
email constitute a system interface.

A standard email message without attachments is simply a text file, made up of header lines that tell
an email server how to deliver the message, and of the message content.

SMTP is an acronym for Simple Mail Transfer Protocol and POP3 for Post Office Protocol 3; they
are the standard TCP/IP protocols for sending email and receiving email, respectively. CobolScript
uses these protocols in its email commands, which enable the sending and receiving of simple email
messages.

To use CobolScript to build programs that send email messages, you will need access to an SMTP
server. Once you have this, you can use the CobolScript SENDMAIL command to send email.
Here’s an example:

COPY `tcpip.cpy`.

1 to_addresses.

 5 `<nobody1@ttttt.com>`.

 5 `Nobody <nobody2@ttttt.com>`.

 5 `nobody3@ttttt.com`.

1 from_address PIC X(n) VALUE `youremail@yourhost.com`.

1 subject PIC X(n) VALUE `mail.cbl test`.

1 message.

 5 `This is a test message from mail.cbl.`.

 5 FILLER PIC X VALUE LINEFEED.

 5 `Sent from me to you.`.

1 smtp_server PIC X(n) VALUE `yoursmptserver.com`.

SENDMAIL USING to_addresses

 from_address

 subject

 message

 smtp_server.

DISPLAY `TCPIP-RETURN-CODES: ` & TCPIP-RETURN-CODES.

Of course, you would substitute your addresses and message for the above addresses and message.

Page 74 CobolScript® Developer’s Guide

With CobolScript there are two commands for retrieving email messages, GETMAILCOUNT and
GETMAIL. The GETMAILCOUNT command connects to your mail server and determines the
number of messages in your inbox. The GETMAIL command retrieves a copy of a specific email
message and saves its contents to a text file. GETMAIL does not remove the email message from
the server. Here is an example of how to use these commands:

MOVE `youremail@yourhost.com` TO email_address.

MOVE `yourpassword` TO email_password.

MOVE 0 TO email_count.

GETMAILCOUNT USING email_address

 email_password

 email_count

 smtp_server.

DISPLAY `Email count: ` & email_count.

DISPLAY `TCPIP-RETURN-CODES: ` & TCPIP-RETURN-CODES.

MOVE `youremail@yourhost.com` TO email_address.

MOVE `yourpassword` TO email_password.

MOVE 1 TO email_number.

MOVE `mymail.txt` TO email_file_name.

GETMAIL USING email_address

 email_password

 email_number

 email_file_name

 smtp_server.

DISPLAY`TCPIP-RETURN-CODES: ` & TCPIP-RETURN-CODES.

When the GETMAIL command retrieves an email message from a server, it appends the message to
the specified text file. This means that if you want to retrieve a copy of all of your email messages,
you should use GETMAILCOUNT to find out how many messages there are, and then perform a
loop that retrieve each message. If you want each message to be in a separate text file, you should
use a new text file name each time you call GETMAIL.

Important Note: When you are sending emails it is important to use a valid SMTP server. Generally
it works best if your applications send all emails through your SMTP server, and then your SMTP
server delivers the email to the user.

CobolScript® Developer’s Guide Page 75

Using TCP/IP Commands
Several TCP/IP commands are available in CobolScript. They can be used for socket programming
and obtaining DNS information about a host. They are:

• GETHOSTNAME
• GETHOSTBYNAME
• CREATESOCKET
• BINDSOCKET
• LISTENTOSOCKET
• CONNECTTOSOCKET
• ACCEPTFROMSOCKET
• RECEIVESOCKET
• SENDSOCKET
• SHUTDOWNSOCKET
• CLOSESOCKET

DNS Commands
The program below (which is the DNS.CBL sample program) demonstrates how to use the
GETHOSTBYNAME command. You can run this program from your web browser by typing in
the URL http://127.0.0.1/cgi-bin/cobolscript.exe?dns.cbl if you are running CobolScript and a web
server on your local machine.

Both GETHOSTNAME and GETHOSTBYNAME require two special group level data items –
TCPIP-HOSTENT and TCPIP-RETURN-CODES. These data structures are placeholders for
return values that are populated when these commands are executed. The structures must be in your
program in order for it to run properly when you use these commands.

GETHOSTNAME gets the TCP/IP hostname from your local machine and place the name in a
CobolScript variable. The GETHOSTBYNAME is a much more advanced command. It contacts
your DNS (Domain Name Server) and retrieves detailed information about a specified host name. It
retrieves information such as aliases and host addresses associated with a particular domain name.
Try running this example with some domain names like lycos.com or yahoo.com.

Here are the variable definitions for DNS.CBL. Note the two standardized TCP/IP structures that
we mentioned earlier. These would normally just be placed in a copybook by themselves, such as
tcpip.cpy, but we include them here to show their detail:

http://localhost/cgi-bin/cobolscript.exe?dns.cbl

Page 76 CobolScript® Developer’s Guide

* TCP/IP *

* DATA STRUCTURES *

* GETHOSTBYNAME REQUIRES THE DATA *

* STRUCTURE BELOW. DO NOT CHANGE IT.*

 01 TCPIP-HOSTENT.

 05 TCPIP-HOSTENT-HOSTNAME PIC X(255).

 05 TCPIP-HOSTENT-NUM-ALIASES PIC X.

 05 TCPIP-HOSTENT-ALIASES OCCURS 8 TIMES.

 10 TCPIP-HOSTENT-ALIAS PIC X(255).

 05 TCPIP-HOSTENT-ADDRESS-TYPE PIC 9(7).

 05 TCPIP-HOSTENT-ADDRESS-LENGTH PIC 9(7).

 05 TCPIP-HOSTENT-NUM-ADDRESSES PIC X.

 05 TCPIP-HOSTENT-ADDRESSES OCCURS 8 TIMES.

 10 TCPIP-HOSTENT-ADDRESS PIC X(255).

* TCP/IP RETURN CODES DATA STRUCTURE *

* DO NOT CHANGE. *

 01 TCPIP-RETURN-CODES.

 05 TCPIP-RETURN-CODE PIC 9(7).

 05 TCPIP-RETURN-MESSAGE PIC X(255).

* Program-specific variables

 1 content_length PIC 9(05).

 1 web_header_html.

 5 `Content-type: text/html`.

 5 ` `.

 5 `<HTML><BODY>`.

 5 `
`.

 5 `Sample CobolScript DNS Application`.

 5 `

`.

 5 `Enter a Fully Qualified Domain Name or an IP address and then`

 5 ` click on the Resolve button.`.

 5 `<FORM ACTION="/cgi-bin/cobolscript.exe?dns.cbl" METHOD="POST">`.

 5 `<INPUT TYPE="TEXT" NAME="host_name" SIZE=60 VALUE="`.

 5 host_name PIC X(80) VALUE `www.cornell.edu`.

 5 `">`.

 5 `<INPUT TYPE="SUBMIT" VALUE="Resolve">`.

 5 `</FORM>`.

 5 `<HR>`.

1 web_footer_html.

 5 `</BODY></HTML>`.

CobolScript® Developer’s Guide Page 77

Here’s our main paragraph of code for DNS.CBL. Since we’re running this program from a browser,
we first use the GETENV statement to determine whether we have input or not (see Chapter 5) and
the output that we display is HTML:

 MAIN.

 GETENV USING `CONTENT_LENGTH` content_length.

 IF content_length > 0

 ACCEPT DATA FROM WEBPAGE

 END-IF.

 IF host_name = SPACES

 MOVE `www.cornell.edu` TO host_name

 END-IF.

* Populate TCP/IP structure that is defined in included copybook.

 GETHOSTBYNAME USING host_name.

 DISPLAYLF web_header_html.

 PERFORM DISPLAY-TCPIP-INFO.

 DISPLAYLF web_footer_html.

 GOBACK.

The code module below displays each of the TCP/IP variables that are populated by the call to
GETHOSTBYNAME, in an HTML table format. We’re excluding most of this module’s code from
here because of its repetitive nature, but the entire code is in the DNS.CBL sample program:

 DISPLAY-TCPIP-INFO.

 1 counter PIC Z9.

 DISPLAY `<TABLE BORDER=1 BGCOLOR="CCCCCC">`.

 DISPLAY `<TR BGCOLOR="lightgreen">`.

 DISPLAY `<TD>host_name:</TD>`.

 DISPLAY `<TD>` & host_name & `</TD>`.

 DISPLAY `</TR>`.

 .

 .

 .

 DISPLAY `</TABLE>`.

TCP/IP Socket Commands
CobolScript has commands for several TCP/IP socket operations. Socket programming is very
similar to file I/O, except socket programming reads from and writes to sockets instead of files. A
socket is an endpoint of communication, created in software, and equivalent to a computer’s network
interface.

Page 78 CobolScript® Developer’s Guide

We have provided two sample programs that, when combined, demonstrate the use of socket
operations – the first program is a socket server, and the second is its client. The server program
should first be run from one command prompt window, and then the client program run from
another . After they have both started, you can type a string in the client window that will be sent via
TCP/IP to the server. This example can easily be modified to communicate with clients and servers
on different platforms simply by changing the IP address (host name) parameters.

The server program (the sample program SERV.CBL) requires the same set of TCP/IP data
structures that we defined in the previously discussed DNS.CBL program, as well the following user-
defined variables:

1 host_name PIC X(80).

1 socket_num PIC 9(2).

1 connected_socket_num PIC 9(2).

1 port_num PIC 9(5).

1 backlog_num PIC 9(2).

1 string_var PIC X(10).

1 receive_string PIC X(20).

1 send_string PIC X(20).

Here’s the main code. Note the order of the socket server commands (CREATESOCKET,
BINDSOCKET, LISTENTOSOCKET), which is necessary set-up for the socket before a
connection can be accepted using ACCEPTFROMSOCKET:

**

* This program requires that you have TCP/IP running

* on your machine.

**

 MAIN.

 GETHOSTNAME USING host_name.

 DISPLAY `Starting Deskware Server on ` & host_name.

 MOVE 1 TO socket_num.

 MOVE 2 TO connected_socket_num.

 CREATESOCKET USING socket_num.

 DISPLAY `CREATESOCKET return code = <` & TCPIP-RETURN-CODE & `>`.

 MOVE 2500 TO port_num.

 BINDSOCKET USING socket_num port_num.

 DISPLAY `BINDSOCKET return code = <` & TCPIP-RETURN-CODE & `>`.

 MOVE 1 TO backlog_num.

 LISTENTOSOCKET USING socket_num backlog_num.

 DISPLAY `LISTENTOSOCKET return code = <` & TCPIP-RETURN-CODE & `>`.

 DISPLAY `Waiting to accept socket connection on port ` & port_num

 & `...`.

 ACCEPTFROMSOCKET USING socket_num connected_socket_num.

 DISPLAY `ACCEPTFROMSOCKET return code = <` & TCPIP-RETURN-CODE

 & `>`.

CobolScript® Developer’s Guide Page 79

 MOVE SPACES TO receive_string.

 PERFORM ACCEPT-TCPIP-CONNECTIONS UNTIL receive_string(1:4) = `STOP`.

 DISPLAY `Shutting down Deskware Server`.

 SHUTDOWNSOCKET USING connected_socket_num 1.

 CLOSESOCKET USING connected_socket_num.

 SHUTDOWNSOCKET USING socket_num 1.

 CLOSESOCKET USING socket_num.

 GOBACK.

 ACCEPT-TCPIP-CONNECTIONS.

 MOVE SPACES TO receive_string.

 RECEIVESOCKET USING connected_socket_num receive_string.

 DISPLAY `TCP/IP return code = <` & TCPIP-RETURN-CODE & `>`.

 DISPLAY `TCP/IP return message = <` & TCPIP-RETURN-MESSAGE & `>`.

 DISPLAY `This was received: ` & receive_string.

 MOVE `GOT IT` TO send_string.

 SENDSOCKET USING connected_socket_num send_string.

 DISPLAY `TCP/IP return code = <` & TCPIP-RETURN-CODE & `>`.

 DISPLAY `TCP/IP return message = <` & TCPIP-RETURN-MESSAGE & `>`.

 DISPLAY `This was sent: ` & send_string.

The client program (the sample program CLIENT.CBL) requires the same set of TCP/IP data
structures as defined in DNS.CBL, and also the following user-defined variables:

Figure 6.1 – Command prompt with server program running.

Page 80 CobolScript® Developer’s Guide

1 host_name PIC X(80).

1 socket_num PIC 9(2).

1 connected_socket_num PIC 9(2).

1 port_num PIC Z9999.

1 backlog_num PIC 9(2).

1 string PIC X(10).

1 receive_string PIC X(20).

1 send_string PIC X(20).

1 stop_var PIC 9.

The client code in this example assumes that the client and server programs are running on the same
machine (hence the move of the loopback address to host_name).

Note the interaction points between the previous server program and this client program; the server
uses ACCEPTFROMSOCKET to accept a connection initiated by the client’s
CONNECTTOSOCKET statement. Once the connection is established, the server uses
RECEIVESOCKET to receive the data transmitted from the client using SENDSOCKET. Once
the transmission is complete, they reverse, and the server sends the string `GOT IT` back to the client
as a way to confirm the data transmission. Here’s our client code:

 DISPLAY `Starting Deskware Client (type STOP to exit).`.

 MOVE 1 TO socket_num .

 CREATESOCKET USING socket_num.

 DISPLAY `CREATESOCKET return code = <` & TCPIP-RETURN-CODE & `>`.

 MOVE 2500 TO port_num.

* We are using the loop back IP in this example;

* uncomment the line below and comment out the move

* to actually get the host name

* GETHOSTNAME USING host_name

 MOVE `127.0.0.1` TO host_name.

 DISPLAY `Your hostname is: ` & host_name.

 CONNECTTOSOCKET USING socket_num host_name port_num.

 DISPLAY `CONNECTTOSOCKET return code = <` & TCPIP-RETURN-CODE & `>`.

 DISPLAY TCPIP-RETURN-MESSAGE.

 PERFORM SEND-DATA-TO-SERVER UNTIL stop_var.

 SHUTDOWNSOCKET USING socket_num 1.

 CLOSESOCKET USING socket_num.

 GOBACK.

 SEND-DATA-TO-SERVER.

 ACCEPT send_string FROM KEYBOARD

 PROMPT `Data to send to port 2500: `.

 SENDSOCKET USING socket_num send_string.

 DISPLAY `SENDSOCKET return code = <` & TCPIP-RETURN-CODE & `>`.

 DISPLAY TCPIP-RETURN-MESSAGE.

CobolScript® Developer’s Guide Page 81

 MOVE SPACES TO receive_string.

 RECEIVESOCKET USING socket_num receive_string.

 DISPLAY `RECEIVESOCKET return code = <` & TCPIP-RETURN-CODE & `>`.

 DISPLAY `This was received: <` & receive_string & `>`.

 DISPLAY `RECEIVESOCKET return code = <` & TCPIP-RETURN-CODE & `>`.

 DISPLAY TCPIP-RETURN-MESSAGE.

 IF send_string(1:4) = `STOP` THEN

 MOVE 1 to stop_var

 END-IF.

Figure 6.2 – Command prompt with client programming.

Page 82 CobolScript® Developer’s Guide

CobolScript® Developer’s Guide Page 83

Advanced Internet Programming
Techniques Using CobolScript®

his chapter discusses advanced techniques for processing internet data retrieval using
CobolScript. We also briefly discuss the use of embedded JavaScript in your CobolScript
programs, for handling tasks suited for client-side processing.

Our discussion of CGI data retrieval and processing assumes that the incoming CGI data is always
submitted using the POST method. With the POST method, URL-encoded data is delivered to the
CobolScript program through standard input. The CobolScript engine reads all of this data, decodes
it, and places it in corresponding CobolScript variables.

Also, all code examples assume that you’ve set your file permissions correctly. As mentioned in
earlier chapters, if you’re working in a Unix environment, always make certain that the file
permissions on your CobolScript internet programs allow the CGI user (usually user ‘nobody’) to
execute them.

All of our web and internet code examples also assume that you have not modified your web server
software to make CobolScript your default CGI interpreter. However, making CobolScript the
default CGI interpreter is usually relatively easy, depending on your web server. Doing so will
simplify the URLs you use to call CobolScript programs; instead of calling a program with a URL
such as the following:

http://www.cobolscript.com/cgi-bin/cobolscript.exe?samples.cbl

You would instead use a URL such as:

http://www.cobolscript.com/cgi-bin/samples.cgi

Or, if your web server is flexible enough to allow modification to the CGI program extension, even
this:

http://www.cobolscript.com/cgi-bin/samples.cbl

However, by modifying your web server’s configuration in this manner, you will disable any
interpreted programs already existing on the server that relied on the previous configuration, and that
were written in a different language such as Perl (these programs will be treated as CobolScript

Chapter

7
T

Page 84 CobolScript® Developer’s Guide

programs and will fail to run because they are not valid CobolScript code). Use your own discretion
in making this type of modification; a web system built from scratch, using only CobolScript code, is
an ideal candidate for this kind of configuration change; a web system with existing interpreted code
written in other languages is not. Consult your web server’s documentation for more information on
how to configure the default interpreter path and the default CGI extension.

Environment Variables
Environment variables are system variables that exist within a particular computer user’s
environment. With regard to a web server, the full set of environment variables is recreated each time
a CGI process is executed. You can think of these variables as placeholders that a web server uses to
pass data about an HTTP request from the server to the CGI-processing application, i.e., your
CobolScript program.

With CobolScript, environment variables are accessed with the GETENV command:

GETENV USING <environment variable> <cobolscript variable>.

The names for environment variables are system-specific. Fortunately, most web servers have
adopted many of the same names. Here are a few of the standard ones; experiment with these
variables in the GETENV statement to determine the formats of the contents of each of these
variables:

Environment Variable Description

CONTENT_LENGTH Size of the attached incoming CGI data in bytes (characters).

CONTENT_TYPE The MIME type of the incoming CGI data

PATH_INFO Path to be interpreted by the CGI application.

PATH_TRANSLATED The virtual-to-physical mapping of the file on the system.

QUERY_STRING The URL-encoded string that was submitted to the web server

REMOTE_ADDR The IP address of the agent making the CGI request.

REMOTE_HOST The fully qualified domain name of the requesting agent.

REMOTE_IDENT Data reported about the agents’ connection to the server.

REMOTE_USER The User ID sent by the client agent.

REQUEST_METHOD The request method used by the client. For CobolScript
applications, this should be “POST”.

SCRIPT_NAME The path identifying the CGI application requested.

SERVER_NAME The server name of the requested URL. This will either be the
IP address of the server or the fully qualified domain name.

SERVER_PORT The port where the client request was received by the server.

SERVER_PROTOCOL The name and revision of the request protocol.

CobolScript® Developer’s Guide Page 85

Environment Variable Description

SERVER_SOFTWARE The name and version of the server software. For example:
“OmniHTTPd/1.01 (Win32; I386)”

Some web servers do not support all of these environment variables. You should consult your web
server documentation to find out what environment variables are supported by your specific web
server.

All normal web servers support the CONTENT_LENGTH environment variable. Because of this,
we recommend getting this variable when your CobolScript application is first invoked via a web
server, like this:

GETENV USING `CONTENT_LENGTH` content_length.

IF content_length > 0

 ACCEPT DATA FROM WEBPAGE

END-IF.

By doing this, you will know if a form was submitted to your application or not. If your application
was called directly from a typed URL, outside of a form submission, the value of
CONTENT_LENGTH would be 0 and you would not need to accept CGI data from the web
server. Normally, when the ACCEPT DATA FROM WEBPAGE statement is executed,
CobolScript will begin reading data from the CGI stream and place the contents in the appropriate
CobolScript variables. Of course, it’s not necessary to do this if no CGI data has been sent to the
web server.

Sometimes, web servers are configured to not populate certain environment variables such as
REMOTE_HOST. This is often done because there is a time cost in resolving the IP addresses of
each client as it makes a request. However, you can still resolve these IP addresses by using the
GETHOSTBYNAME command. Simply get the REMOTE_ADDR environment variable that
contains the IP address of the client, and use this as the argument to GETHOSTBYNAME:

GETENV USING `REMOTE_ADDR` download_ip.

GETHOSTBYNAME USING download_ip.

MOVE TCPIP-HOSTENT-HOSTNAME TO download_host.

The GETHOSTBYNAME command will resolve the IP address to its fully qualified domain name,
and the result will be placed in the TCPIP-HOSTENT-HOSTNAME variable. If the DNS server
cannot resolve the IP address, the TCPIP-HOSTENT-HOSTNAME will be spaces. Also, for
completeness, the TCP/IP return code values should always be examined after executing
GETHOSTBYNAME to determine whether the command executed successfully or not.

Page 86 CobolScript® Developer’s Guide

CGI Form Components
As we saw in Chapter 5, the ACCEPT DATA FROM WEBPAGE statement can capture HTML
form data. This data capture can be done from all of the possible submitting form components – text
boxes, multi-line text boxes, list boxes, drop down list boxes, radio buttons, check boxes, and submit
buttons. In this section, we describe how to process input from each of these components. The
example program input.cbl illustrates the data capture for each of these components (except submit
buttons). This sample program can be found in the sample programs included with CobolScript.
The first screen of this sample program is shown in Figure 7.1.

All of the HTML form control tags that we discuss in this section have a common attribute called
NAME. This attribute is of the form:

NAME=variable_name

Or, alternatively (quotes can be included or excluded from tag attribute values; they must be included,
however, when spaces exist in the attribute’s value):

NAME=“variable_name”

Figure 7.1 – Input.cbl sample program, as seen from Netscape browser.

CobolScript® Developer’s Guide Page 87

where variable_name is the name of the CGI variable that will be passed to the receiving program
when the form is submitted. The receiving CobolScript program, specified in the ACTION attribute
of the FORM tag, must define a variable for each submitted form control with a NAME attribute in
order for the ACCEPT DATA FROM WEBPAGE statement to work correctly.

Text Box Input
Text boxes are created with the <INPUT TYPE=TEXT… > tag. For instance, if our source CGI
form submits a text input named field1, defined here:

<FORM ACTION=”/cgi-bin/cobolscript.exe?receive.cbl”>

<INPUT TYPE=TEXT NAME=field1>

<INPUT TYPE=SUBMIT>

</FORM>

Then, our receiving CobolScript program (which will be named receive.cbl, according to the
ACTION attribute of the FORM tag above) must define a variable named field1:

1 field1 PIC X(20).

In the example program input.cbl, a text box named field1 is displayed to a web browser when the
program is run. When the form is submitted from the web browser, the CobolScript program will get
any data in the text box and place it in a CobolScript variable named field1.

Text boxes can also have preassigned values through the use of the VALUE attribute. In a more
complex example than the one above, a CobolScript program we’ll call recurse.cbl, that both displays
a form and calls itself after accepting submitted input from the form, could have some code like the
following:

DISPLAY `<INPUT TYPE=TEXT NAME=field1 VALUE=”`.

IF field1 NOT = SPACES

 DISPLAY field1

END-IF.

DISPLAY `”>`.

DISPLAY `

`.

DISPLAY `<INPUT TYPE=SUBMIT>`.

DISPLAY `</FORM>`.

In this case, the text box’s VALUE will be assigned “” (a null value) if field1 is blank (all spaces);
otherwise it will be assigned the value of the CobolScript variable field1.

Text Area Input
Text area controls are created with the <TEXTAREA … > tag:

<TEXTAREA NAME=”field2” COLS=20 ROWS=2>

</TEXTAREA>

Our receiving CobolScript program must, in this case, define a variable named field2:

1 field2 PIC X(40).

Page 88 CobolScript® Developer’s Guide

In the example program input.cbl, a text area with the name field2 is displayed to the web browser
when the program is run. When the form is submitted from the web browser, the CobolScript
program will get any data in the text area and place it in a CobolScript variable named field2. Special
characters like carriage returns and line feeds will be translated into HTML special characters such as
 and
 This is useful when you need to save the contents of a TEXTAREA to a file
and later redisplay them in a web browser. The breaks and tabs will be preserved when you redisplay
the HTML.

Because text areas can be large, and CobolScript variables are fixed width, you may find that you want
a way to display only the initial populated portion of the text area input. HTML tends to ignore extra
spaces, so it’s not usually necessary to eliminate trailing spaces, but you may find it useful when
working inside dynamically-sized HTML tables, since trailing spaces are taken into account when
table elements are sized. The routine below accomplishes this with a PERFORM..VARYING loop
and the use of positional string referencing:

PERFORM VARYING space_location FROM 40 BY –1

 UNTIL FIELD2(space_location:1) NOT = SPACE

END-PERFORM.

DISPLAY FIELD2(1:space_location)

List and Dropdown List Boxes
List and dropdown list boxes are displayed with the <SELECT … > tag inside an HTML form, like
this:

<SELECT NAME=”field3” SIZE=3>

<OPTION SELECTED>Item1

<OPTION>Item2

<OPTION>Item3

<OPTION>Item4

<OPTION>Item5

<OPTION>Item6

</SELECT>

field4:

<SELECT NAME=”field4”>

<OPTION SELECTED VALUE=Item11>Item 11

<OPTION VALUE=Item22>Item 22

<OPTION VALUE=Item33>Item 33

<OPTION VALUE=Item44>Item 44

<OPTION VALUE=Item55>Item 55

<OPTION VALUE=Item66>Item 66

</SELECT>

To retrieve these CGI fields, our receiving program defines two variables, one for each of the
SELECT tags’ names:

5 field3 PIC X(20).

5 field4 PIC X(20).

CobolScript® Developer’s Guide Page 89

The SELECT tag is relatively straightforward: The value of each option is the text that immediately
follows each OPTION tag, unless a VALUE attribute is specified in the OPTION tag. When an
option is selected and the controlling form submitted, the SELECT variable is assigned the value of
the option that was selected. By using a list box, you can limit the possible inputs that can be
submitted, and therefore more readily direct processing based on these inputs. For instance, we could
control processing based on the value assigned to field4 like this:

IF field4(1:6) = `Item33`

 DISPLAY `Item33 is currently out of stock`

ELSE

 DISPLAY field4 & ` has been ordered for you`

END-IF.

Radio Buttons
Radio buttons are created with the <INPUT TYPE=RADIO … > tag. They allow the selection of a
single option from multiple options; when created properly, only one radio item may be selected from
all radio buttons that have the same NAME value within a particular form. The VALUE tag is useful
because you can put a compressed or numeric value in it and display a different text label in your web
page, like this:

<INPUT TYPE=RADIO NAME=field5 VALUE=111>Item 111

<INPUT TYPE=RADIO NAME=field5 VALUE=222>Item 222

<INPUT TYPE=RADIO NAME=field5 VALUE=333>Item 333

<INPUT TYPE=RADIO NAME=field5 VALUE=444>Item 444

<INPUT TYPE=RADIO NAME=field5 VALUE=555>Item 555

After the form is submitted, ACCEPT DATA FROM WEBPAGE will copy the VALUE of the
radio button to the CobolScript variable with the same name as the buttons, so in this case, the
following CobolScript field definition is required:

5 field5 PIC X(3).

Checkboxes
Checkboxes are created with the <INPUT TYPE=CHECKBOX … > tag. They allow multiple
options to be selected or deselected from a group of options. When the form is submitted, those
items that were checked will have their corresponding CobolScript variables populated with the
VALUE specified for that check box item. Here is some example HTML for checkbox controls:

FIELD6: <INPUT TYPE=CHECKBOX NAME=”field6”
VALUE=”Item1111”>Item1111

FIELD7: <INPUT TYPE=CHECKBOX NAME=”field7”
VALUE=”Item2222”>Item2222

FIELD8: <INPUT TYPE=CHECKBOX NAME=”field8”
VALUE=”Item3333”>Item3333

FIELD9: <INPUT TYPE=CHECKBOX NAME=”field9”
VALUE=”Item4444”>Item4444

FIELD10:<INPUT TYPE=CHECKBOX NAME=”field10”
VALUE=”Item5555”>Item5555

FIELD11:<INPUT TYPE=CHECKBOX NAME=”field11”
VALUE=”Item6666”>Item6666

Page 90 CobolScript® Developer’s Guide

 Each checkbox field must have its own corresponding CobolScript variable, like this:

5 field6 PIC X(20).

5 field7 PIC X(20).

5 field8 PIC X(20).

5 field9 PIC X(20).

5 field10 PIC X(20).

5 field11 PIC X(20).

Using Hidden Fields
Hidden fields are actually just another type of CGI input, but they are special enough to warrant a
section all their own. They are HTML form fields that are not visible in the browser window, but are
still part of the underlying HTML form. They are useful for storing and passing information to the

recipient program, and they can be used to maintain program continuity through a series of
CobolScript-created pages without directly displaying all data to the browser window, and without

Figure 7.2 – Web page with hidden fields in the underlying HTML.

CobolScript® Developer’s Guide Page 91

writing to a temporary file. The sample problem tracking system uses hidden fields in the HTML
forms it displays; figure 7.2 is a capture of the Update screen.

Figure 7.3 shows the HTML source to the screen in 7.2, complete with hidden HTML form fields.
You can see the fields update-record and record-key have a TYPE=“hidden”.

When this form is submitted, the field update-record will pass a value of “T” to the CobolScript variable
update-record. The form field record-key will pass a value of 00000007 to the CobolScript variable record-
key. These fields are hidden on this form because we do not want them to be edited by the user. The
record-key is used to determine which record needs to be updated after the form is submitted. This
program is the Problem Tracking System example application (PRB.CBL) that comes with the sample
programs included with CobolScript.

When you look at the source of the HTML form in Figure 7.3, you will notice that the hidden field
record-key appears on three lines, like this:

Figure 7.3 – HTML form with hidden fields, as seen from Netscape’s source window.

Page 92 CobolScript® Developer’s Guide

<INPUT TYPE=”hidden” NAME=”record-key” VALUE=”

00000007

“>

The HTML is formatted in this way because we used DISPLAYLF to display the group level data
item that contained the HTML. Had we used DISPLAY instead of DISPLAYLF, the entire text
would have appeared on a single line. More on this below.

Here’s a snippet of the CobolScript group item that contains the hidden field record-key. Here we
spread the tag definition across three variables (two of these are implied FILLER variables, but
variables nonetheless). This is a useful technique because it allows you to populate the CobolScript
variable record-key with a value before displaying the group item:

5 `<INPUT TYPE=”hidden” NAME=”record-key” VALUE=”`.

5 record-key PIC 9(08).

5 `”>`.

Sometimes when interfacing with other systems, particularly those written in Perl, the INPUT fields
must be on a single line. In these cases, use DISPLAY than DISPLAYLF to print the relevant group
item so that it prints on one line. At any rate, CobolScript is intelligent enough to process HTML
forms that contain INPUT tags on single or multiple lines, so you won’t encounter this issue unless
you submit CGI data to non-CobolScript programs.

Sending Email from CobolScript Using CGI Form Input
As we discussed in Chapter 6, CobolScript has the capability to send simple emails, and this can easily
be linked with data that has been submitted from a form, in order to create an auto-responder. The
sample program email.cbl is an example of how to do this. The program is in the sample programs
included with CobolScript. Figure 7.4 shows the application screen.

In email.cbl, email is sent using the SENDMAIL statement after fields corresponding to the to-
address, from-address, subject, and message have been accepted from CGI input:

MOVE `yourservername.com` TO smtp_server.

SENDMAIL USING to_address

 from_address

 subject

 message server.

When sending an email with this command, you must be sure to supply a valid SMTP server name,
which is the name of your sending mail server. CobolScript will then use this server to forward the
email to the recipient.

CobolScript® Developer’s Guide Page 93

Using CobolScript to Transmit Files
Within HTML, you can provide links to files that can be downloaded by using the anchor tag (), but if you do this your users will be able to see the location of the file on your server
when they view your HTML source. If you want to hide the location of your files and regulate who
downloads files from your site, you can build a CobolScript program to directly send the file to the
user’s web browser.

Figure 7.4 – The email.cbl sample application as seen in Netscape.

Page 94 CobolScript® Developer’s Guide

CobolScript can be used to send a file to a client web browser. This is accomplished by sending the
appropriate MIME header and then using either the DISPLAYFILE or DISPLAYASCIIFILE
commands, depending on whether the file is binary or ASCII text. The user will be presented with a
“Save As…” dialog box like the one in Figure 7.5, and will be allowed to save the file.

To use DISPLAYFILE or DISPLAYASCIIFILE, you should first build a program that displays a
form that a user will submit when he wants to download a file. Within this form, specify the
CobolScript program that will use the appropriate command to transmit the file. Typically this form
will contain a submit button, and possibly some additional fields that you will use to validate the user,
as in the following:

<FORM ACTION=”/cgi-bin/cobolscript.exe?down.cbl” METHOD=”POST”>

<INPUT TYPE=”hidden” NAME=”user_id” VALUE=”md837653 “>

<INPUT TYPE=”hidden” NAME=”password_id” VALUE=”83fFrR “>

<INPUT TYPE=”hidden” NAME=”file” VALUE=”budgetfile “>

<INPUT TYPE=”Submit” VALUE=”Download”>

</FORM>

When this form is submitted, it will run the program you specify in the ACTION attribute of the
FORM tag (down.cbl in this example). Your program can then accept authentication information
and decide whether to transmit the file to that particular user based on this information. If you
choose to not send the file, you can simply display an error page instead.

After you have validated the authentication information, you can begin transmitting the file to the
user. There are two steps to this process. First, you will need to display a special MIME header. This
mime header is what prompts the user’s web browser to show the “Save As” dialog box. The file
name that you use in your MIME header will be the default file name in the “Save As” dialog box. It
is very important that the file size in your MIME header matches the exact file size of the file you
wish to transmit; in bytes. If it doesn’t, your file will not be transmitted correctly to the user.

Figure 7.5 – The Save As… dialog box.

CobolScript® Developer’s Guide Page 95

After you have displayed the appropriate MIME header, you can use the DISPLAYFILE or
DISPLAYASCIIFILE statement. This will transmit the contents of the file to the client’s web
browser after he selects the “Save” button from the “Save As…” dialog.

Here’s a CobolScript code example with the appropriate MIME header and the DISPLAYFILE
statement (DISPLAYASCIIFILE could be substituted for DISPLAYFILE below if the file to be
transferred is a text file):

MOVE `budget.xls` to xfer_filename

MOVE `octet-stream` to xfer_method

MOVE 420000 TO xfer_filesize

DISPLAY `Content-type: application/` & xfer_method.

DISPLAY `Content-Disposition: inline; filename=` & xfer_filename.

DISPLAY `Content-Description: ` & xfer_filename.

DISPLAY `Content-Length: ` & xfer_filesize.

DISPLAYLF.

DISPLAYFILE download_filename.

By using this technique, you can regulate downloads, and audit which users download your files. You
can also build custom text files that will be sent to your users by displaying a MIME header and then
displaying individual lines, one line at a time. If you do this, make certain that the amount of data you
send matches the Content-Length specified in your MIME header.

Embedding JavaScript in CobolScript Programs
In some cases, you may want to have a portion of your application’s processing take place on the
client machine (the browser’s computer). Client-side processing is useful for tasks like edit
validations, because user feedback can be more real-time, and can be provided to a user prior to his
submitting a form and reconnecting with the web server.

If you want to use client-side processing with CobolScript, we recommend you do it by embedding
JavaScript in the HTML displayed by your CobolScript programs. JavaScript is relatively independent
of browser manufacturer (it works with current versions of both Netscape® and IE®), runs on the
client’s web browser, and is very useful for basic data validation and checking. By embedding
JavaScript-enriched HTML in your CobolScript applications, you can also reduce network traffic
because checks can be performed on the data before it is submitted to the web for processing. If
you’re interested in using JavaScript, a pretty good (and reasonably priced) book for beginners is
JavaScript for the World Wide Web, available from Peachpit Press.

Some situations where you might want to take advantage of JavaScript are those that require form

Figure 7.6 – JavaScript message box.

Page 96 CobolScript® Developer’s Guide

fields to be populated or data validation of numeric and alphabetic fields. Figure 7.6 provides an
example of a message box generated by JavaScript upon a failed data validation.

The JavaScript function that displays this message box is listed below. It is a small function and can
be easily embedded into a CobolScript program that displays HTML to a web browser.

function check_fields(form) {

 if

 (form.first_name.value==””||escape(form.first_name.value).match(“%”)

 != null){

 alert(“You must enter an alphabetic first name.”);

 form.first_name.focus();

 form.first_name.select();

 return false;

 }

}

CobolScript lends itself very well to displaying web pages, primarily because the nature of group-level
data items allows entire HTML code segments to be isolated in your program (or in copybooks) in
simple variable definitions. Because of this, you can create group items comprised of FILLER
variables that contain your JavaScript code, and then just display the group level data item. By doing
this, you can preserve the visual layout of your JavaScript code, and it will be relatively easy to debug
from within your CobolScript program.

Following is an example of a group item named web_page_header that contains our JavaScript code
from above:

1 web_page_header.

 5 `Content-type: text/html`.

 5 FILLER PIC X VALUE LINEFEED.

 5 `<HTML><HEAD><TITLE>Validate</TITLE>`.

 5 FILLER PIC X VALUE LINEFEED.

 5 `<SCRIPT LANGUAGE=”JavaScript”>`.

 5 `<!—Hide script from old browsers`.

 5 ` function check_fields(form) {`.

 5 ` if (form.first_name.value == “”`.

 5 ` || escape(form.first_name.value).match(“%”) !=null){`.

 5 ` alert(“You must enter an alphabetic first name.”);`.

 5 ` form.first_name.focus();`.

 5 ` form.first_name.select();`.

 5 ` return false;`.

 5 ` }`.

 5 ` }`.

 5 ` // End script hiding -->`.

 5 `</SCRIPT>`.

Let’s assume that we saved this variable definition, by itself, as a text file with the name
HEADER.CPY. Then, this header and JavaScript are freely available to any CobolScript program,
and including this file in any CobolScript program’s variable definition is just a matter of using the
COPY or INCLUDE statement to reference the copybook in your program code, like this:

CobolScript® Developer’s Guide Page 97

COPY `HEADER.CPY`.

1 other_stuff PIC 99.

.

.

.

Now, the header data can be displayed with this small piece of code:

DISPLAYLF web_page_header.

When this statement executes, all of the variables that comprise web_page_header above will be
printed to standard output, which in this case means they’ll be sent to the requesting client’s browser
window.

Breaking a web page document into separate group-level data items in this manner can make it very
easy to maintain, and using copybooks to store these items can be a real timesaver when
modifications to the group items have to be made.

Page 98 CobolScript® Developer’s Guide

CobolScript® Developer’s Guide Page 99

Programming Techniques and
Advanced CobolScript® Features

n this chapter, we discuss the technique of modular program design, provide some detailed
information on manipulating CobolScript variables using the MOVE statement, and discuss
some advanced features that make CobolScript a truly unique programming language.

Designing a Modular Program
Modular programming is a way of organizing your program code to make the program easier to
develop, understand, and maintain. A modular program is organized into paragraphs of code called
modules. Modules are broken down into lines of code that perform one function or several closely
related functions.

Modules are defined by paragraph names in the body of your CobolScript program. The names of
your modules must start in column 8 and must be less than 80 characters in length. Your module
names should also be descriptive, meaning, a module name should describe that module’s function.
It is also helpful to put a comment block right immediately before the module name. This should be
a short description that a programmer can easily read in order to understand what the module does,
and how it does it.

A program should be designed in a hierarchical fashion. Splitting a program up into modules
facilitates the partitioning of logic into individual components that are easy to code and maintain. A
program module should be as short as possible to perform a specific function in an independent
manner. A good guideline is that a module should not be longer than one page of code.

To demonstrate the concept of modular programming we will create a program that displays a web
page. The requirements of our programs are as follows:

• Print a header for our web page
• Print the body of our web page
• Print a footer for our web page

Chapter

8
I

I C O N K E Y

 Important point

Page 100 CobolScript® Developer’s Guide

Figure 8.1 – Top-down design.

The requirements of our program can be easily broken down into a hierarchy. The hierarchy for our
program is illustrated in Figure 9.1. This hierarchy can then be transformed into modules. We have
named our modules relative to their function. They are as follows:

• MAIN
• PRINT-HEADER
• PRINT-BODY
• PRINT-FOOTER

MAIN is the main program module. It will call each of the three modules in sequence in order to
display a simple web page with a horizontal rule at the top, the word “Deskware, Inc” formatted and
centered in the page, and a horizontal rule at the bottom of the page.

The PERFORM statement controls the flow of the program. We PERFORM each of the three
modules and then terminate program flow with the GOBACK statement. Below is a partial listing of
our program (the sample program PAGE.CBL):

 MAIN.

 PERFORM PRINT-HEADER.

 PERFORM PRINT-BODY.

 PERFORM PRINT-FOOTER.

 GOBACK.

**

* MODULE: PRINT-HEADER

* Prints header info for the html document.

 PRINT-HEADER.

 DISPLAYLF `Content-type: text/html`.

 DISPLAY LINEFEED.

 DISPLAY `<HTML><BODY>`.

 DISPLAY `<HR>`.

 DISPLAY `

`.

* MODULE: PRINT-BODY

* Prints body of HTML document

 PRINT-BODY.

 1 company_name PIC X(n) VALUE `Deskware, Inc`.

CobolScript® Developer’s Guide Page 101

 DISPLAY `<CENTER>`.

 DISPLAY `` & company_name & ``.

 DISPLAY `</CENTER>`.

* MODULE: PRINT-FOOTER

* Prints trailer info for the HTML document

 PRINT-FOOTER.

 DISPLAY `

`.

 DISPLAY `<HR>`.

 DISPLAY `</BODY></HTML>`.

This program is very simple and is meant only to illustrate modularity. It could have been written by
using only one module instead of four. However, as your programs increase in size and complexity,
modularity becomes increasingly important. Why? Quite simply, most of us aren’t really capable of
conceptualizing the intricate details of very large programs in our minds all at once. For this reason,
dividing your code into modules allows conceptualization at different hierarchical levels, so that you
as well as others will have an easier time creating and maintaining your code. Even when there is not
much code in your program, dividing the logic up into modules can make it more readable. Also,
modular code can easily be broken apart into separate copybook files later, allowing you to reuse
particular pieces of code across programs using the COPY statement.

Manipulating CobolScript Variables

Basic Moves
Basic moves copy data from one variable to another or from a literal to a variable. The value on the
left will be copied to the variable on the right:

MOVE `Deskware` TO name_var.

MOVE compnay_var TO name_var.

Segmented Moves
Segmented moves copy pieces of variables or segments to target variables (also known as a reference
modification). The segmented move uses a variable name, a segment starting position, and length. It
has the form of variable_name(start : length):

MOVE name(1:4) TO new_name.

MOVE `Desk` TO name(5:4).

Segmented moves can only be used on elementary items and are not allowed on group items. You
can accomplish this same type of manipulation by moving a group item to another group item. The
elementary items that are part of the target group item would simply have to have different picture
lengths for each variable.

Page 102 CobolScript® Developer’s Guide

Elementary Item to Group Item Moves
Moving an elementary item to a group item is a great technique for parsing data. For example, if you
have a variable that contains a 12 digit phone number you can parse it easily by moving it to a group
item:

1 input_field PIC X(12).

1 phone_number.

 5 area_code PIC X(03).

 5 FILLER PIC X.

 5 prefix PIC X(03).

 5 FILLER PIC X.

 5 exchange PIC X(03).

MOVE input_field TO phone_number.

After this move has been executed, the three parts of the phone number will be placed in the
variables area_code, prefix, and exchange.

Group Item to Elementary Item Moves
Moving a group item to an elementary item is a good way to build the contents of a variable. For
example, by moving phone_number to input_field we can format a variable:

1 output_field PIC X(12).

1 phone_number.

 5 `(`.

 5 area_code PIC X(03).

 5 `)`.

 5 prefix PIC X(03).

 5 `-`.

 5 exchange PIC X(03).

MOVE `813` TO area_code.

MOVE `555` TO prefix.

MOVE `2494` TO exchange.

MOVE phone_number TO output_field.

The variable output_field will now have a value of (813)555-1234

Please refer to the sample program MOVE.CBL for more examples of moving variables.

Advanced CobolScript Features
These advanced CobolScript features are meant to add flexibility to your coding. Each is some
feature not normally present in computer languages that are similar to CobolScript.

CobolScript® Developer’s Guide Page 103

Expression Evaluation within the DISPLAY statement
It is possible to pass raw expressions to the DISPLAY statements as arguments. These expressions
will be evaluated by the DISPLAY statement, and the result will display in a CobolScript-defined
numeric format, with five post-decimal digits. Thus, the following is perfectly acceptable:

MOVE 2 TO radius.

DISPLAY `Area = ` & PI(0) * (radius^2).

And this will print the following to standard output:

Area = 12.56637

DISPLAYLF has this same capability.

Expressions as Segment Arguments and Occurs Clause Variable Arguments
Expressions can also be used as arguments to positional string references (also known as reference
modification or segments), and as arguments to occurs clause variables, so long as each evaluates to
an integer that is within the appropriate range. For example, the following code block that uses an
expression in a positional string reference is a valid one (albeit a bit unusual):

1 var1 PIC X(30) VALUE `ABCDEFGHIJKLMNOPQRSTUVWXYZ1234`.

1 counter_var PIC 999.

MOVE 24 TO counter_var.

DISPLAY `var1(2:24) = ` & var1(((counter_var/6)/2):counter_var-1+1).

DISPLAY `var1(2:24) = ` & var1(2:24).

The screen output for the above code block will be the following.

var1(2:24) = BCDEFGHIJKLMNOPQRSTUVWXY

var1(2:24) = BCDEFGHIJKLMNOPQRSTUVWXY

Both of these values are 24 characters long, beginning with the second character, of var1, since
positional string referencing is always of the form:

string_variable_name(start_position : length)

The following code block that uses an expression in an OCCURS clause variable is also valid:

1 var1 OCCURS 4 TIMES PIC XX.

1 counter_var PIC 999.

MOVE 24 TO counter_var.

MOVE `WW` TO var1(counter_var/12).

DISPLAY `var1(2) = ` & var1(ROOT ((counter_var/6)^2, 4)).

DISPLAY `var1(2) = ` & var1(2).

The screen output for this code will be the following:

Page 104 CobolScript® Developer’s Guide

var1(2) = WW

var1(2) = WW

Intelligent Variable Parsing
As we mentioned briefly in the Expressions and Conditions section of Chapter 3, CobolScript
Language Constructs, it is not necessary to separate individual expression components with spaces, so
long as a parenthesis or simple (non-word) operator separates the variable or numeric components.
However, since CobolScript allows dashes in variable names, and the symbol for the dash is the same
symbol as the minus sign (-), expressions can be constructed where their meaning is uncertain. Take
this expression, for example:

(WS-VAR-1+2)

If four variables have been defined in a program, one named WS, one named VAR, one named WS-
VAR, and the other named WS-VAR-1, it’s unclear which of the following is meant:

• The value in the variable WS-VAR-1, plus 2
• The value in the variable WS-VAR, minus 1, plus 2
• The value in WS, minus the value in VAR, minus 1, plus 2

The answer, for CobolScript, is that the first meaning (with the longest variable name) is always
selected, if that variable name is defined. CobolScript uses an intelligent variable parsing algorithm to
determine the value of a term like WS-VAR-1, and this algorithm prioritizes exact variable name
matches over component subtraction. If WS-VAR-1 was not a defined variable, but WS-VAR, WS,
and VAR still were, the second meaning above would then take precedence. Only in the case where
WS-VAR-1 and WS-VAR had both not been defined, but WS and VAR had, would the expression
evaluate to the third meaning.

As a result of this variable parsing, error messages related to undefined variables will sometimes name
the undefined variable misleadingly. For example, if none of the above variables were defined, but you
attempted to use the expression above in a statement, the error message would state that the variable
WS had not been defined, rather than WS-VAR or WS-VAR-1. This is again because of the parsing
algorithm; CobolScript attempts to find matches for smaller and smaller terms separated by dashes;
when the term cannot be deconstructed any further (in this case, at the point when the term is WS)
CobolScript stops and issues an error message. Since the line number of the error and the error
message (indicating that a variable is undefined) are still correct, correcting this error is simply a matter
of determining the variable name that you want defined, rather than what is indicated in the error
message, and properly define it.

Dynamic File Naming
If you process many files of the same format and layout within a single program, you know that
processing each file individually can be tedious and lengthy. To avoid this, you must reuse your file
processing statements by placing them within a loop; but for this to work, the file name argument to
your file processing statements, including the FD statement, must be dynamic. For this reason, we
use the term dynamic file naming.

CobolScript® Developer’s Guide Page 105

To dynamically name files, create a variable that will hold your file name, and then wait to create the
FD for the file until after you’ve generated your file name. This works because there isn’t an imposed
order on statements in CobolScript programs. For instance:

* file name gldi variable definition

 1 file_name_gldi.

 5 FILLER PIC X(n) VALUE `file`.

 5 counter PIC 99.

 5 FILLER PIC X(n) VALUE `.dat`.

* file record definition

 1 file_record.

 5 field_1 PIC 99.

 5 field_2 PIC XX VALUE `AB`.

 PERFORM VARYING counter FROM 1 BY 1 UNTIL counter > 8

 FD file_name_gldi RECORD IS 4 BYTES

 OPEN file_name_gldi FOR WRITING

 PERFORM VARYING field_1 FROM 1 BY 1 UNTIL field_1 > 10

 IF field_1 > 5

 MOVE `CD` TO field_2

 END-IF

 WRITE file_record TO file_name_gldi

 END-PERFORM

 CLOSE file_name_gldi

 END-PERFORM.

The example above uses a counter variable to manipulate a numeric component of the dynamic file
name, but the file names could also have been read from a file whose records contained the file
names. The file names could also have been stored in an OCCURS variable, and the OCCURS index
used as the counter variable to the outer PERFORM VARYING loop body.

Refer to the last code example of the next section for a more complex file naming example that
makes use of the EXECUTE statement.

Dynamic Statement Creation and Execution
With most programming languages, the only dynamic components in a program at runtime are
variables that store some type of value or point to a memory address. These variables can be
examined and action taken based on their values, but the action itself (i.e., the code) must be created
prior to runtime, and remains static throughout program execution.

In contrast, certain artificial intelligence languages like Prolog also provide the means to execute code
statements that are created while the program is running. This is sometimes referred to as dynamic
programming, which roughly means that code statements that are created by a program can then be
executed by that same program.

CobolScript provides dynamic programming capability with the EXECUTE statement. The
following code, for instance, has the net effect of displaying the literal “Hello, world.”:

Page 106 CobolScript® Developer’s Guide

1 string_gldi.

 5 FILLER PIC X VALUE ACCENT.

 5 string_var PIC X(n) VALUE `Hello, world.`.

 5 FILLER PIC X VALUE ACCENT.

EXECUTE `DISPLAY ` string_gldi.

In the above example, the EXECUTE statement has two arguments, `DISPLAY` and string_gldi.
Since string_gldi is a variable, the string that is actually processed by EXECUTE (and then directly
executed by the CobolScript engine) is:

DISPLAY `Hello, world.`.

This is because all variable values are substituted prior to EXECUTE processing. Properly
accounting for this substitution when using and understanding EXECUTE statements can be
challenging until you become used to coding in this manner; the following code, which generates the
same “Hello, world.” output, illustrates this well:

1 string_var PIC X(n) VALUE `Hello, `.

EXECUTE `DISPLAY ` ACCENT string_var ACCENT ` & ` ACCENT `world.`

 ACCENT.

Of course, neither of the two examples above really demonstrates the utility of EXECUTE, since
both execute a static DISPLAY statement that could have just as easily been coded directly. To
uncover the real value of EXECUTE, we’ll look at a more involved example that dynamically
changes the name of the source variable in a MOVE statement that is the variable argument to
EXECUTE:

1 move_exec.

 5 `MOVE line_`.

 5 num_position PIC 99.

 5 ` TO license_line_item`.

1 line_01 PIC X(7) VALUE `line111`.

1 line_02 PIC X(7) VALUE `line222`.

1 line_03 PIC X(7) VALUE `line333`.

1 line_04 PIC X(7) VALUE `line444`.

1 line_05 PIC X(7) VALUE `line555`.

1 license_line_item PIC X(7).

PERFORM UNTIL num_position = 5

 ADD 1 TO num_position

 DISPLAY `move_exec = ` & ACCENT & move_exec & ACCENT

 EXECUTE move_exec

 DISPLAY `license_line_item = ` & ACCENT & license_line_item & ACCENT

END-PERFORM.

GOBACK.

In this example, multiple MOVE statements are combined into a single EXECUTE statement inside
a loop. The source variable component of the MOVE is dynamically changed from line_01 to
line_02, line_03, line_04, and then line_05 because a portion of the source variable name is actually
the value of the loop counter variable. This code produces the following output:

CobolScript® Developer’s Guide Page 107

move_exec = `move line_01 to license_line_item`

license_line_item = `line111`

move_exec = `move line_02 to license_line_item`

license_line_item = `line222`

move_exec = `move line_03 to license_line_item`

license_line_item = `line333`

move_exec = `move line_04 to license_line_item`

license_line_item = `line444`

move_exec = `move line_05 to license_line_item`

license_line_item = `line555`

In the previous section, we examined a simple method to dynamically name files. If the file names
vary considerably, however, naming them becomes more difficult than assigning a counter variable.
An OCCURS variable can be used to store the different filenames, and then the OCCURS index
used to retrieve each file name, but the OCCURS elements would still have to be assigned using
individual MOVE statements. Using a text file to store and access the file names may work well for a
large number of file names, but it can be overkill for a more modest number.

If the number of file names is relatively small, and you prefer keeping the list of file names inside the
program that processes them, you can create a pseudo-array group item whose elementary members
are the file names that you intend to process. Then, use the EXECUTE statement to perform a
dynamic MOVE in order to reassign the file name variable, as in the following:

 1 file_name_list.

 5 file_name_01 PIC X(n) VALUE `first.dat`.

 5 file_name_02 PIC X(n) VALUE `second.dat`.

 5 file_name_03 PIC X(n) VALUE `third.dat`.

 5 file_name_04 PIC X(n) VALUE `fourth.dat`.

 5 file_name_05 PIC X(n) VALUE `fifth.dat`.

 5 file_name_06 PIC X(n) VALUE `sixth.dat`.

 5 file_name_07 PIC X(n) VALUE `seventh.dat`.

 5 file_name_08 PIC X(n) VALUE `eighth.dat`.

* file name target variable definition

 1 file_name_var PIC X(12).

* file record definition

 1 file_record.

 5 field_1 PIC 99.

 5 field_2 PIC XX VALUE `AB`.

* move statement to be executed

 1 move_exec.

 5 `MOVE file_name_`.

 5 counter PIC 99.

 5 ` TO file_name_var`.

Page 108 CobolScript® Developer’s Guide

 PERFORM VARYING counter FROM 1 BY 1 UNTIL counter > 8

 EXECUTE move_exec

 FD file_name_var RECORD IS 4 BYTES

 OPEN file_name_var FOR WRITING

 PERFORM VARYING field_1 FROM 1 BY 1 UNTIL field_1 > 10

 IF field_1 > 5

 MOVE `CD` TO field_2

 END-IF

 WRITE file_record TO file_name_var

 END-PERFORM

 CLOSE file_name_var

 END-PERFORM.

 GOBACK.

CobolScript® Developer’s Guide Page 109

CS Professional CodeBrowser™,
AppMaker™, and Control Panel

n addition to LinkMaker™ (discussed in appendixes G and H), CobolScript Professional Edition
comes with several features not present in the Standard Edition that combine to make CS
Professional a complete, enterprise-ready development solution. Using these additional features,
you can create royalty-free, stand-alone executables from your CobolScript programs, browse

your code using a colorizing utility, and administer your CobolScript environment.

Feature Requirements
CodeBrowser™ and the CobolScript Control Panel both require that you have web server software
installed on your CS Professional-resident computer, and that the CobolScript engine be placed in
your web server’s cgi-bin directory. AppMaker™ can be run without a web server, using a specific
command line option, or with a web server by using the Control Panel.

Additionally, the Control Panel can only be run from the machine on which CobolScript Professional
and your web server are installed. This is done for security reasons.

Using CodeBrowser™

CodeBrowser™ is a code colorizing and viewing utility. CodeBrowser™ displays a colorized version
of your program in a browser window, with a line number beside each line of code to assist you with
the debugging process. Comments, keywords, and literals are each distinctly colorized in the browser.

Chapter

9
I

Page 110 CobolScript® Developer’s Guide

Copybooks that are included in your program appear as inline code in the CodeBrowser™ listing; they
are differentiated with a gray background. Including copybook code in the CodeBrowser™ listing
helps to provide a cohesive view of your entire program, and more meaningful code printouts and
documentation.

The .csaccess File
In order for you to use CodeBrowser™, a file named .csaccess must exist in your web server’s cgi-bin
directory. CodeBrowser™ program listings may only be viewed for those CobolScript programs that
have an entry in the .csaccess file. The contents of this file are the names (and relative paths, if any) of
the programs that you wish to be made available for browsing, with a linefeed separating each
program name. However, rather than creating and editing this file directly, you can use the Control
Panel to administer .csaccess. See the section on the Control Panel later in this appendix for more
information.

Anyone with access to your web site will be able to view CobolScript programs that have been added
to the .csaccess file. This feature is useful for programming teams in different locations that are sharing
development and test servers; these teams only have to enter the appropriate URL in their web
browser to see a CobolScript program that resides on the server (see URL section below).

Figure 9.1 – Using CodeBrowser to browse a program that contains a copybook.

CobolScript® Developer’s Guide Page 111

Before going live with an application, you should directly edit the .csaccess file and remove any entries
for programs that you do not wish be made publicly visible with CodeBrowser™. You can also
simply delete the contents of the file, which will prevent browse access on all programs. Anyone

attempting to browse a program listing will be presented with a ‘Browse Access not allowed’ window
as shown in Figure 9.2.

Running CodeBrowser™ from a URL
Once the .csaccess file has been configured, just enter the following URL (modified for your
environment and program name) in your web browser to examine a program using CodeBrowser™:

http://<server-name>/cgi-bin/cobolscript.exe?-hlisting+<program-name>

Here, server-name refers to the host name or IP address of your CobolScript/web server machine, and
program-name refers to the full name and relative path, if required, of your CobolScript program. In the
following example, CodeBrowser will bring up a listing for the sample program mail.cbl on the server
www.cobolscript.com, so long as mail.cbl is a valid entry in .csaccess:

http://www.cobolscript.com/cgi-bin/cobolscript.exe?-hlisting+mail.cbl

Of course, you can also link to this form of URL from other web pages or from HTML output of
CobolScript programs. An HTML link for the program above could look like the following:

<A HREF=”http://www.cobolscript.com/cgi-bin/cobolscript.exe?-
hlisting+mail.cbl”>View Mail Program

CodeBrowser™ can also be run from the CobolScript Control Panel. See the section on the Control
Panel later in this appendix for more information.

Figure 9.2 – CodeBrowser “Browse Access not allowed” screen.

Page 112 CobolScript® Developer’s Guide

Building Executables with AppMaker™

CS Professional provides the capability to create stand-alone executables from CobolScript programs
using AppMaker™. This gives you the opportunity to sell or redistribute your CobolScript
applications without disclosing your code, and without requiring that your customers purchase their
own CobolScript license from Deskware (as is the case with CobolScript Standard Edition). You
might also choose to build executables for an internet system, and then place those executables on
your production web server, rather than placing raw code files on a production machine.

Executables can be built directly from the command line with the following syntax:

cobolscript.exe -b <program-name>

If your program successfully loads, an executable will be created from it and placed in the working
directory. For example, typing the following will create an executable named test.exe in the working
directory:

cobolscript.exe -b test.cbl

You can also build executable files by typing a specific URL into your web browser. This URL has
the following format.

http://<server-name>/cgi-bin/cobolscript.exe?-b+<program-name>

Here, server-name refers to the host name or IP address of your CobolScript/web server machine, and
program-name refers to the full name (and relative path, if required) of your CobolScript program. In
the following example, an executable will be created for write.cbl on the server 127.0.0.1:

http://127.0.0.1/cgi-bin/cobolscript.exe?-b+write.cbl

After the executable has been built, you will a web page similar to Figure 9.3. You can run the
executable by clicking on the hyperlink that appears on the page.

Figure 9.3 – Building an AppMaker executable from a web browser’s URL.

http://127.0.0.1/cgi-bin/cobolscript.exe?-b+write.cbl

CobolScript® Developer’s Guide Page 113

AppMaker™ can also be run from the CobolScript Control Panel. See the section on the Control
Panel later in this appendix for more information.

Using the CobolScript Control Panel
The CobolScript Control Panel is an administrative utility that is available only in CS Professional.
The Control Panel provides access to other features of CS Professional, giving you the ability to run
your CobolScript programs, browse your code, and build executables, all from within a visual
environment.

In order for the Control Panel to work correctly, you must have web server software installed on your
CS Professional computer, and the CobolScript engine must be located in the web server’s cgi-bin
directory. Also, for security reasons, the Control Panel may only be started from the machine on
which CS Professional is installed.

To access the Control Panel, start a web browser and type in the following URL:

http://<server-name>/cgi-bin/cobolscript.exe

Here, server-name refers to the host name or IP address of your CobolScript/web server machine.

Most computers are configured with a ‘loopback’ value to refer to their own IP address. Since this
address is often 127.0.0.1, the following URL will start the Control Panel on most web server
machines with CobolScript installed in the cgi-bin directory:

http://127.0.0.1/cgi-bin/cobolscript.exe

Once you’ve submitted the appropriate URL, the CobolScript Control Panel will appear in a new
window (see Figure 9.4). The following subsections explain Control Panel functionality.

Figure 9.4 – CobolScript Control Panel.

http://127.0.0.1/cgi-bin/cobolscript.exe

Page 114 CobolScript® Developer’s Guide

Running a CobolScript program from the Control Panel
To run a CobolScript program from the Control Panel, enter the name of the program in the input
box next to the Run button, or select the program by clicking on the Browse button to browse your
filesystem. Once you’ve selected a program file, click Run to execute the program. This will allow
you to run any CobolScript program that is in your web server’s cgi-bin directory and that is designed
to run through a web server (e.g., it displays correct MIME header information and HTML output).

Accessing CodeBrowser™ from the Control Panel
To run CodeBrowser™ from the Control Panel, enter the name of the program in the input box next
to the Show Me button, or select the program by clicking on the Browse button to browse your
filesystem. Once you’ve selected a program file, click Show Me. This will bring up a new window that
contains a CodeBrowser™ listing of your program. Note that the program name must be in the
.csaccess file for browsing to be permitted; see below for instructions on administering this file through
the Control Panel.

Administering File-level CodeBrowser™ Privileges
CodeBrowser™ program listings may only be viewed for those CobolScript programs that have an
entry in the .csaccess file. You can add these entries to .csaccess by clicking on the Go button from the
Control Panel, which will open a new window called ‘Administer Public CodeBrowser File Access’
(see Figure 9.5).

In this new window, you can add program files to .csaccess by entering the name of the file in the input
box or by selecting the program by clicking on the Browse button, and then clicking on the Add File
button. After you’ve finished adding files, simply close the window.

To remove public browsing capabilities on a program, you must directly edit the .csaccess file and
manually remove the entry for the program you want to restrict. You can also delete the .csaccess file,
which will prevent browse access on all programs.

Figure 9.5 – Administering CodeBrowser privileges.

CobolScript® Developer’s Guide Page 115

Using AppMaker™ from the Control Panel
To use AppMaker™ to build an executable from the Control Panel, enter the name of the program in
the input box next to the Build button, or select the program by clicking on the Browse button to
browse your filesystem. Once you’ve selected a program file, click Build. A popup window will
appear that shows that the executable was successfully built. Provided your application is designed
for the web, you can then run the executable from the popup by clicking on the hyperlink. See Figure
9.6.

Figure 9.6– Creating an executable with AppMaker from the Control Panel.

Page 116 CobolScript® Developer’s Guide

CobolScript® Developer’s Guide Page 117

Language Reference
his appendix gives a detailed description of the command syntax used by CobolScript. For
more information on specific components of CobolScript programs other than commands,
such as variables, literals, and expressions, see Chapter 3, CobolScript Language Constructs.

Usage for most of the commands listed in this appendix is demonstrated in one of the sample
programs included with CobolScript. The sample programs are available for download from the
Deskware Registered Developer Home Page – just login at
www.cobolscript.com/cobolscript.exe?login.cbl using your Registered Developer ID and download
the sample-programs-only file. A complete listing of these sample programs appears in Appendix D,
Sample CobolScript Program Files.

Syntax and Description of Commands
Below is a legend that describes how the commands are documented.

Command: Command name

Syntax Example syntax for a command.
Variables and literals are enclosed in greater than/less than signs, e.g., <variable>
Optional syntax is enclosed in brackets, e.g., [ROUNDED]

Description: Detailed description of what the command does
Example Usage: Example illustrating the actual use of the command
See Also: Other commands that are related to this command
Sample Program: Filename of sample program that demonstrates the use of this command.

Figure A.1 – The format of the command reference.

Appendix

A
T

I C O N K E Y

 File I/O
 Email

Page 118 CobolScript® Developer’s Guide

ACCEPT
Command: ACCEPT

Syntax: Variant 1:
ACCEPT <accept-variable> FROM DATE.
ACCEPT <accept-variable> FROM DAY.
ACCEPT <accept-variable> FROM DAY-OF-WEEK.
ACCEPT <accept-variable> FROM TIME.

Variant 2:
ACCEPT <accept-variable> FROM KEYBOARD [PROMPT <prompt-string>].

Variant 3:
ACCEPT DATA FROM WEBPAGE.

Description: The ACCEPT command has three variants:

Variant 1:
The basic variant of ACCEPT can be used to populate a numeric accept-variable with
one of a number of variations of the current system date/time. The formats of the data
returned to accept-variable by each of the date/time keywords are as follows:

Keyword Format Mask
DATE DDMMYYYY, where DD is the day of the month, ranging from 01
 to 31, MM is the month of the year, ranging from 01 to 12, and YYYY
 is the four-digit year.

DAY YYDDD, where YY is a two-digit year code, and DDD is a day of the
 year ranging from 001 to 366.

DAY-OF-WEEK d, where d = 0 means Sunday, d = 1 means Monday, etc.

TIME hhmmss, where hh corresponds to hour of the day and ranges from
 00 to 23, mm corresponds to minutes past the hour and ranges from
 00 to 59, and ss corresponds to seconds past the minute and ranges
 from 00 to 59.

Variant 2:
ACCEPT <accept-variable> FROM KEYBOARD can be used to read a line from the
standard input stream (normally the KEYBOARD) and store it in an alphanumeric
accept-variable.

When an ACCEPT FROM KEYBOARD command is processed, program flow is
suspended until a line of keyboard input has been received. If the PROMPT clause is
specified, prompt-string will display to standard output prior to the cursor prompt.
Program execution is resumed when a line of standard input is terminated with a linefeed
character; however, the linefeed character is not included in accept-variable. If the
standard input stream is greater than the length of accept-variable, the data will be right-
truncated.

This variation of the ACCEPT command is also useful for getting raw, unparsed CGI
(Common Gateway Interface) data from web pages. This is necessary for retrieving data
from GET-method CGI form submissions, or for examining the raw input stream from
POST-method submissions. Normally, however, ACCEPT DATA FROM WEBPAGE
should be used for POST-method data retrieval − see below for more information.

Variant 3:
The ACCEPT DATA FROM WEBPAGE statement will accept CGI data from an HTML
form that was submitted using the POST method, parse it, and place the contents in
corresponding CobolScript variables. For this statement to work successfully, use the
same field names in the receiving CobolScript program as are in the submitting POST-
method CGI form. The ACCEPT DATA FROM WEBPAGE statement will then

CobolScript® Developer’s Guide Page 119

Command: ACCEPT

populate these CobolScript variables with the values that are in the incoming, like-
named CGI variables; no additional parsing logic is required.

Refer to Chapters 6 and 8 for a more in-depth discussion of ACCEPT DATA FROM
WEBPAGE.

Example Usage: Variant 1:
ACCEPT date FROM DATE.
ACCEPT day FROM DAY.
ACCEPT day_of_week FROM DAY-OF-WEEK.
ACCEPT time FROM TIME.

Variant 2:
ACCEPT stdin_var FROM KEYBOARD PROMPT `Enter input: `.
ACCEPT raw_buffer FROM KEYBOARD.

Variant 3 (assumes two incoming CGI variables named cust_nm and order_nbr):
1 cust_nm PIC X(50).
1 order_nbr PIC 9(10).

ACCEPT DATA FROM WEBPAGE.
Sample Program: ACCEPT.CBL

ACCEPTFROMSOCKET
Command: ACCEPTFROMSOCKET

Syntax: ACCEPTFROMSOCKET USING <socket-number> <accept-socket-number>.
Description: ACCEPTFROMSOCKET creates a new TCP/IP socket connection on accept-socket-

number when a remote machine attempts to connect using a particular socket socket-
number. Socket-number refers to the socket that has already been created in order to
listen for a connection; when a remote computer attempts to connect on that socket, the
ACCEPTFROMSOCKET command will accept the connection and create a newly
connected socket on accept-socket-number.

The ACCEPTFROMSOCKET command will cause CobolScript to suspend program
flow until a socket connection is successfully established with a remote computer.

After the new socket connection has been established, socket-number is freed and is
ready to listen for another connection.

This command is conventionally used only on the machine that is considered to be the
server in two-way socket connections.

The TCP/IP return code and return message variables are populated with standard
TCP/IP return codes and messages after execution of this command. They can be
examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using socket commands.

Example Usage: ACCEPTFROMSOCKET USING socket_num_var
 connctd_socket_num_var.

The ACCEPTFROMSOCKET command requires that the following TCP/IP variable
declarations be included in your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or
INCLUDE statement. This copybook includes these variable definitions.

Page 120 CobolScript® Developer’s Guide

Command: ACCEPTFROMSOCKET

See Also: BINDSOCKET
CLOSESOCKET
CONNECTTOSOCKET
CREATESOCKET

LISTENTOSOCKET
RECEIVESOCKET
SENDSOCKET
SHUTDOWNSOCKET

Sample Program: SERV.CBL

ADD
Command: ADD

Syntax: Variant 1:
ADD <number or variable> … TO <target-variable> [ROUNDED]

Variant 2:
ADD <number or variable> … TO <number or variable> GIVING <target-variable>
[ROUNDED]

Description: Variant 1 of the ADD statement is used to add one or more numeric literals and/or
numeric variables together, storing the result in the numeric target-variable. All literals
and variables are added together to produce the result, including the value of target-
variable prior to the addition.

Variant 2 of ADD is used to add one or more numeric literals and/or variables together,
with the result stored in a target-variable whose original contents are not considered in
the addition. Thus, if var has an initial value of 1, performing the operation:
 ADD 1 TO 1 GIVING var.
will place a value of 2, not 3, into var.

Both forms of ADD permit the use of the ROUNDED keyword, which rounds the target
variable, after computation, to the nearest integer.

Example Usage: Variant 1:
ADD 1 TO num_variable.
ADD 1 2 3 TO num_variable.
ADD var TO total.
ADD 1.11 2 var TO total ROUNDED.

Variant 2:
ADD value TO subtotal GIVING total.
ADD 9.99 value TO subtotal GIVING total ROUNDED

See Also: COMPUTE
SUBTRACT
MULTIPLY
DIVIDE

Sample Program: ADD.CBL

BANNER
Command: BANNER

Syntax: BANNER USING <banner-input> <banner-character-input>
Description: The BANNER command displays a Unix-style banner to the screen. The contents of

banner-input are the large characters of the banner; the contents of banner-character-
input are the component characters of the banner, which are the small characters used to
make the banner letters. If banner-character-input is equal to a single space (` ` or the
SPACE keyword), the component character of each large letter will be a smaller version
of itself, e.g.,

 BANNER USING `TEST` SPACE

CobolScript® Developer’s Guide Page 121

Command: BANNER

will generate the following screen output:

TTTTTTT EEEEEEE SSSSS TTTTTTT
 T E S S T
 T E S T
 T EEEEE SSSSS T
 T E S T
 T E S S T
 T EEEEEEE SSSSS T

Example Usage: BANNER USING `TEST` `#`.

BANNER USING `TEST` ` `.

BANNER USING `TEST` SPACE.

BANNER USING banner_contents banner_char.
See Also: GETBANNER
Sample Program: BANNER.CBL

BINDSOCKET
Command: BINDSOCKET

Syntax: BINDSOCKET USING <socket-number> <port-number>.
Description: The BINDSOCKET command binds a socket socket-number to a specific TCP/IP port

port-number on the local machine. After this command is executed , the operating
system will associate port-number with socket-number.

This command is conventionally used only on the machine that is considered to be the
server in two-way socket connections.

The TCP/IP return code and return message variables are populated with standard
TCP/IP return codes and messages after execution of this command. They can be
examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using socket commands.

Example Usage: BINDSOCKET USING socket_num_var port_num_var.

The BINDSOCKET command requires that the following TCP/IP variable declarations
be included in your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or
INCLUDE statement. This copybook includes these variable definitions.

See Also: ACCEPTFROMSOCKET
CLOSESOCKET
CONNECTTOSOCKET
CREATESOCKET

LISTENTOSOCKET
RECEIVESOCKET
SENDSOCKET
SHUTDOWNSOCKET

Sample Program: SERV.CBL

Page 122 CobolScript® Developer’s Guide

CALENDAR
Command: CALENDAR

Syntax: CALENDAR USING <year-input> <month-input>.
Description: The CALENDAR command displays a calendar for a given year year-input and month

month-input. The year-input and month-input should be numeric values; if they are
variables, their variable declarations must have numeric picture clauses. Any fractional
component to year-input or month-input will be ignored, e.g., a year-input of 1957.75
will be processed as 1957.

CALENDAR does not support pre-Julian calendar dates, i.e., any date prior to August
1752.

Example Usage: CALENDAR USING 2001 1.

CALENDAR USING year_var month_var.
See Also: GETCALENDAR
Sample Program: CALENDAR.CBL

CALL
Command: CALL

Syntax: CALL <system-command-literal | variable> <system-command-literal | variable>… .
Description: CALL is used to call a shell command. Essentially, system-command-literal or the

contents of variable are executed at the operating system’s command prompt. Multiple
arguments may be specified for a CALL command, and group items may be used as
CALL arguments.

CALL is an extremely powerful and versatile command, so use caution when
implementing a program that uses CALL, especially when that program receives data
from web input or other unauthorized user input. It’s generally inadvisable to perform a
CALL on any user input value that has not first been validated or examined by your
program, since CALL provides access to operating system commands.

Example Usage: Example with one literal argument:
CALL `dir *.txt`.

Example with one variable argument:
MOVE `ls *.tmp` TO system_command.
CALL system_command.

Example with one literal and one variable argument:
MOVE `*.cbl` TO wildcard_variable.
CALL `ls –l ` wildcard_variable.

Example with gldi variable argument:
1 system_command.
 5 `ls`.
 5 ` *.tmp`.

CALL system_command.
Sample Program: CALL.CBL

CLOSE
Command: CLOSE

Syntax: CLOSE <filename>.
Description: The CLOSE command is used to close a text data file filename that was previously

opened with the OPEN statement.

CobolScript® Developer’s Guide Page 123

Command: CLOSE

Example Usage: CLOSE `TEST.DAT`.

CLOSE test_file.
See Also: FD

OPEN
POSITION
READ
REWRITE
WRITE

Sample Program: IO.CBL

CLOSEDB
Command: CLOSEDB (CobolScript Professional Edition Only)

Syntax: CLOSEDB USING <return-code-variable>.
Description: The CLOSEDB command closes an open LinkMaker™ database connection and

populates return-code-variable with an integer value of 1 (success) or 0 (failure). This
command is used after a connection has been established with a data source using the
OPENDB command.

See Appendixes G and H for more information about configuring and using
LinkMaker™.

Example Usage: CLOSEDB USING ret_code.

See Also: OPENDB, EXEC SQL
Sample Program: SQL.CBL

CLOSESOCKET
Command: CLOSESOCKET

Syntax: CLOSESOCKET USING <socket-number>
Description: The CLOSESOCKET command closes the specified TCP/IP socket connection socket-

number. It should only be called after the SHUTDOWNSOCKET command has been
issued, to ensure a graceful socket termination.

The TCP/IP return code and return message variables are populated with standard
TCP/IP return codes and messages after execution of this command. They can be
examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using socket commands.

Example Usage: CLOSESOCKET USING socket_num_var.

The CLOSESOCKET command requires that the following TCP/IP variable declarations
be included in your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or
INCLUDE statement. This copybook includes these variable definitions.

See Also: ACCEPTFROMSOCKET
BINDSOCKET
CONNECTTOSOCKET
CREATESOCKET

LISTENTOSOCKET
RECEIVESOCKET
SENDSOCKET
SHUTDOWNSOCKET

Sample Program: SERV.CBL

Page 124 CobolScript® Developer’s Guide

COMPUTE
Command: COMPUTE

Syntax: COMPUTE <compute-variable> [ROUNDED] = <expression>.
Description: The COMPUTE statement is used to evaluate a normal mathematical expression, and

place the result in compute-variable. Refer to the Expressions and Conditions section of
Chapter 3, CobolScript Language Constructs, for details on the various forms that
expressions are permitted to take.

COMPUTE also supports the use of functions; see Appendix B, Function Reference, for
complete details on the functions supported.

The use of alphanumeric variables or string literals in a COMPUTE statement is illegal.
Also, only one variable can be acted upon at a time in a CobolScript COMPUTE
statement. This means that multiple assignment statements must be used to assign
multiple variables.

To identify size errors (encountered when a COMPUTE result is larger than the target
variable’s picture clause permits) first check the expression result in a condition, since
size errors do not cause direct program errors. For instance, the following three
statements will place a value of 11 in num_variable without causing a direct program
error:

 1 num_var PIC 99 VALUE 0.
 1 increment_var PIC 999 VALUE 111.

 COMPUTE num_var = num_var + increment_var.

This type of overflow can be trapped by first checking the expression with a conditional
statement, as in the following:

 IF (num_var + increment_var) >= 100
 DISPLAY `Limit bypassed`
 ELSE
 COMPUTE num_var = num_var + increment_var
 END-IF.

Example Usage: COMPUTE var = var + 5.

COMPUTE depreciation =
 DDBAMT(cost, life, period, salvage-value).

COMPUTE delta = (((x+y)/z)%3)^1.86 – SQRT(x).
See Also: ADD

SUBTRACT
MULTIPLY
DIVIDE

Sample Program: COMPUTE.CBL

CONNECTTOSOCKET
Command: CONNECTTOSOCKET

Syntax: CONNECTTOSOCKET USING <socket-number> <ip-address> <port-number>.
Description: The CONNECTTOSOCKET command attempts to establish a remote TCP/IP

connection with the machine at ip-address using a socket socket-number and a port port-
number. Ip-address can be a raw IP address or any valid host name on the network or
internet that will accept the communication.

This command is conventionally used only on the machine that is considered to be the
client in two-way socket connections. It requires that the remote machine accept the

CobolScript® Developer’s Guide Page 125

Command: CONNECTTOSOCKET

connection with ACCEPTFROMSOCKET or an equivalent command.

The TCP/IP return code and return message variables are populated with standard
TCP/IP return codes and messages after execution of this command. They can be
examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using socket commands.

Example Usage: CONNECTTOSOCKET USING socket_num_var
 host_name_var
 port_num_var.

The CONNECTTOSOCKET command requires that the following TCP/IP variable
declarations be included in your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or
INCLUDE statement. This copybook includes these variable definitions.

See Also: ACCEPTFROMSOCKET
BINDSOCKET
CLOSESOCKET
CREATESOCKET

LISTENTOSOCKET
RECEIVESOCKET
SENDSOCKET
SHUTDOWNSOCKET

Sample Program: SERV.CBL

CONTINUE
Command: CONTINUE

Syntax: CONTINUE.
Description: The CONTINUE statement can be used as a ‘do-nothing’ statement in IF .. ELSE clauses

or anywhere else in a program. It is treated as a normal line of code, but does not have
any consequences and passes control to the next statement. Use it when you wish to
structure a condition as IF .. ELSE, but there is no logic to be executed for the IF case,
only for the ELSE case. See the Example Usage.

Example Usage: IF variable1 = 5
 CONTINUE
ELSE
 DISPLAY `variable1 is not equal to 5`
END-IF

Sample Program: NEXT.CBL

COPY
Command: COPY

Syntax: COPY <copybook-literal>.
Description: COPY loads the file named by the literal value copybook-literal into a CobolScript

program. The code that is in the copybook file is loaded and executed as if it were part
of the loading program, exactly in the position of the COPY statement.

In CobolScript, there is no material difference between INCLUDE and COPY.
Example Usage: COPY `COPYBOOK.CPY`.

COPY `copybook.cpy`.
See Also: INCLUDE
Sample Program: COPY.CBL

Page 126 CobolScript® Developer’s Guide

CREATESOCKET
Command: CREATESOCKET

Syntax: CREATESOCKET USING <socket-number>.
Description: The CREATESOCKET command creates a socket descriptor, or virtual circuit, on a

TCP/IP socket socket-number. Once created, this socket descriptor can then be used
with other CobolScript socket commands.

The TCP/IP return code and return message variables are populated with standard
TCP/IP return codes and messages after execution of this command. They can be
examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using socket commands.

Example Usage: CREATESOCKET USING socket_num_var.

The CREATESOCKET command requires that the following TCP/IP variable
declarations be included in your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or
INCLUDE statement. This copybook includes these variable definitions.

See Also: ACCEPTFROMSOCKET
BINDSOCKET
CLOSESOCKET
CONNECTTOSOCKET

LISTENTOSOCKET
RECEIVESOCKET
SENDSOCKET
SHUTDOWNSOCKET

Sample Program: SERV.CBL

DISPLAY
Command: DISPLAY

Syntax: DISPLAY <literal1> & <literal2> & …
 <variable1> <variable2>
 <expression1> <expression2>

Description: The DISPLAY statement is used to display literals, variables, and expressions to the
standard output device (normally the screen in command-line mode, and the web
browser when using CobolScript with a web server). Because CobolScript allows
expressions inside DISPLAY statements, individual arguments to DISPLAY must be
clearly separated using the ampersand (&).

Displaying group items is permitted. Using group items as DISPLAY variables is
especially useful when constructing web pages, both for code clarity and reusability
purposes (group items can be stored in separate copybooks and used by multiple
programs using the COPY and INCLUDE statements).

Use of positional string referencing and the use of expressions as arguments in positional
string referencing are both permitted in DISPLAY statements. See the Example Usage
below.

When directly displaying expressions, five significant digits will usually follow the
decimal point if the expression’s value is non-integer. If the expression’s value is
extremely large, however (>1,000,000,000), some precision may be lost in the fractional
portion of the value. CobolScript has an absolute limit of 16 digits of precision, and will
not correctly display or perform computations on any number, expression or variable,

CobolScript® Developer’s Guide Page 127

Command: DISPLAY

with more than 16 total digits.

Displaying numeric variables is preferred to displaying expressions when format masks
are relevant, or when a value has more than five decimal places; this is because variables
will be displayed according to their defined picture clause format. Numeric variables,
however, are limited to ten total digits of precision for values less than 100,000,000,
slightly more digits of precision for values equal to or higher than 100,000,000, with a
absolute maximum of 16 digits of precision. To use a variable in place of an expression,
simply define a variable and assign it to the expression of interest using a COMPUTE
statement; then DISPLAY the variable in place of the expression.

The CobolScript string delimiter is the ` (the accent key, usually located in the upper left
corner of American keyboards, below the Esc key). String literals must be enclosed by `
in order for them to display properly. Alternatively, the string delimiter can be changed
for a particular program run by setting the appropriate command line option. Refer to
the section Running CobolScript from the Command Line, in Chapter 2, Getting Started
with CobolScript, to learn more about command line options.

Example Usage: DISPLAY with multiple arguments:
DISPLAY var1 &
 var2 & var3.

Expression example:
DISPLAY output + 5.

Positional string referencing example (with expression as argument):
DISPLAY `Hour: ` & time(start_pos:start_pos+1).

Group level data item example:
1 group_level.
 5 `This is`.
 5 ` a test.`.

DISPLAY group_level.
See Also: DISPLAYLF, DISPLAYFILE
Sample Program: DISPLAY.CBL

DISPLAYASCIIFILE
Command: DISPLAYASCIIFILE

Syntax: DISPLAYASCIIFILE <filename>
Description: The DISPLAYASCIIFILE command will display the contents of the specified ASCII file

filename to the standard output device.

DISPLAYASCIIFILE is useful for displaying individual files that contain raw HTML to
the calling browser window, so long as the appropriate MIME header information is first
displayed; this can be useful if you wish to clearly separate program logic from HTML
without going through the effort of placing the HTML into group item variables. See the
Creating Virtual HTML section of Chapter 5, Building Web-Based Systems, for
information on displaying MIME headers.

DISPLAYASCIIFILE can also be used within a CobolScript program to transfer an
ASCII file to a remote user. This is useful for user-initiated downloads through CGI
form submissions on a web site that requires user verification or other logic to execute
prior to the actual file transfer. See Chapter 7, Advanced Internet Programming
Techniques Using CobolScript for more information on how to use
DISPLAYASCIIFILE in this manner.

DISPLAYASCIIFILE should only be used to display files that are ASCII text; use
DISPLAYFILE to display binary files.

Page 128 CobolScript® Developer’s Guide

Command: DISPLAYASCIIFILE

Example Usage: DISPLAYASCIIFILE `test.dat`.

DISPLAYASCIIFILE filename_var.
See Also: DISPLAYFILE, DISPLAY, DISPLAYLF
Sample Program: DOWN.CBL

DISPLAYFILE
Command: DISPLAYFILE

Syntax: DISPLAYFILE <filename>
Description: The DISPLAYFILE command will display the contents of the specified binary file

filename to the standard output device.

DISPLAYFILE can be used within a CobolScript program to transfer a binary file (such
as an executable) to a remote user. This is useful for user-initiated downloads through
CGI form submissions on a web site that requires user verification or other logic to
execute prior to the actual file transfer. See Chapter 7, Advanced Internet Programming
Techniques Using CobolScript for more information on how to use DISPLAYFILE in
this manner.

DISPLAYFILE should only be used to display binary files; use DISPLAYASCIIFILE to
display ASCII text files.

Example Usage: DISPLAYFILE `test.exe`.

DISPLAYFILE filename_var.
See Also: DISPLAYASCIIFILE, DISPLAY, DISPLAYLF
Sample Program: DOWN.CBL

DISPLAYLF
Command: DISPLAYLF

Syntax: DISPLAYLF <literal1> & <literal2> & …
 <variable1> <variable2>
 <expression1> <expression2>

Description: DISPLAYLF is the same as DISPLAY, but displays a trailing linefeed character after
every elementary item argument has been displayed, including those cases where the
initial argument is a group item.

Example Usage: Example with gldi argument:
1 group_level.
 5 `This is`.
 5 ` a test.`.
DISPLAYLF group_level.

Example with multiple elementary arguments:
1 var1 PIC X(N) VALUE `This is`.
1 var2 PIC X(N) VALUE ` a test.`.
DISPLAYLF var1 & var2 & `..`.

See Also: DISPLAY, DISPLAYFILE
Sample Program: DISPLAY.CBL

CobolScript® Developer’s Guide Page 129

DIVIDE
Command: DIVIDE

Syntax: Variant 1:
DIVIDE <number or divisor-variable1> … INTO <dividend-variable> [ROUNDED]

Variant 2:
DIVIDE <number or divisor-variable1> … INTO <number or dividend-variable> GIVING
<result-variable> [ROUNDED] [REMAINDER <remainder-variable>]

Variant 3:
DIVIDE <number or dividend-variable> BY <number or divisor-variable> GIVING <result-
variable> [ROUNDED] [REMAINDER <remainder-variable>]

If a REMAINDER clause is specified in Variant 2 of the DIVIDE statement, only a
single divisor may be specified. Only one divisor and one dividend may be specified in
Variant 3 of the DIVIDE statement, regardless of whether the REMAINDER clause is
used.

Description: Variant 1 of the DIVIDE statement is used to divide one or more numbers and/or
numeric divisor-variables into a target numeric dividend-variable. The result is stored in
the dividend-variable, and its previous value is overwritten. This form of DIVIDE is
equivalent to the COMPUTE statement:

 COMPUTE dividend-variable =
 dividend-variable/divisor-variable1/divisor-variable2/… .

Variant 2 of the DIVIDE statement is used to divide one or more numbers and/or
divisor-variables into a number or dividend-variable, and the result is stored in a
separate result-variable, thereby preserving the value in the dividend-variable. This
form of DIVIDE is equivalent to the COMPUTE statement:

 COMPUTE result-variable =
 dividend-variable/divisor-variable1/divisor-variable2/… .

Variant 3 of the DIVIDE statement is used to divide a number or dividend-variable by a
single number and/or divisor-variable. The result is stored in a separate result-variable.
This form of DIVIDE is equivalent to the COMPUTE statement:
 COMPUTE result-variable = dividend-variable/divisor-variable.

Variants 2 and 3 of DIVIDE permit the usage of the REMAINDER keyword, which
stores the remainder from the division operation in a separate remainder-variable. The
remainder is the portion of the dividend that would be left over if the result were forced
to be an integer value. Using the REMAINDER keyword in a DIVIDE statement is
equivalent to executing two separate COMPUTE statements, the first the actual division,
and the second the remainder calculation using the modulus (%) operator:

 COMPUTE result-variable = dividend-variable/divisor-variable.
 COMPUTE remainder-variable = dividend-variable % divisor-variable.

All variants of DIVIDE permit the use of the ROUNDED keyword, which rounds the
target variable, after computation, to the nearest integer.

Example Usage: Variant 1:
DIVIDE 1 INTO num_variable.
DIVIDE 1 2 3 INTO num_variable.
DIVIDE value_var INTO total.
DIVIDE 1.11 2 value_var INTO total ROUNDED.

Variant 2:
DIVIDE value_var INTO subtotal GIVING total.

DIVIDE 9.99 value_var INTO subtotal
 GIVING result ROUNDED.

Page 130 CobolScript® Developer’s Guide

Command: DIVIDE

DIVIDE value_var INTO subtotal
 GIVING result ROUNDED
 REMAINDER remainder.

Variant 3:
DIVIDE subtotal BY value_var GIVING result.

DIVIDE subtotal BY value_var GIVING result ROUNDED.

DIVIDE subtotal BY value_var GIVING result ROUNDED
 REMAINDER remainder.

See Also: COMPUTE
ADD
SUBTRACT
MULTIPLY

Sample Program: DIVIDE.CBL

EXEC SQL
Command: EXEC SQL (CobolScript Professional Edition Only)

Syntax: EXEC SQL
 <sql-statement>
END-EXEC.

Description: This LinkMaker™ command executes a single SQL statement sql-statement. A
connection must be established to the data source with the OPENDB command before
this command can be used. See Appendix H for further explanation and examples of
how to use this command. See Appendix G for more information about configuring data
sources.

An SQL communications area is required when working with a LinkMaker™ data
source. In CobolScript, this area of memory is allocated by defining the variable sql-
return-codes. You should include this definition in any of your programs that use
LinkMaker™; all of these variables are all standard ODBC return code variables:

1 sql-return-codes.
 5 sqlstate PIC X(5).
 5 sqlnativeerror PIC S9(6).
 5 sqlerrormessage PIC X(500).
 5 sqlstatement PIC X(500).

After an SQL statement has been executed, these variables contain information that was
returned from the data source. The variable sqlstate will contain the ODBC SQLSTATE
returned from the data source; sqlnativeerror will contain a data source-specific return
code; sqlerrormessage will contain text describing an error, if one occurred; and
sqlstatement will contain a copy of the SQL that was passed to the data source. These
return values are provided to assist with database application debugging. It is important
to remember, however, that these return values come from the data source, and are
therefore specific to that data source. Consult your data source’s documentation for
specific information about the values returned to these variables.

Example Usage: EXEC SQL
 insert into customer
 values (‘Jane’,’Doe’, :host_var_balance)
END-EXEC.

See Also: OPENDB, CLOSEDB
Sample Program: SQL.CBL

CobolScript® Developer’s Guide Page 131

EXECUTE
Command: EXECUTE

Syntax: EXECUTE <code-component-1> <code-component-2> …
Description: EXECUTE dynamically interprets a program statement contained inside

code-component literal(s) or variable(s), either elementary or group item. Literal
keywords such as ACCENT are also permitted as arguments to EXECUTE.

EXECUTE is useful when some program logic component is undetermined prior to
program execution. See the section titled Dynamic Statement Creation and Execution in
Chapter 8 for practical examples of EXECUTE usage.

An unusual form of recursion is possible by using EXECUTE to call other EXECUTE
statements, e.g.:

EXECUTE `EXECUTE statement_var`.

Although this type of recursion may be difficult to conceptualize and use for normal
programming, it is supported. The maximum permitted number of nested recursive calls
of this nature is 500; bypassing this limit will cause CobolScript to generate a normal
error message specific to this recursion.

Moderate caution should be exercised when using EXECUTE to process user input;
naturally, it is inadvisable to accept unauthorized user input in the form of a whole code
statement for use as an EXECUTE argument; however, since one EXECUTE statement
can only process a single code statement, allowing user input for portions of a statement
may be appropriate, depending on your objective. The level of flexibility that you permit
in user input is directly constrained by how much you wish to restrict user actions; this is
therefore your decision to make.

Example Usage: 1 test_var PIC X(n) VALUE `Hello, `.
1 execute_group.
 5 `DISPLAY`.
 5 ` test_var`.

EXECUTE execute_group `&` ACCENT `world.` ACCENT.
Sample Program: EXECUTE.CBL

FD
Command: FD

Syntax: FD <filename> RECORD IS <bytes-length> BYTES.
Description: The FD statement describes a data file’s location and its record length to CobolScript.

This statement is a necessary precursor to all flat (text) file data processing work.

The filename is a literal or variable that includes the name of the data file as well as any
path information, which is necessary if the file is not in the current working directory of
the program. The bytes-length is a numeric variable or literal that indicates the record
length, in bytes, of the file record. The bytes-length value should account for any
delimiters that are in the record but should not account for end-of-line characters; these
end-of-line characters vary between Windows and Unix platforms, and this variation is
automatically accounted for by CobolScript. The bytes-length value must be exact for
statements that rely on this value, such as POSITION, to work correctly.

Once a data file has been described, it may be opened and further processed. For further
information on describing files, see the Data and Copybook Files section of Chapter 3,
CobolScript Language Constructs. For more information on data file processing, see
Chapter 4, File Processing and I/O.

Page 132 CobolScript® Developer’s Guide

Command: FD

Example Usage: Example with literal arguments:
FD `test.dat` RECORD IS 50 BYTES.

Example with variable arguments, which are defined prior to the FD:
1 test_file PIC X(n) VALUE `test.dat`.
1 bytes_length PIC 99 VALUE 50.
FD test_file RECORD IS bytes_length BYTES.

Example that includes path information for a Windows® machine:
1 test_file PIC X(n) VALUE
 `c:\windows\desktop\test.dat`.
1 bytes_length PIC 99 VALUE 50.
FD test_file RECORD IS bytes_length BYTES.

Example that includes path information for a Unix machine:
1 test_file PIC X(n) VALUE `/usr/cscript/test.dat`.
1 bytes_length PIC 99 VALUE 50.
FD test_file RECORD IS bytes_length BYTES.

See Also: CLOSE
OPEN
POSITION
READ
REWRITE
WRITE

Sample Program: FTP.CBL

FTPASCII
Command: FTPASCII

Syntax: FTPASCII.
Description: The FTPASCII command sets the FTP file transfer mode to ASCII mode (as opposed to

binary mode – see FTPBINARY command below). ASCII file transfer mode should be
used when the file to be transferred is an ASCII text file.

The FTPASCII command should generally be used immediately before a statement that
uses the FTPPUT or FTPGET commands.

An open FTP connection must be established with FTPCONNECT prior to issuing the
FTPASCII command.

The TCP/IP return code and return message variables are populated with standard FTP
return codes and messages after execution of this command. They can be examined after
command execution for error-trapping purposes.

See the Transferring Files Using FTP section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using socket commands.

Example Usage: FTPASCII.

The FTPASCII command requires that the following variable definitions be included in
your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also: FTPBINARY, FTPGET, FTPPUT
Sample Program: FTP.CBL

CobolScript® Developer’s Guide Page 133

FTPBINARY
Command: FTPBINARY

Syntax: FTPBINARY.
Description: The FTPBINARY command sets the FTP file transfer mode to binary mode (as opposed

to ASCII mode – see FTPASCII command above). Binary file transfer mode should be
used when the file to be transferred is a non-text file (any proprietary format file or
executable).

The FTPBINARY command should generally be used immediately before a statement
that uses the FTPPUT or FTPGET commands.

An open FTP connection must be established with FTPCONNECT prior to issuing the
FTPBINARY command.

The TCP/IP return code and return message variables are populated with standard FTP
return codes and messages after execution of this command. They can be examined after
command execution for error-trapping purposes.

See the Transferring Files Using FTP section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using socket commands.

Example Usage: FTPBINARY.

The FTPBINARY command requires that the following variable definitions be included
in your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also: FTPASCII, FTPGET, FTPPUT
Sample Program: FTP.CBL

FTPCD
Command: FTPCD

Syntax: FTPCD USING <directory-name>.
Description: The FTPCD command changes the working FTP directory on a remotely-connected

machine to the directory name contained in the variable or literal directory-name.

An open FTP connection to a remote machine must first be successfully established with
FTPCONNECT before FTPCD can be used.

The TCP/IP return code and return message variables are populated with standard FTP
return codes and messages after execution of this command. They can be examined after
command execution for error-trapping purposes.

See the Transferring Files Using FTP section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using socket commands.

Example Usage: FTPCD USING `\ftp`.

FTPCD USING ftp_dir.

The FTPCD command requires that the following variable definitions be included in
your program:

Page 134 CobolScript® Developer’s Guide

Command: FTPCD

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also: FTPPUT, FTPGET
Sample Program: FTP.CBL

FTPCLOSE
Command: FTPCLOSE

Syntax: FTPCLOSE.
Description: The FTPCLOSE command closes an FTP connection that has been made with the

FTPCONNECT command.

The TCP/IP return code and return message variables are populated with standard FTP
return codes and messages after execution of this command. They can be examined after
command execution for error-trapping purposes.

See the Transferring Files Using FTP section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using socket commands.

Example Usage: FTPCLOSE.

The FTPCLOSE command requires that the following variable definitions be included in
your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also: FTPCONNECT
Sample Program: FTP.CBL

FTPCONNECT
Command: FTPCONNECT

Syntax: FTPCONNECT USING <hostname> <user-id> <password>.
Description: The FTPCONNECT command attempts to establish an FTP connection with a remote

machine at hostname using user-id and password.

The TCP/IP return code and return message variables are populated with standard FTP
return codes and messages after execution of this command. They can be examined after
command execution for error-trapping purposes.

See the Transferring Files Using FTP section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using socket commands.

Example Usage: FTPCONNECT USING `ftp.deskware.com` `anonymous`
`info@deskware.com`.

FTPCONNECT USING server_var
 user_id_var
 password_var.

CobolScript® Developer’s Guide Page 135

Command: FTPCONNECT

The FTPCONNECT command requires that the following variable definitions be included
in your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also: FTPCLOSE
Sample Program: FTP.CBL

FTPGET
Command: FTPGET

Syntax: FTPGET USING <filename>.
Description: The FTPGET command downloads a file filename from a connected remote machine via

the FTP protocol.

An open FTP connection to a remote machine must first be successfully established with
FTPCONNECT before FTPGET can be used. The file transfer type is either ASCII or
binary, and this can be set prior to calling FTPGET by using the FTPASCII and
FTPBINARY commands.

The TCP/IP return code and return message variables are populated with standard FTP
return codes and messages after execution of this command. They can be examined after
command execution for error-trapping purposes.

See the Transferring Files Using FTP section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using socket commands.

Example Usage: FTPGET USING `test.dat`.

FTPGET USING test_file.

The FTPBINARY command requires that the following variable definitions be included
in your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also: FTPPUT, FTPASCII, FTPBINARY
Sample Program: FTP.CBL

FTPPUT
Command: FTPPUT

Syntax: FTPPUT USING <filename>
Description: The FTPPUT command uploads a file filename to a remote machine via the FTP protocol.

An open FTP connection to a remote machine must first be successfully established with
FTPCONNECT before FTPPUT can be used. The file transfer type is either ASCII or
binary, and this can be set prior to calling FTPPUT by using the FTPASCII and
FTPBINARY commands.

Page 136 CobolScript® Developer’s Guide

Command: FTPPUT

The TCP/IP return code and return message variables are populated with standard FTP
return codes and messages after execution of this command. They can be examined after
command execution for error-trapping purposes.

See the Transferring Files Using FTP section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using socket commands.

Example Usage: FTPPUT USING `upload.dat`.

FTPPUT USING test_file.

The FTPBINARY command requires that the following variable definitions be included
in your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also: FTPGET, FTPASCII, FTPBINARY
Sample Program: FTP.CBL

GETBANNER
Command: GETBANNER

Syntax: GETBANNER USING <banner-input> <banner-character-input> <banner-target-
variable>.

Description: GETBANNER places a Unix-style banner into a group item variable. The contents of
banner-input are the large characters of the banner; the contents of banner-character-
input are the component characters of the banner, which are the small characters used to
make the banner letters. If banner-character-input is equal to a single space (` ` or the
SPACE keyword), the component character of each large letter will be a smaller version
of itself, e.g.,

GETBANNER USING `TEST` SPACE banner_target_variable

will generate the following output for banner-target-variable population:

TTTTTTT EEEEEEE SSSSS TTTTTTT
 T E S S T
 T E S T
 T EEEEE SSSSS T
 T E S T
 T E S S T
 T EEEEEEE SSSSS T

To work properly, GETBANNER requires that the banner-target-variable be defined as
a group item with 8 elementary items. See example below.

Example Usage: 1 text_banner_char PIC X VALUE `#`.
1 banner_group.
 5 banner_line1 PIC X(35).
 5 banner_line2 PIC X(35).
 5 banner_line3 PIC X(35).
 5 banner_line4 PIC X(35).
 5 banner_line5 PIC X(35).
 5 banner_line6 PIC X(35).
 5 banner_line7 PIC X(35).
 5 banner_line8 PIC X(35).

GETBANNER USING `TEST` `#` banner_group.
DISPLAYLF banner_group.

CobolScript® Developer’s Guide Page 137

Command: GETBANNER

GETBANNER USING text banner_char banner_group.
DISPLAYLF banner_group.

See Also: BANNER
Sample Program: GETBAN.CBL

GETCALENDAR
Command: GETCALENDAR

Syntax: GETCALENDAR USING <year-input> <month-input> <calendar-target-variable>.
Description: The GETCALENDAR command places a calendar for a given year year-input and a

given month month-input into a target group item variable calendar-target-variable.
The year-input and month-input should be numeric values; if they are variables, their
variable declarations must have numeric picture clauses. Any fractional component to
year-input or month-input will be ignored, e.g., a month-input of 11.88 will be processed
as 11.

GETCALENDAR does not support pre-Julian calendar dates, i.e., any date prior to
August 1752.

To work properly, GETCALENDAR requires that the calendar-target-variable be
defined as a group item with 8 elementary items. See the Example Usage below.

Example Usage: 1 year_var PIC 9(4) VALUE 2001.
1 month_var PIC 99 VALUE 1.

1 calendar_group.
 5 calendar_line1 PIC X(30).
 5 calendar_line2 PIC X(30).
 5 calendar_line3 PIC X(30).
 5 calendar_line4 PIC X(30).
 5 calendar_line5 PIC X(30).
 5 calendar_line6 PIC X(30).
 5 calendar_line7 PIC X(30).
 5 calendar_line8 PIC X(30).

GETCALENDAR USING 2001 1 calendar_group.
DISPLAYLF calendar_group.

GETCALENDAR USING year_var month_var calendar_group.
DISPLAYLF calendar_group.

See Also: CALENDAR
Sample Program: GETCAL.CBL

GETENV
Command: GETENV

Syntax: GETENV USING <environmental-variable> <cobolscript-variable>.
Description: The GETENV command accepts a literal or variable whose contents are an operating

system environmental variable, environmental-variable, from the operating system
environment and copies the value to the variable cobolscript-variable. Environmental
variables are values that are set by the operating system and provide information about
the current operating environment.

This command can be used in CobolScript internet programs that need to get information
about their web server environment. See Chapter 7 for a list of the environmental
variables that are made available by a web server.

Page 138 CobolScript® Developer’s Guide

Command: GETENV

Example Usage: Example that uses a literal as the environmental variable argument:
GETENV USING `CONTENT_LENGTH` content_length_var.

Example that uses a variable as the environmental variable argument:
1 env_variable PIC X(n) VALUE `CONTENT_LENGTH`.
GETENV USING env_variable content_length_var.

See Also: ACCEPT
Sample Program: GETENV.CBL

GETHOSTBYNAME
Command: GETHOSTBYNAME

Syntax: GETHOSTBYNAME USING <hostname>.
Description: The GETHOSTBYNAME command resolves a hostname and returns detailed

information about the host. The hostname that is supplied can either be the name of the
host or an IP address. The information returned about a host is stored in the TCPIP-
HOSTENT group-level data item variable (see below). It contains all of the aliases for
this IP address, other IP addresses associated with this host, the address type, and the
address length.

The TCP/IP return code and return message variables are populated with standard
TCP/IP return codes and messages after execution of this command. They can be
examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using DNS commands.

Example Usage: GETHOSTBYNAME USING `deskware.com`.

GETHOSTBYNAME USING `206.228.224.17`.

GETHOSTBYNAME USING ip_variable.

The GETHOSTBYNAME command requires that the following TCP/IP variable
definitions be included in your program:

1 TCPIP-HOSTENT.
 5 TCPIP-HOSTENT-HOSTNAME PIC X(255).
 5 TCPIP-HOSTENT-NUM-ALIASES PIC X(01).
 5 TCPIP-HOSTENT-ALIASES OCCURS 8 TIMES.
 10 TCPIP-HOSTENT-ALIAS PIC X(255).
 5 TCPIP-HOSTENT-ADDRESS-TYPE PIC 9(07).
 5 TCPIP-HOSTENT-ADDRESS-LENGTH PIC 9(07).
 5 TCPIP-HOSTENT-NUM-ADDRESSES PIC X(01).
 5 TCPIP-HOSTENT-ADDRESSES OCCURS 8 TIMES.
 10 TCPIP-HOSTENT-ADDRESS PIC X(255).

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also: GETHOSTNAME
Sample Program: GETHN.CBL, DNS.CBL

CobolScript® Developer’s Guide Page 139

GETHOSTNAME
Command: GETHOSTNAME

Syntax: GETHOSTNAME USING <hostname-variable>.
Description: GETHOSTNAME places the hostname of the current machine (the one on which

CobolScript is installed) in the target variable hostname-variable. The hostname is a
machine-specific parameter that generally is derived from the /etc/hosts file on Unix
machines, and from the registry on Windows machines.

The TCP/IP return code and return message variables are populated with standard
TCP/IP return codes and messages after execution of this command. They can be
examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using DNS commands.

Example Usage: GETHOSTNAME USING hostname_var.

The GETHOSTNAME command requires that the following TCP/IP variable
declarations be included in your program:

1 TCPIP-HOSTENT.
 5 TCPIP-HOSTENT-HOSTNAME PIC X(255).
 5 TCPIP-HOSTENT-NUM-ALIASES PIC X(01).
 5 TCPIP-HOSTENT-ALIASES OCCURS 8 TIMES.
 10 TCPIP-HOSTENT-ALIAS PIC X(255).
 5 TCPIP-HOSTENT-ADDRESS-TYPE PIC 9(07).
 5 TCPIP-HOSTENT-ADDRESS-LENGTH PIC 9(07).
 5 TCPIP-HOSTENT-NUM-ADDRESSES PIC X(01).
 5 TCPIP-HOSTENT-ADDRESSES OCCURS 8 TIMES.
 10 TCPIP-HOSTENT-ADDRESS PIC X(255).

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also: GETHOSTBYNAME
Sample Program: GETHN.CBL

GETMAIL
Command: GETMAIL

Syntax: GETMAIL USING <email-address> <password> <email-number> <email-filename>
<smtp-server>.

Description: The GETMAIL command connects to smtp-server using email-address and password,
and retrieves the email message whose number is email-number. The email message is
appended to the file email-filename.

The TCP/IP return code and return message variables are populated with standard
TCP/IP return codes and messages after execution of this command. They can be
examined after command execution for error-trapping purposes.

See the Using Email Commands section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on email commands.

Page 140 CobolScript® Developer’s Guide

Command: GETMAIL

Example Usage: Literal argument example:
GETMAIL USING `info@deskware.com` `12jkd` 1 `MAIL.TXT`
`deskware.com`.

Variable argument example:
GETMAIL USING email_address
 password
 number_of_mail_to_get
 mail_file
 smtp_server.

The GETMAIL command requires that the following variable definitions be included in
your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also: SENDMAIL, GETMAILCOUNT
Sample Program: MAIL.CBL

GETMAILCOUNT
Command: GETMAILCOUNT

Syntax: GETMAILCOUNT USING <email-address> <password> <count-variable> <smtp-
server>.

Description: The GETMAILCOUNT command connects to smtp-server using email-address and
password, determines the number of emails that are in the account for email-address,
and populates count-variable with this number.

The TCP/IP return code and return message variables are populated with standard
TCP/IP return codes and messages after execution of this command. They can be
examined after command execution for error-trapping purposes.

See the Using Email Commands section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on email commands.

Example Usage: Example with literal arguments for email address, password, and smtp server:
GETMAILCOUNT USING `info@deskware.com` `12F3g` email_count
`deskware.com`.

Example with variable arguments:
GETMAILCOUNT USING email_address
 password
 email_count
 smtp_server.

The GETMAILCOUNT command requires that the following variable definitions be
included in your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also: GETMAIL
Sample Program: MAIL.CBL

CobolScript® Developer’s Guide Page 141

GETTIMEFROMSERVER
Command: GETTIMEFROMSERVER

Syntax: GETTIMEFROMSERVER USING <hostname> <server-time-variable>.
Description: GETTIMEFROMSERVER contacts a server hostname, and retrieves and stores the local

time from that machine in a variable server-time-variable. The variable can be either the
name of the host or the IP address.

Note that currently the GETTIMEFROMSERVER command will only work successfully
if a time daemon is running on the hostname server; if a time daemon is not running on
hostname, the GETTIMESERVER command will wait indefinitely for a response from
the server. If this happens, the process must be killed manually to properly terminate
execution of the CobolScript program. Generally, you should only use
GETTIMEFROMSERVER when you are certain that a time daemon is running on
hostname.

The TCP/IP return code and return message variables are populated with standard
TCP/IP return codes and messages after execution of this command. They can be
examined after command execution for error-trapping purposes.

Example Usage: GETTIMEFROMSERVER USING `purdue.edu` server_time.

GETTIMEFROMSERVER USING server_var server_time.

The GETTIMEFROMSERVER command requires that the following variable
definitions be included in your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

See Also: GETHOSTNAME, GETHOSTBYNAME
Sample Program: IPTIME.CBL

GETWEBPAGE
Command: GETWEBPAGE

Syntax: GETWEBPAGE <hostname> <webpage-path> <webpage-filename>.
Description: The GETWEBPAGE command connects to hostname using the HTTP protocol, and

retrieves the webpage at location webpage-path. This webpage is then written to the file
webpage-filename, replacing any previous contents of webpage-filename.

The TCP/IP return code and return message variables are populated with standard
TCP/IP return codes and messages after execution of this command. They can be
examined after command execution for error-trapping purposes.

Example Usage: GETWEBPAGE `www.deskware.com` `/index.htm` `DESK.TXT`.

GETWEBPAGE server_var path_var filename_var.

The GETWEBPAGE command requires that the following variable definitions be
included in your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program. This copybook
includes these variable definitions.

Page 142 CobolScript® Developer’s Guide

Command: GETWEBPAGE

See Also: GETHOSTNAME, GETHOSTBYNAME
Sample Program: WEB.CBL

GOBACK
Command: GOBACK

Syntax: GOBACK.
Description: The GOBACK command ends the execution of a program. No commands following

GOBACK will be executed. There is no material difference between GOBACK and
STOP RUN in CobolScript.

For COBOL programmers, note that GOBACK is not the equivalent of the COBOL
GOBACK command.

Example Usage: GOBACK.

See Also: STOP RUN
Sample Program: GOBACK.CBL

IF
Command: IF

Syntax: IF <condition> [THEN]
 <statement>
 :
[ELSIF <elsif-condition>
 :
]
[ELSIF <elsif-condition-2>
 :
]
.
.
[ELSE
 <statement>
 :
]
END-IF

Description: The IF statement is a basic programming construct; it controls program flow based on
whether a condition evaluates to TRUE or FALSE.

IF first evaluates condition, and if condition is TRUE, executes the statement(s)
following condition (or after the optional THEN keyword) and then leaves the IF clause
by passing control to the statement following the END-IF keyword. If condition is
FALSE, control passes to the next ELSIF clause or ELSE keyword, if one or these exists.
If an ELSIF clause exists, elsif-condition is evaluated. If elsif-condition is TRUE, the
statements following the ELSIF clause are executed, and control is passed to the
statement following the ELSIF keyword. If elsif-condition is FALSE, control passes to
the next ELSIF or ELSE, if one exists. If an ELSE is reached and all prior conditions
and ELSIF conditions have evaluated to FALSE, the statement(s) after the ELSE
keyword are executed. For this reason, if you specify an ELSE clause it should always
be the last part of your IF statement.

There is no imposed limit to the number of ELSIF clauses that may be specified.
Practical limits do exist due to program size limits, but you should not encounter these
limits in normal programming.

CobolScript® Developer’s Guide Page 143

Command: IF

ELSIF clauses should always be placed in the order that you want each ELSIF condition
evaluated, if the order is relevant. Generally, the use of ELSIF clauses will necessitate
the use of an ELSE to cover all other cases; good programming practice warrants the use
of an ELSE when using ELSIFs even if no action should be taken in the ELSE case.
This can be done by using the CONTINUE statement, which acts as a placeholder or ‘do
nothing’ statement, as in the following:

IF var > 1
 DISPLAY `Greater than one`
ELSIF var =1
 DISPLAY `Equal to one`
ELSIF var < 0
 DISPLAY `Less than zero`
ELSE
 CONTINUE
END-IF.

Condition and elsif-condition are any normal expressions that evaluate to a number;
typically, conditions are statements of fact, and therefore can only evaluate to 1 (TRUE)
or 0 (FALSE), as in the following cases:

IF var >= 1

IF letter IS ALPHABETIC THEN

IF ALPHABETIC(letter)

IF a = 1 OR a = 2 THEN

IF (x + y + z) IS NOT GREATER THAN 6 AND y = 4

In the above cases, all TRUE-evaluating conditions have an integer value of 1.
However, in CobolScript, any nonzero condition result is considered TRUE, and only
zero results are considered FALSE. Therefore, the following type of conditions are also
possible in CobolScript:

IF (–5) THEN

IF var

IF NOT(var)

IF x + y + z

For COBOL programmers, note that CobolScript enforces C-like rules for expression
construction. COBOL constructs such as implied subjects and implied operators
encourage poor programming practices and are not permitted in CobolScript – all
conditions must be completely and explicitly defined.

For more information on conditions and expressions, refer to the Expressions and
Conditions section in Chapter 3, CobolScript Language Constructs.

Example Usage: IF var1 > var2
 DISPLAY `var1 is greater than var2`
ELSIF var < var2
 DISPLAY `var1 is less than var2`
ELSE
 DISPLAY `var1 is equal to var2`
END-IF

Sample Program: IF.CBL

Page 144 CobolScript® Developer’s Guide

INCLUDE
Command: INCLUDE

Syntax: INCLUDE <copybook-literal>.
Description: INCLUDE loads the file named by the literal value copybook-literal into a CobolScript

program. The code that is in the copybook file is loaded and executed as if it were part
of the loading program, exactly in the position of the COPY statement.

In CobolScript, there is no material difference between INCLUDE and COPY.
Example Usage: INCLUDE `COPYBOOK.INC`.

INCLUDE copybook_var.
See Also: COPY
Sample Program: COPY.CBL

INITIALIZE
Command: INITIALIZE

Syntax: INITIALIZE <init-variable>.
Description: The INITIALIZE command moves SPACES or ZEROS to variable init-variable;

SPACES are moved to the variable if it is defined as alphanumeric (PIC X) and ZEROS
if it has been defined as numeric (PIC 9).

Note that CobolScript automatically initializes all variables that have VALUE clauses;
for this reason, using a VALUE clause is normally preferred to using the INITIALIZE
statement.

Example Usage: INITIALIZE var1.

Sample Program: INIT.CBL

LISTENTOSOCKET
Command: LISTENTOSOCKET

Syntax: LISTENTOSOCKET USING <socket-number> <backlog-queue-length>.
Description: The LISTENTOSOCKET command prepares a socket socket-number to accept an

incoming connection. The backlog-queue-length is the number of incoming connection
requests permitted to queue while accepted connections are processed.

LISTENTOSOCKET should be called prior to using ACCEPTFROMSOCKET.

This command is conventionally used only on the machine that is considered to be the
server in two-way socket connections.

The TCP/IP return code and return message variables are populated with standard
TCP/IP return codes and messages after execution of this command. They can be
examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using socket commands.

CobolScript® Developer’s Guide Page 145

Command: LISTENTOSOCKET

Example Usage: LISTENTOSOCKET USING socket_num_var backlog_num_var.

The LISTENTOSOCKET command requires that the following TCP/IP variable
declarations be included in your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or
INCLUDE statement. This copybook includes these variable definitions.

See Also: ACCEPTFROMSOCKET
BINDSOCKET
CLOSESOCKET
CONNECTTOSOCKET

CREATESOCKET
RECEIVESOCKET
SENDSOCKET
SHUTDOWNSOCKET

Sample Program: SERV.CBL

MOVE
Command: MOVE

Syntax: MOVE <source-data> TO <target-variable>.
Description: The MOVE statement copies the contents of a literal or variable, source-data, to the

contents of the target-variable.

In the cases of an alphanumeric to alphanumeric, an alphanumeric to numeric, or a
numeric to alphanumeric MOVE, if the length of the source-data contents is greater than
the length of target-variable, target-variable is populated with the source-data
characters from left to right, and the remaining source characters are discarded.

In the case of a numeric to numeric MOVE, if the length of the contents of source-data
is greater than the length of target-variable, target-variable is populated as follows:

• Digits to the right of the decimal point are populated in target-variable
from left to right, and remaining digits in the source-data decimal are
discarded, for example:

If var1 is defined as PIC 9.99,
MOVE 5.432 TO var1
will place 5.43 in var1.

• Digits to the left of the decimal point are populated in target-variable
from right to left, and remaining higher digits in the source-data are
discarded, for example:

If var1 is defined as PIC 9.99,
MOVE 65.432 TO var1
will place 5.43 in var1.

Besides simple moves, MOVE also allows a group item to be moved to another group
item, or a group item to be moved to an elementary item. MOVE also permits both
source and target variables to use positional string referencing; refer to the section titled
Manipulating CobolScript Variables in Chapter 8 for further details.

Example Usage: Simple MOVE:
MOVE var1 TO var2.

MOVE with positional referencing of source variable:
MOVE var1(1:2) TO var3.

MOVE with positional referencing of target variable:
MOVE `test` TO var5(start_position:length).

See Also: SET
Sample Program: MOVE.CBL

Page 146 CobolScript® Developer’s Guide

MULTIPLY
Command: MULTIPLY

Syntax: Variant 1:
MULTIPLY <number or variable> … BY <target-variable> [ROUNDED]

Variant 2:
MULTIPLY <number or variable> … BY <number or variable> GIVING <target-
variable> [ROUNDED]

Description: Variant 1 of MULTIPLY is used to multiply one or more numeric literals and/or
numeric variables together, storing the result in the numeric target-variable. All literals
and variables are multiplied together to produce the result, including the value in target-
variable prior to the multiplication.

Variant 2 of MULTIPLY is used to multiply one or more numeric literals and/or
variables together, with the result stored in target-variable, whose original contents are
not considered in the multiplication. Thus, if VAR has an initial value of 3, performing
the operation MULTIPLY 2 BY 2 GIVING VAR will place a value of 4, not 12, into
VAR.

Both forms of MULTIPLY permit the use of the ROUNDED keyword, which rounds the
target variable (after computation) to the nearest integer.

Example Usage: Variant 1:
MULTIPLY 2 BY num.
MULTIPLY 2 3 BY num.
MULTIPLY value BY total.
MULTIPLY 1.11 2 value BY total ROUNDED.

Variant 2:
MULTIPLY value BY subtotal GIVING total.
MULTIPLY 2 BY 3 GIVING total ROUNDED.

See Also: COMPUTE
ADD
SUBTRACT
DIVIDE

Sample Program: MULTIPLY.CBL

OPEN
Command: OPEN

Syntax: OPEN <filename> FOR READING [DELIMITED WITH <delimiter-character>].

OPEN <filename> FOR WRITING [DELIMITED WITH <delimiter-character>].

OPEN <filename> FOR APPENDING [DELIMITED WITH <delimiter-character>].

OPEN <filename> FOR UPDATING [DELIMITED WITH <delimiter-character>].

Description: OPEN is used to open a text data file named by the literal or variable filename for
READING, UPDATING, WRITING (which positions the disk head at the beginning of
the file), or APPENDING (which positions the disk head at the end of the file).

The FOR UPDATING clause allows the update records in an existing data file. Use it in
conjunction with the REWRITE statement.

The DELIMITED WITH option treats the delimiter-character (which must be a single
character literal value or variable, or a character keyword such as TAB or SPACE) as the
separator between fields, rather than relying on field lengths to define where record
fields begin and end inside the file (as is the case when DELIMITED WITH is omitted).

CobolScript® Developer’s Guide Page 147

Command: OPEN

The delimiter can be any character that is in the ASCII character set, but remember that
no delimiter characters may appear inside any of the record fields; otherwise, an
unintended field separation will occur.

For more information on file manipulation, refer to Chapter 4, File Processing and I/O.
Example Usage: OPEN test_file_var FOR READING.

OPEN `TEST.DAT` FOR READING DELIMITED WITH `,`.

OPEN `TEST.DAT` FOR UPDATING DELIMITED WITH TAB.

OPEN test_file_var FOR WRITING.

OPEN test_file_var FOR APPENDING DELIMITED WITH `|`.

OPEN test_file_var FOR UPDATING DELIMITED WITH delim_var.
See Also: CLOSE

FD
POSITION
READ
REWRITE
WRITE

Sample Program: IO.CBL

OPENDB
Command: OPENDB (CobolScript Professional Edition Only)

Syntax: OPENDB USING <data-source-name> <user-id> <password> <return-code-variable>.
Description: The OPENDB command opens a LinkMaker™ connection to a data source data-source-

name using user-id and password. Upon completion, OPENDB populates return-code-
variable with an integer value of 1 (success) or 0 (failure).

For OPENDB to work correctly, an ODBC driver for the specific data source must be
installed, and a DSN (Data Source Name) must be defined. On Unix platform machines,
UnixODBC must also be installed prior to using any LinkMaker commands.

See Appendix G for more information about configuring LinkMaker™ data sources and
installing and configuring UnixODBC on Unix platform machines.

Example Usage: OPENDB USING data_source user_id password ret_code.

See Also: CLOSEDB
EXEC SQL

Sample Program: SQL.CBL

PERFORM
Command: PERFORM

Syntax: Variant 1, Standard PERFORM:
PERFORM <module-name>.

Variant 2, PERFORM .. UNTIL:
PERFORM <module-name> UNTIL <condition>.

Variant 3, Inline PERFORM:
PERFORM UNTIL <condition>
 :
 :
END-PERFORM

Page 148 CobolScript® Developer’s Guide

Command: PERFORM

Description: The basic PERFORM statement has three variants in CobolScript:

Variant 1, Standard PERFORM:
The standard PERFORM passes program control to a program module module-name a
single time, and then returns control to the statement following the PERFORM. When
the PERFORM is encountered during program execution, control passes immediately to
the first line of code within module-name. The code within module-name then executes;
after the last statement in module-name has been processed, control is returned to the
line immediately following the PERFORM statement, and program execution continues
normally.

Variant 2, PERFORM .. UNTIL:
PERFORM .. UNTIL is used to pass program control to a program module module-name
multiple times, until condition is satisfied. Execution of the code within module-name is
similar to the standard PERFORM.

When a PERFORM .. UNTIL statement is encountered during program execution,
condition is immediately evaluated; if it evaluates to FALSE, module-name is executed,
and control returns to the beginning of the PERFORM .. UNTIL statement, so that
condition can be evaluated again. If condition evaluates to TRUE, module-name is not
executed, and control passes to the statement following the PERFORM .. UNTIL.

There are two important points to keep in mind when using PERFORM .. UNTIL:
• First, remember that condition must evaluate to TRUE in order for control to

be passed to the statement following the PERFORM .. UNTIL; if condition
always evaluates to FALSE, the program will be caught in an endless loop,
repeatedly performing the code in module-name. To avoid this, some of the
code within module-name must change some component of condition, so that
condition will eventually be TRUE.

• Second, remember that condition is always evaluated prior to the execution of
module-name. Therefore, if condition evaluates to TRUE the first time that the
PERFORM .. UNTIL is encountered, the code in module-name will never be
performed.

More information on conditions, condition evaluation, and permitted condition syntax is
available in the Command Reference entry for IF, and in the Expressions and Conditions
section in Chapter 3, CobolScript Language Constructs.

Variant 3, Inline PERFORM:
The Inline PERFORM is simply a variation of PERFORM .. UNTIL. Instead of
performing a separate module, however, it executes the code that is between the
PERFORM and END-PERFORM statements multiple times, until condition is satisfied.

Example Usage: Variant 1:
PERFORM INIT.

Variant 2:
PERFORM PROCESSING UNTIL counter = 5.

Variant 3:
PERFORM UNTIL counter = 5
 ADD 1 TO counter
 DISPLAY `counter = ` & counter
END-PERFORM

See Also: IF (for explanation of condition evaluation, PERFORM .. VARYING
Sample Program: PERFORM.CBL

CobolScript® Developer’s Guide Page 149

PERFORM .. VARYING
Command: PERFORM .. VARYING

Syntax: Variant 1, Standard PERFORM .. VARYING:
PERFORM <module-name> VARYING <varying-variable>
 FROM <from-amount> BY <increment-amount> UNTIL <condition>.

Variant 2, Inline PERFORM VARYING:
PERFORM VARYING <varying-variable>
 FROM <from-amount> BY <increment-amount> UNTIL <condition>
 :
 :
END-PERFORM

Description: PERFORM .. VARYING has two variants in CobolScript:

Variant 1, Standard PERFORM .. VARYING:
The standard PERFORM .. VARYING is used to pass program control to a program
module module-name multiple times, until condition is satisfied, while also incrementing
varying-variable with each call to module-name. Condition evaluation, and the
execution of module-name, are handled in the same way as PERFORM .. UNTIL; see
Variant 2 in the PERFORM command description above for details.

In a PERFORM .. VARYING, the varying-variable is initialized on the first loop pass,
or incremented for every pass other than the first, then condition is evaluated, then
module-name is performed, in that order. This happens as follows:

• On the first pass through the PERFORM .. VARYING statement, the
varying-variable is first initialized to from-amount; then, if condition
evaluates to FALSE, the code in module-name is executed, and control
returns to the beginning of the PERFORM .. VARYING. If condition
evaluates to TRUE on the first pass, module-name is not performed.

• From the second pass through the PERFORM .. VARYING and all
subsequent passes, varying-variable is first incremented by increment-
amount; if condition evaluates to FALSE, module-name is performed, and
control returns to the beginning of the PERFORM .. VARYING. If
condition evaluates to TRUE, control passes to the statement following
the PERFORM .. VARYING.

Increment-amount can be any nonzero number or numeric variable; to decrement the
varying-variable rather than increment it, use a negative value for increment-amount.

More information on conditions, condition evaluation, and permitted condition syntax is
available in the Command Reference entry for IF, and in the Expressions and Conditions
section in Chapter 3, CobolScript Language Constructs.

Variant 2, Inline PERFORM VARYING:
The Inline PERFORM VARYING is a variation of PERFORM .. VARYING. Instead
of performing a separate module, however, it executes the code that is between the
PERFORM and END-PERFORM statements multiple times, until condition is satisfied.

Example Usage: Variant 1:
PERFORM PROCESSING
 VARYING varying_nbr
 FROM 5 BY –1
 UNTIL varying_nbr = 0.

Variant 2:
PERFORM VARYING varying_nbr
 FROM 10 BY 2 UNTIL SQRT(varying_nbr)>=4
 DISPLAY `varying_nbr = ` & varying_nbr
END-PERFORM

Page 150 CobolScript® Developer’s Guide

Command: PERFORM .. VARYING

See Also: IF (for explanation of condition evaluation), PERFORM.
Sample Program: PERFORM.CBL

POSITION
Command: POSITION

Syntax: Variant 1, Absolute POSITION:
POSITION <filename> AT RECORD <record-number>.

Variant 2, Relative POSITION:
POSITION <filename> RELATIVE OFFSET <number-of-records>.

Description: The POSITION statement positions the file pointer in filename at the beginning of a
particular record within a text data file in a single step.

POSITION can be used to simulate an indexing system within flat files; if a data file uses
a sequential numeric value as the record key value, a record within the file can be
randomly (directly) accessed given that key value. This functionality is similar to
COBOL relative file processing.

When using the POSITION statement, the number of bytes specified in the BYTES
clause of the FD statement for your file must exactly match the number of bytes in the
data file record; this value is used to reposition the file pointer, and a BYTES value that
is larger or smaller than the actual data record size will cause the file pointer to be
incorrectly positioned.

Variant 1, Absolute POSITION:
The absolute POSITION moves the file pointer directly to the beginning of the record at
record-number, which must be a numeric literal or variable. The first record in the file is
considered to be record number 1; therefore, record-number must be a positive integer,
and its value must fall within the range:

(1 <= record-number <= total number of records in file)

The record-number value (and hence the number of records in your data file) cannot
exceed 2,147,483,647 (2.1 billion).

Variant 2, Relative POSITION:
The relative POSITION moves the file pointer relative to its current position. Number-
of-records must be an integer-valued numeric literal or variable. This value indicates the
number of records, counting from the current record, that the file pointer should be
moved. Thus, a value of 1 will shift the file pointer one record forward in the data file; a
value of –1 will shift the file pointer one record back. The value of number-of-records
must fall within the absolute range:

(-2,147,483,647 <= number-of-records <= 2,147,483,647)

A number-of-records value that causes the file pointer to be positioned before the
beginning of the data file or after the end of the data file will cause a CobolScript error.

When using relative POSITION, keep in mind that certain file operations such as READ,
WRITE, and REWRITE will advance the file pointer by one record. Thus, in the
following code, the second READ statement will read the eighth record in the file, not
the seventh, because the first READ and the second POSITION advance the file pointer
by one record each:

CobolScript® Developer’s Guide Page 151

Command: POSITION

POSITION file_name AT RECORD 6.
READ file_name INTO record_var.

POSITION file_name RELATIVE OFFSET 1.
READ file_name INTO record_var.

For more information on using POSITION, see the Relative and Absolute File
Positioning section of Chapter 4, File Processing and I/O.

Example Usage: Variant 1:
POSITION acct_file AT RECORD 5000.

POSITION acct_file AT RECORD record_num_var.

Variant 2:
POSITION cust_file RELATIVE OFFSET rel_ofs_var.

POSITION `cust.dat` RELATIVE OFFSET 100.
See Also: CLOSE

FD
OPEN
READ
REWRITE
WRITE

Sample Program: POSITION.CBL

READ
Command: READ

Syntax: READ <filename> INTO <record-variable> [AT END <imperative-statement>].
Description: READ is used to read a single record from a text data file filename into a variable

record-variable. Generally, record-variable should be defined as a group item, with an
elementary item declared for each individual field within the record.

The AT END clause specifies an imperative-statement to execute when the end of the
file is reached. AT END is an error-trapping clause and should be used whenever
multiple records are read using a single READ statement, or whenever it is unclear
whether the end of file could be encountered with a particular READ. Imperative-
statement should be a single-statement command only (rather than an IF clause or an
inline PERFORM), such as MOVE, DISPLAY, ACCEPT, COMPUTE, or a simple
PERFORM (PERFORM <module-name>).

The maximum allowed size of a data file record in CobolScript is 10,000 bytes. Data
beyond the 10,000th byte in an individual record in a data file will be ignored.

For more information on file manipulation, refer to Chapter 4, File Processing and I/O.
Example Usage: READ `TEST.DAT` INTO input_record

 AT END MOVE 1 TO eof.

READ test_file INTO input_record
 AT END PERFORM END-READ-MODULE.

READ test_file INTO input_record
 AT END DISPLAY `Made it to end of file`.

See Also: CLOSE
FD
OPEN
POSITION
REWRITE
WRITE

Sample Program: READ.CBL

Page 152 CobolScript® Developer’s Guide

RECEIVESOCKET
Command: RECEIVESOCKET

Syntax: RECEIVESOCKET USING <socket-number> <receiving-variable>.
Description: The RECEIVESOCKET command receives the data in receiving-variable from a

remotely transmitting machine, over an open socket connection using socket socket-
number.

For RECEIVESOCKET to work properly, the transmitting (remote) machine must
transmit the data using SENDSOCKET or an equivalent command.

The TCP/IP return code and return message variables are populated with standard
TCP/IP return codes and messages after execution of this command. They can be
examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using socket commands.

Example Usage: RECEIVESOCKET USING socket_num_var receive_string.

The RECEIVESOCKET command requires that the following TCP/IP variable
declarations be included in your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or
INCLUDE statement. This copybook includes these variable definitions.

See Also: ACCEPTFROMSOCKET
BINDSOCKET
CLOSESOCKET
CONNECTTOSOCKET

CREATESOCKET
LISTENTOSOCKET
SENDSOCKET
SHUTDOWNSOCKET

Sample Program: SERV.CBL

REWRITE
Command: REWRITE

Syntax: REWRITE <record-value> TO <filename>.
Description: The REWRITE command writes a variable or literal record-value to a data file filename.

REWRITE can be used to update a record in an existing data file without having to read
through the file twice. It is essentially the equivalent of backing the file pointer up one
record, and then performing a WRITE. See the Example Usage below.

For more information on using REWRITE, see the section titled Writing to a File by
Updating Existing Records in Chapter 4, File Processing and I/O.

Example Usage: Rewrite inside an inline PERFORM:
PERFORM UNTIL (at_end_test OR record_updated)
 READ filename_var INTO record_variable
 AT END MOVE 1 TO at_end_test
 IF record_variable(1:4) = key_val
 REWRITE record_variable TO filename_var
 MOVE 1 TO record_updated
 END-IF
END-PERFORM.

In the example above, REWRITE is used to update an individual file record whose first
four characters match the contents of the variable key_val.

See Also: CLOSE, FD, OPEN, POSITION, READ, WRITE
Sample Program: REWRITE.CBL

CobolScript® Developer’s Guide Page 153

SENDMAIL
Command: SENDMAIL

Syntax: SENDMAIL USING <to-address> <from-address> <subject> <message> <smtp-
server>.

Description: The SENDMAIL command connects to smtp-server, and uses this connection to send an
email message to to-address using from-address as the sender, with subject as the
subject of the email and message as the message body.

It should be noted that CobolScript SENDMAIL is not the same as the Unix shell’s
sendmail command; this is an important distinction because potential security holes and
‘backdoors’ that are present in Unix sendmail do not exist in CobolScript SENDMAIL,
making CobolScript SENDMAIL a safer command to use.

SENDMAIL permits a group item to be used as the message argument or as the
destination address argument. This eliminates the 2000-byte restriction that exists when
using elementary items as arguments, and also allows a single message to be sent to
multiple recipients. Also, the SENDMAIL destination address allows aliasing – this can
be done by enclosing the destination address in < and > and preceding this enclosed
address with an alias. See Example 2 below for a demonstration of SENDMAIL used
with a gldi message and to-address argument, and various forms of destination
addresses.

The TCP/IP return code and return message data structures are populated with standard
TCP/IP The TCP/IP return code and return message variables are populated with
standard TCP/IP return codes and messages after execution of this command. They can
be examined after command execution for error-trapping purposes.

See the Using Email Commands section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on email commands.

Example Usage: Example 1 (basic SENDMAIL):
SENDMAIL USING `test@deskware.com` `info@deskware.com`
 `SENDMAIL TEST` email_message.

Example 2 (SENDMAIL with some gldi arguments, aliasing in destination
addresses):
 1 message_variable.
 5 intro_text PIC X(50) value `Dear Mr. Thomas,`.
 5 FILLER PIC X(1000).
 5 FILLER PIC X(1000).

 COPY `TCPIP.CPY`.

 1 from_address PIC X(n) VALUE `info@deskware.com`.
 1 to_address.
 5 FILLER PIC X(n) VALUE `<nobody1@ttttt.com>`.
 5 FILLER PIC X(n) VALUE `Nobody <nobody2@ttttt.com>`.
 5 FILLER PIC X(n) VALUE `nobody3@ttttt.com`.
 1 subject PIC X(n) VALUE `Test`.
 1 smtp_server PIC X(n) VALUE `ttttt.com`.

 SENDMAIL USING to_address from_address
 subject message_variable smtp_server.

The SENDMAIL command requires that the following variable definitions be included
in your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program, as in Example 2
above. This copybook includes these variable definitions.

Page 154 CobolScript® Developer’s Guide

Command: SENDMAIL

See Also: GETMAILCOUNT, GETMAIL
Sample Program: MAIL.CBL

SENDSOCKET
Command: SENDSOCKET

Syntax: SENDSOCKET USING <socket-number> <send-string>.
Description: The SENDSOCKET command transmits the data in send-string over an open TCP/IP

socket connection using socket socket-number.

For SENDSOCKET to work properly, the receiving (remote) machine must receive the
data using RECEIVESOCKET or an equivalent command.

The TCP/IP return code and return message variables are populated with standard
TCP/IP return codes and messages after execution of this command. They can be
examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using socket commands.

Example Usage: SENDSOCKET USING connected_socket_num send_string.

The SENDSOCKET command requires that the following TCP/IP variable declarations
be included in your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or
INCLUDE statement. This copybook includes these variable definitions.

See Also: ACCEPTFROMSOCKET
BINDSOCKET
CLOSESOCKET
CONNECTTOSOCKET

CREATESOCKET
LISTENTOSOCKET
RECEIVESOCKET
SHUTDOWNSOCKET

Sample Program: SERV.CBL

SET
Command: SET

Syntax: SET <target-variable> TO <source-data>.
Description: The SET command sets the contents of target-variable equal to the contents of

source-data. In CobolScript, MOVE is preferred to SET.

For COBOL programmers, note that CobolScript SET is not equivalent to the COBOL
SET command.

Example Usage: SET var1 TO var2.

See Also: MOVE
Sample Program: SET.CBL

CobolScript® Developer’s Guide Page 155

SHUTDOWNSOCKET
Command: SHUTDOWNSOCKET

Syntax: SHUTDOWNSOCKET USING <socket-number> <shutdown-method>.
Description: The SHUTDOWNSOCKET command prepares an open socket connection socket-

number to be closed. SHUTDOWNSOCKET should be used prior to calling
CLOSESOCKET, to ensure a graceful termination. The shutdown-method is a numeric
variable or literal flag that describes how the socket will be shut down. The allowed
values for shutdown-method are:
0: Receives are no longer allowed
1: Sends are no longer allowed
2: Sends and receives are no longer allowed

Normally, a shutdown-method of 1 is preferred; by using 1, the local machine will alert
the remote machine that the local machine is no longer transmitting data packets, which
initiates a graceful termination of the socket connection.

The TCP/IP return code and return message variables are populated with standard
TCP/IP return codes and messages after execution of this command. They can be
examined after command execution for error-trapping purposes.

See the Using TCP/IP Commands section of Chapter 6, Network and Internet
Programming Using CobolScript, for more information on using socket commands.

Example Usage: SHUTDOWNSOCKET USING socket_num 1.

SHUTDOWNSOCKET USING socket_num shutdown_method.

The SHUTDOWNSOCKET command requires that the following TCP/IP variable
declarations be included in your program:

1 TCPIP-RETURN-CODES.
 5 TCPIP-RETURN-CODE PIC 9(07).
 5 TCPIP-RETURN-MESSAGE PIC X(255).

Alternatively, include the sample file TCPIP.CPY in your program with a COPY or
INCLUDE statement. This copybook includes these variable definitions.

See Also: ACCEPTFROMSOCKET
BINDSOCKET
CLOSESOCKET
CONNECTTOSOCKET

CREATESOCKET
LISTENTOSOCKET
RECEIVESOCKET
SENDSOCKET

Sample Program: SERV.CBL

SUBTRACT
Command: SUBTRACT

Syntax: Variant 1:
SUBTRACT <number or variable> … FROM <target-variable> [ROUNDED]

Variant 2:
SUBTRACT <number or variable> … FROM <number or variable> GIVING <target-
variable> [ROUNDED

Description: Variant 1 of SUBTRACT is used to subtract one or more numeric literals and/or
numeric variables from a numeric target-variable, with the result stored in the target-
variable. All literals and variables to the left of the FROM keyword are subtracted from
the target-variable in order to determine its new value.

Variant 2 of SUBTRACT is used to subtract one or more numeric literals and/or
numeric variables from a numeric literal or variable, with the result stored in the target-
variable. All literals and variables to the left of the FROM keyword are subtracted from
the literal or variable that is between the FROM and GIVING keywords in order to

Page 156 CobolScript® Developer’s Guide

Command: SUBTRACT

arrive at the new value for target-variable. Thus, if num_var has an initial value of 1,
performing the operation:

SUBTRACT 1 FROM 3 GIVING num_var

will place a value of 2 into num_var.

Both forms of SUBTRACT permit the use of the ROUNDED keyword, which rounds the
target variable (after computation) to the nearest integer.

Example Usage: Variant 1:
SUBTRACT 1 FROM num.
SUBTRACT 1 2 3 FROM num.
SUBTRACT value FROM total.
SUBTRACT 1.11 2 value FROM total ROUNDED.

Variant 2:
SUBTRACT value FROM subtotal GIVING total.
SUBTRACT 9.99 value FROM subtotal GIVING total ROUNDED.

See Also: COMPUTE
ADD
MULTIPLY
DIVIDE

Sample Program: SUBTRACT.CBL

STOP RUN
Command: STOP RUN

Syntax: STOP RUN
Description: The STOP RUN command ends the execution of a program. No commands following

STOP RUN will be executed. There is no material difference between GOBACK and
STOP RUN in CobolScript.

Example Usage: STOP RUN.

See Also: GOBACK
Sample Program: STOPRUN.CBL

WRITE
Command: WRITE

Syntax: WRITE <record-value> TO <filename>.
Description: The WRITE command writes a variable or literal record-value to a text data file

filename. Each individual call to WRITE causes a new record, terminated with the
appropriate linefeed character sequence (depending on your platform), to be written to
the data file specified.

WRITE should be used to write out whole records at a time; populate elementary item
variables that comprise a group item variable, then use the group item as the argument to
WRITE. See the Example Usage.

For details on how to do record updates using READ and WRITE refer to Chapter 4,
File Processing and I/O.

CobolScript® Developer’s Guide Page 157

Command: WRITE

Example Usage: WRITE of a literal argument:
WRITE `1234` TO `TEST.DAT`.

WRITE of a group item variable argument:
1 record.
 5 first_variable PIC X(10) VALUE `TEST DATA `.
 5 second_variable PIC 99.99 VALUE 15.31.
 5 last_variable PIC XXXXX VALUE `ABCD`.

WRITE record TO `TEST.DAT`.
See Also: CLOSE

FD
OPEN
POSITION
READ
REWRITE

Sample Program: WRITE.CBL

Page 158 CobolScript® Developer’s Guide

CobolScript® Developer’s Guide Page 159

Function Reference
 obolScript comes with a number of different mathematical and test functions to simplify
computational work. All functions currently implemented in CobolScript return numeric
values and can each be used in the COMPUTE, PERFORM .. UNTIL, and IF statements
except in certain cases, where usage is restricted to a subset of these commands as noted.

Function arguments can be in the form of literals, variables, or expressions (See Chapter 3 for a
detailed discussion of expression syntax). Examples of each form appear in the function reference
below. Using inappropriate or out-of-range function arguments will cause program termination and a
corresponding CobolScript error will be displayed. See Appendix I for a detailed description of error
messages.

Function usage in CobolScript programs is flexible. A function can act as a standalone expression, as
in the following two examples:

COMPUTE x = ABS(x).

IF ALPHABETIC(y) THEN

 DISPLAY `y IS ALPHABETIC`

END-IF.

A function can also be one component of a longer expression, as in these two examples:

COMPUTE x = x + ABS (x).

IF (x+ABS(x)) > 5 THEN

 DISPLAY `> CASE`

END-IF.

The example usage in this appendix contains only the function, with arguments, as it would be used
inside a COMPUTE or conditional statement. To use the function inside a statement, the remainder
of the statement syntax must be in place. For instance, if the example usage for function is:

ABS(-5)

then, to use this example inside a COMPUTE statement, a variable assignment must occur, as in the
following:

COMPUTE abs_val = ABS(-5).

Appendix

B
C

Page 160 CobolScript® Developer’s Guide

To use the ABS example inside a conditional statement, some form of conditional test must occur.
At its simplest, the return value of the function can be tested to see whether it is false (equal to zero)
or true (nonzero). The condition below will evaluate to a nonzero value (true), and the word TRUE
will:

IF ABS(-5) THEN

 DISPLAY `TRUE`

ELSE

 DISPLAY `FALSE`

END-IF.

More complex conditions are also possible (for more on this, see the section in Chapter 3 dealing
with conditions and expressions). The condition below evaluates to false, and the word FALSE will
display:

IF ABS(-5) > 5 OR ABS(-5) < 0 THEN

 DISPLAY `TRUE`

ELSE

 DISPLAY `FALSE`

END-IF.

Following is the CobolScript function list, in alphabetical order. Each function entry contains a
description, function syntax, example function usage, and the numeric return value of the example.

ABS
Function: ABS
Function Name: Absolute value
Syntax: ABS(n)
Description: Returns the absolute value of the argument. If n < 0, returns (-n), if n >= 0, returns n.
Example Usage: ABS(-5)
Return Value: 5

ACOS
Function: ACOS
Function Name: Arccosine
Syntax: ACOS(n)
Description: Returns a value, in radians, that approximates cos-1(n), where –1 <= n <= 1. The result

will be in the range 0 <= cos-1(n) <= π.
Example Usage: ACOS(0)
Return Value: 1.570796327 (approximates π/2)

ACOSH
Function: ACOSH
Function Name: Inverse hyperbolic cosine
Syntax: ACOSH(n)
Description: Returns cosh-1(n), where n >= 1, and cosh(n) is equivalent to the expression

(en + e-n)
 2

CobolScript® Developer’s Guide Page 161

Function: ACOSH
Example Usage: ACOSH(5.25)
Return Value: 2.3421 (for PIC format 9.9999)

ALPHABETIC
Function: ALPHABETIC
Function Name: Alphabetic test function
Syntax: x IS ALPHABETIC or ALPHABETIC(x)
Description: This function tests a value to determine if it is alphabetic or not. It can only be used in

the conditions of IF and PERFORM .. UNTIL statements.
Example Usage (1): BUFFER IS ALPHABETIC
Return Value (1): For case where BUFFER = `ABCdef`, return value is 1 (TRUE)

For case where BUFFER = `ABC123`, return value is 0 (FALSE)
Example Usage (2): ALPHABETIC(`ABC123`)
Return Value (2): 0 (FALSE)

ANNUITY
Function: ANNUITY
Function Name: Annuity given present value
Syntax: ANNUITY(present value, interest rate per period, number of periods)
Description: Calculate an annuity amount given present value, interest rate per period, and number of

periods. It is assumed that the first annuity payment is made at the end of the first
period, not at the beginning.

Example Usage: ANNUITY(1000, .05, 5)
Return Value: 380.40

ANNUITYFV
Function: ANNUITYFV
Function Name: Annuity given future value
Syntax: ANNUITYFV(future value, interest rate, number of payments)
Description: Calculates an annuity amount given a future value, interest rate per period, and number

of periods. It is assumed that the first annuity payment is made at the end of the first
period, not at the beginning.

Example Usage: ANNUITYFV(20000,0.00833,48)
Return Value: 340.61

ASIN
Function: ASIN
Function Name: Arcsine
Syntax: ASIN(n)
Description: Returns a value, in radians, that approximates sin-1(n), where –1 <= n <= 1. The result

will be in the range -π/2 <= sin-1(n) <= π/2.
Example Usage: ASIN(1)
Return Value: 1.570796327 (approximates π/2)

Page 162 CobolScript® Developer’s Guide

ASINH
Function: ASINH
Function Name: Inverse hyperbolic sine
Syntax: ASINH(n)
Description: Returns sinh-1(n), where n >= 1, and sinh(n) is equivalent to the expression

(en – e-n)
 2

Example Usage: ASINH(5.25)
Return Value: 2.3603 (for PIC format 9.9999)

ATAN
Function: ATAN
Function Name: Arctangent
Syntax: ATAN(n)
Description: Returns a value, in radians, that approximates tan-1(n), where -∞ <= n <= ∞. The result

will be in the range -π <= tan-1(n) <= π.
Example Usage: ATAN(1)
Return Value: 0.7853981634 (approximates π/4)

ATAN2
Function: ATAN2
Function Name: Arctangent of y/x
Syntax: ATAN2(x, y)
Description: Returns a value, in radians, that approximates tan-1(y/x), where -∞ <= n <= ∞. The result

will be in the range -π <= tan-1(n) <= π. ATAN2 allows a zero-valued argument for x.
Example Usage: ATAN2(0, 1)
Return Value: 0

ATANH
Function: ATANH
Function Name: Inverse hyperbolic tangent
Syntax: ATANH(n)
Description: Returns tanh-1(n), where –1 < n < 1, and tanh(n) is equivalent to the expression

(en – e-n)
(en + e-n)

Example Usage: ATANH(.999999999)
Return Value: 10.73422678

CALTOJ
Function: CALTOJ
Function Name: Calories to joules
Syntax: CALTOJ(n)
Description: Returns joules given calories, or kilojoules given Calories (kcal).
Example Usage: CALTOJ(1)
Return Value: 4.185500000

CobolScript® Developer’s Guide Page 163

CCTOCIN
Function: CCTOCIN
Function Name: Cubic centimeters to cubic inches
Syntax: CCTOCIN(n)
Description: Returns cubic inches, given cubic centimeters.
Example Usage: CCTOCIN(5200)
Return Value: 317.3234693

CEILING
Function: CEILING
Function Name: Ceiling
Syntax: CEILING(n)
Description: Returns the ceiling of a given value. The ceiling is the next integer value larger than the

fractional argument. If an integer value is specified as the argument to CEILING, the
return value will equal the argument.

Example Usage: CEILING(1.2)
Return Value: 2

CHOOSE
Function: CHOOSE
Function Name: Choose
Syntax: CHOOSE(n, r)
Description: Returns the result of performing the stochastic operation n choose r. n choose r is the

number of ways that r objects can be selected from n unique objects, where the order of
selection of the r objects is not relevant. n choose r is equivalent to
 n! _
 r!(n-r)!

Both arguments to CHOOSE must be positive integer values.
Example Usage: CHOOSE(9, 4)
Return Value: 126

CINTOCC
Function: CINTOCC
Function Name: Cubic inches to cubic centimeters
Syntax: CINTOCC(n)
Description: Returns cubic centimeters, given cubic inches.
Example Usage: CINTOCC(318)
Return Value: 5211.086352

CMTOIN
Function: CMTOIN
Function Name: Centimeters to inches
Syntax: CMTOIN(n)
Description: Returns inches, given centimeters.
Example Usage: CMTOIN(10)
Return Value: 3.937007874

Page 164 CobolScript® Developer’s Guide

COS
Function: COS
Function Name: Cosine
Syntax: COS(θ)
Description: Returns the cosine of an angle θ, when θ is specified in radians. The cosine of an angle

is equivalent to the ratio base/hypotenuse, when a right triangle is formed using θ (or the
complement of θ, as appropriate), and the intersection point of the angle θ is taken to be
the x, y coordinate (0, 0). Negative return values for COS apply for π/2 < θ < 3π/2.
Cosine is a periodic function with a period of 2π.

Example Usage: COS(PI(0))
Return Value: -1

COSH
Function: COSH
Function Name: Hyperbolic cosine
Syntax: COSH(n)
Description: Returns cosh(n), where cosh(n) is equivalent to the expression

(en + e-n)
 2

Example Usage: COSH(LN(VAR))
Return Value: Result is equivalent to ½ * (VAR + 1 /VAR)

For example, if VAR = 2, result is 1.25

CTOFAHR
Function: CTOFAHR
Function Name: Celsius to Fahrenheit
Syntax: CTOFAHR(n)
Description: Returns degrees Fahrenheit, given degrees Celsius.
Example Usage: CTOFAHR(0)
Return Value: 32

DDBAMT
Function: DDBAMT
Function Name: Double Declining Balance amount
Syntax: DDBAMT(cost, life, period, salvage value)
Description: Returns a depreciation amount using the Double Declining Balance (DDB) method,

given an initial cost, asset life (in periods), the number of the current period for which
the amount should be calculated, and a salvage value (frequently zero).

Example Usage: DDBAMT(10000,5,2,0)
Return Value: 2400

EXP
Function: EXP
Function Name: e to the power of n
Syntax: EXP(n)
Description: Returns e, the natural number, raised to the power of n
Example Usage: EXP(1)
Return Value: 2.718281828

CobolScript® Developer’s Guide Page 165

FACT
Function: FACT
Function Name: Factorial (n!)
Syntax: FACT(n)
Description: Returns n!, the factorial of n. n! is equivalent to the multiplicative series

n * (n – 1) * … * 2 * 1

Factorials are commonly used in calculating probabilities and permutations.
Example Usage: FACT(5)
Return Value: 120

FAHRTOC
Function: FAHRTOC
Function Name: Fahrenheit to Celsius
Syntax: FAHRTOC(n)
Description: Returns degrees Celsius, given degrees Fahrenheit.
Example Usage: FAHRTOC(212)
Return Value: 100

FLOOR
Function: FLOOR
Function Name: Floor
Syntax: FLOOR(n)
Description: Returns the floor of a value. The floor is the next integer value smaller than the

fractional argument. If an integer value is specified as the argument to FLOOR, the
return value will equal the argument.

Example Usage: FLOOR(5.9)
Return Value: 5

FTOM
Function: FTOM
Function Name: Feet to meters
Syntax: FTOM(n)
Description: Returns meters, given a measurement in English feet.
Example Usage: FTOM(110*3)
Return Value: 100.5840000

FV
Function: FV
Function Name: Future value
Syntax: FV(present value, interest rate per period, number of periods)
Description: Returns a future value of an amount, given a present value, an interest rate per period,

and the number of periods.
Example Usage: FV(1000, .083333, 48) -- Corresponds to 10% annual interest rate, compounded

monthly, for 48 months.
Return Value: 1489.35

Page 166 CobolScript® Developer’s Guide

FVANNUITY
Function: FVANNUITY
Function Name: Future value of an annuity
Syntax: FVANNUITY(annuity payment, interest rate, number of periods)
Description: Returns the future value of an annuity given annuity payment, interest rate per annuity

period, and the number of periods.
Example Usage: FVANNUITY(200, .0083333, 36)
Return Value: 8356.359

GALTOL
Function: GALTOL
Function Name: Gallons to liters
Syntax: GALTOL(n)
Description: Returns liters, given gallons.
Example Usage: GALTOL(10)
Return Value: 37.85411784

GMTOOZ
Function: GMTOOZ
Function Name: Grams to ounces
Syntax: GMTOOZ
Description: Returns ounces, given grams.
Example Usage: GMTOOZ(28)
Return Value: 0.9876709346

HPTOKW
Function: HPTOKW
Function Name: Horsepower to kilowatts
Syntax: HPTOKW(n)
Description: Returns kilowatts, given horsepower.
Example Usage: HPTOKW(100)
Return Value: 74.5699871600

INTOCM
Function: INTOCM
Function Name: Inches to centimeters
Syntax: INTOCM(n)
Description: Returns centimeters, given inches.
Example Usage: INTOCM(12)
Return Value: 30.48000000

CobolScript® Developer’s Guide Page 167

JTOCAL
Function: JTOCAL
Function Name: Joules to calories
Syntax: JTOCAL(n)
Description: Returns calories given joules, or Calories (kcal) given kilojoules.
Example Usage: JTOCAL(1)
Return Value: 0.2389200812

KGTOPD
Function: KGTOPD
Function Name: Kilograms to pounds
Syntax: KGTOPD(n)
Description: Returns pounds, given kilograms
Example Usage: KGTOPD(100)
Return Value: 220.4622622

KMTOML
Function: KMTOML
Function Name: Kilometers to miles
Syntax: KMTOML(n)
Description: Returns miles, given kilometers.
Example Usage: KMTOML(10)
Return Value: 6.213711922

KWTOHP
Function: KWTOHP
Function Name: Kilowatts to horsepower
Syntax: KWTOHP(n)
Description: Returns horsepower, given kilowatts
Example Usage: KWTOHP(100)
Return Value: 134.1022090

LN
Function: LN
Function Name: Natural log
Syntax: LN(n)
Description: Returns the natural log of a value.
Example Usage: LN(2)
Return Value: 0.6931471806

Page 168 CobolScript® Developer’s Guide

LOG
Function: LOG
Function Name: Logarithm
Syntax: LOG(n)
Description: Returns the base-10 logarithm of the given value.
Example Usage: LOG(2)
Return Value: 0.3010299957

LTOGAL
Function: LTOGAL
Function Name: Liters to gallons
Syntax: LTOGAL(n)
Description: Returns gallons, given liters
Example Usage: LTOGAL(100)
Return Value: 26.41720524

MLTOKM
Function: MLTOKM
Function Name: Miles to kilometers
Syntax: MLTOKM(n)
Description: Returns kilometers, given miles.
Example Usage: MLTOKM(100)
Return Value: 160.9344000

MTOF
Function: MTOF
Function Name: Meters to feet
Syntax: MTOF(n)
Description: Returns English feet, given meters
Example Usage: MTOF(10)
Return Value: 32.80839895

NUMERIC
Function: NUMERIC
Function Name: Numeric test function
Syntax: x IS NUMERIC or NUMERIC(x)
Description: This function tests a value to determine if it is numeric or not. It can only be used in the

conditions of IF and PERFORM .. UNTIL statements.
Example Usage (1): BUFFER IS NUMERIC
Return Value (1): For case where BUFFER = `123456`, return value is 1 (TRUE)

For case where BUFFER = `ABC123`, return value is 0 (FALSE)
Example Usage (2): NUMERIC(`ABC`)
Return Value (2): 0 (FALSE)

CobolScript® Developer’s Guide Page 169

NUMPMTS
Function: NUMPMTS
Function Name: Number of payments
Syntax: NUMPMTS(present value, payment amount, interest rate per payment period)
Description: Returns the number of payments given a present value, payment amount, and interest

rate per payment period. Returns –1 if solution is infeasible, i.e., no number of payments
will equal present value, given interest rate.

Example Usage: NUMPMTS(10000,500, .0083333)
Return Value: 21.96961262

OZTOGM
Function: OZTOGM
Function Name: Ounces to grams
Syntax: OZTOGM(n)
Description: Returns grams, given ounces.
Example Usage: OZTOGM(1)
Return Value: 28.34952313

PDTOKG
Function: PDTOKG
Function Name: Pounds to kilograms
Syntax: PDTOKG(n)
Description: Returns kilograms, given pounds.
Example Usage: PDTOKG(10)
Return Value: 4.535923700

PERMUTAT
Function: PERMUTAT
Function Name: Permutate
Syntax: PERMUTAT(n,r)
Description: Returns the result of performing the stochastic operation n permutate r. n permutate r is

the number of ways that r objects can be selected from n unique objects, where the order
of selection of the r objects is considered relevant. n permutate r is equivalent to
 n! _
 (n-r)!

Both arguments to PERMUTAT must be positive integer values.
Example Usage: PERMUTAT(5, 3)
Return Value: 60

PI
Function: PI
Function Name: Pi (π)
Syntax: PI(0)
Description: Returns the ratio π that defines the relationship between a circle’s circumference and its

diameter, i.e., π = circumference / diameter.

An argument of 0 (zero) should always be specified for PI.

Page 170 CobolScript® Developer’s Guide

Function: PI
Example Usage: PI(0)
Return Value: 3.141592654

PV
Function: PV
Function Name: Net present value
Syntax: PV(future value, interest rate, number of periods)
Description: Returns the net present value of a specified future value, given interest rate per period

and number of periods.
Example Usage: PV(10000, .0083333, 36)
Return Value: 7417.405862

PVANNUITY
Function: PVANNUITY
Function Name: Present value of an annuity
Syntax: PVANNUITY(annuity amount, interest rate per period, number of periods)
Description: Returns the present value of an annuity given the annuity amount, interest rate per

period, and number of periods.
Example Usage: PVANNUITY(100,.0083333,24)
Return Value: 2167.086350

RANDOM
Function: RANDOM
Function Name: Random number generator
Syntax: RANDOM(0)
Description: Returns a pseudo-random number in the range 0 < n < 1.

No seeding is necessary for the CobolScript random number generator because the
generator is internally seeded with each call to the RANDOM function; however,
because of this, it is not possible with CobolScript Standard Edition to repeat a random
number series with consecutive runs of the same CobolScript program.

Also, because the auto-seeding process is dependent on the processor clock, and seeding
is done with the first call to the RANDOM function within any one program, closely
timed, periodic runs of a program that makes one call to the random number generator
will not necessarily generate a good random profile, or a non-correlative scattering of the
plotted random numbers. To achieve good non-correlative scattering, the RANDOM
function must either be called multiple times within the same program, or the times at
which the program is called must itself be somewhat random, such as with a CGI or
other on-demand type of application.

An argument of 0 (zero) should always be specified for RANDOM.
Example Usage: RANDOM(0)
Return Value: Trial 1: 0.3203833125

Trial 2: 0.0529190954
Trial 3: 0.6378368480
Trial 4: 0.4803613392

CobolScript® Developer’s Guide Page 171

ROOT
Function: ROOT
Function Name: Root function
Syntax: ROOT(x, n)
Description: Returns the nth root of x.
Example Usage: ROOT(27, 3)
Return Value: 3

ROUNDED
Function: ROUNDED
Function Name: Round function
Syntax: ROUNDED(n) or COMPUTE x ROUNDED = n.
Description: Rounds the argument to the nearest integer, with a decimal value of .5 rounding to the

next highest integer.
Example Usage (1): COMPUTE x ROUNDED = 1.5.
Return Value (1): 2
Example Usage (2): ROUNDED(1.49999)
Return Value (2): 1

SIGN
Function: SIGN
Function Name: Sign function
Syntax: SIGN(n)
Description: Returns the sign of the argument – returns –1 if n<0, 0 if x=0, +1 if x>0.
Example Usage: SIGN(-9)
Return Value: -1

SIN
Function: SIN
Function Name: Sine
Syntax: SIN(θ)
Description: Returns the sine of an angle θ, when θ is specified in radians. The sine of an angle is

equivalent to the ratio height/hypotenuse, when a right triangle is formed using θ (or the
complement of θ, as appropriate), and the intersection point of the angle θ is taken to be
the x, y coordinate (0, 0). Negative return values for SIN apply for 0 < θ < π. Sine is a
periodic function with a period of 2π.

Example Usage: SIN(PI(0)/2)
Return Value: -1

Page 172 CobolScript® Developer’s Guide

SINH
Function: SINH
Function Name: Hyperbolic sine
Syntax: SINH(n)
Description: Returns sinh(n), where sinh(n) is equivalent to the expression

(en – e-n)
 2

Example Usage: SINH(LN(VAR))
Return Value: Result is equivalent to ½ * (VAR - 1 / VAR)

For example, if VAR = 2, result is 0.75

SQRT
Function: SQRT
Function Name: Square root
Syntax: SQRT(n)
Description: Returns the square root of the argument.
Example Usage: SQRT(625)
Return Value: 25

STRLINEAMT
Function: STRLINEAMT
Function Name: Straight-line depreciation amount
Syntax: STRLINEAMT(cost, life, salvage value)
Description: Returns a depreciation amount using the straight-line depreciation method, given an

initial cost, asset life (in periods), and a salvage value (frequently zero). Because the
straight-line depreciation amount is equal for each period in which depreciation is
calculated, it is not necessary to specify which period is the current one.

Example Usage: STRLINEAMT(50000,10,0)
Return Value: 5000

SYDAMT
Function: SYDAMT
Function Name: Sum-of-the-years’-digits depreciation amount
Syntax: SYDAMT(cost, life, period, salvage value)
Description: Returns a depreciation amount using the sum-of-the-years’-digits (SYD) method, given

an initial cost, asset life (in periods), the number of the current period for which the
amount should be calculated, and a salvage value (frequently zero).

Example Usage: SYDAMT(1000,5, 2, 0)
Return Value: 266.6666667

CobolScript® Developer’s Guide Page 173

TAN
Function: TAN
Function Name: Tangent
Syntax: TAN(θ)
Description: Returns the tangent of an angle θ, when θ is specified in radians. The tangent of an

angle is equivalent to the ratio height/base (or, alternatively, sin θ / cos θ), when a right
triangle is formed using θ (or the complement of θ, as appropriate), and the intersection
point of the angle θ is taken to be the x, y coordinate (0, 0). Negative return values for
TAN apply for 0 < θ < π/2.

Tangent is a periodic, non-continuous function with a period of π; the non-continuity
exists because there are asymptotes in the graph of tan θ as θ approaches π/2. From both
the negative and positive side of θ = π/2, tan θ approaches infinity (∞). However, the
CobolScript TAN function will return a large, arbitrary value for TAN(PI(0)/2) because
of the finite size of the constant PI(0). Always keep this in mind when working with the
CobolScript TAN function.

Example Usage: TAN(PI(0)/2)
Return Value: 16331778728383844.0

TANH
Function: TANH
Function Name: Hyperbolic tangent
Syntax: TANH(n)
Description: Returns tanh(n), where tanh(n) is equivalent to the expression

(en – e-n)
(en + e-n)

Example Usage: TANH(LN(2))
Return Value: 0.6

Page 174 CobolScript® Developer’s Guide

CobolScript® Developer’s Guide Page 175

CobolScript® Constraints
n its native state, CobolScript is an interpreted computer language. Because of this, many of the
additional steps required when using a compiler to run a program (linking, compiling, etc.) are
not necessary with CobolScript. This reduction is steps can be a real timesaver; the time
required to change and test code incrementally using CobolScript is significantly less than the

time required for the same tasks using a compiler.

Due to the fact that CobolScript is an interpreter, however, some constraints do exist in CobolScript.
Constraints such as these are a necessary component of all interpreters, although some interpreted
languages may not trap errors that occur when constraints are bypassed, and GPFs or memory errors
can result. In CobolScript, bypassing any of the absolute constraints listed below will cause
CobolScript run-time errors, not GPFs.

The CobolScript engine constraints are listed on the following page.

Appendix

C
I

Page 176 CobolScript® Developer’s Guide

Constraint CobolScript Standard
Edition

CobolScript
Professional Edition

Maximum permitted lines of code in any one CobolScript
program

32,767 lines
-or-

As many lines as computer
running CobolScript can

load into memory,
whichever is less

Same as Standard Edition

Maximum number of variables that can be defined in a
single program

1,000 10,000

Maximum number of files that can be used by a single
program

20 50

Number of OCCURS clause levels (array dimensions)
permitted

1 No imposed limit

Maximum statement length, in bytes 500 Same as Standard Edition

Maximum tokens (keywords, literals, expression
components, etc.) per line

80 Same as Standard Edition

Maximum token length, in characters 80 Same as Standard Edition

Maximum number of modules permitted in a single
program

500 Same as Standard Edition

Maximum program call stack size 300 Same as Standard Edition

Maximum elementary data item variable size, in bytes 2,000 Same as Standard Edition

Maximum record length, in bytes 10,000 Same as Standard Edition

Maximum number of TCP/IP Aliases for
GETHOSTBYNAME

8 Same as Standard Edition

Maximum number of TCP/IP Addresses for
GETHOSTBYNAME

8 Same as Standard Edition

Maximum TCP/IP hostname size, in bytes 255 Same as Standard Edition

Maximum number of TCP/IP sockets that may be used
by a single program

20 Same as Standard Edition

Maximum number of EXECUTE statement recursive
calls

500 Same as Standard Edition

CobolScript® Developer’s Guide Page 177

Sample CobolScript® Programs
ach of the sample programs listed below demonstrates a particular command, feature, group
of features, or syntax of the CobolScript language. These samples can be used as
instructional tools, or as templates for development.

Working with data files requires the proper read and write permissions on directories and files. On
Unix systems especially, attempting to run a file manipulation program with insufficient file or
directory privileges is a common oversight. Failing to set these permissions correctly will prevent
CobolScript file input and output. Make certain that permissions are set correctly before
manipulating files with a CobolScript program.

All sample programs are available for download from the Deskware Registered User web site. Refer
to your license agreement for information on restrictions governing the redistribution of these
programs, or of programs based on these programs.

Command Line Sample Programs
The following sample programs can be run from the command line. To run one of them, at the
command prompt type:

cobolscript.exe <program-name>

where <program-name> is the name of the sample program to be run.

Appendix

D
E

Page 178 CobolScript® Developer’s Guide

Program Name Demonstrates…

ACCEPT.CBL How to get the system date and time, and how to capture standard input.

ARITHMETIC.CBL Basic arithmetic commands (ADD, SUBTRACT, MULTIPLY, DIVIDE.

BANNER. CBL How to display a Unix-style banner.

CAL.CBL How to display a calendar for a given month and year.

CALL.CBL How to call an external application.

CLIENT.CBL TCP/IP client example – use with SERV.CBL.

COMPUTE.CBL Different forms and uses of the COMPUTE statement, and the use of expressions.

CONVFUNCS.CBL Metric system to English system and English to metric conversion functions.

COPY.CBL How to include copybooks with the COPY command.

DISPLAY.CBL How to display different forms of output to the standard output device.

DYNFILE.CBL Dynamic file creation example.

EXECUTE.CBL How to use the EXECUTE command to dynamically execute statements.

F_EXEC.CBL A file processing example that uses the EXECUTE command.

FINANCEFUNCS.CBL Financial calculation and depreciation functions.

FTP.CBL File Transfer Protocol commands.

GEOMFUNCS.CBL Trigonometric functions (sine, cosine, inverses, hyperbolics, etc).

GETBAN.CBL How to save a Unix-style banner to a variable.

GETCAL.CBL How to save a calendar for a given month and year to a variable.

GETENV.CBL How to retrieve environmental variables from the operating system.

GETHN.CBL Use of GETHOSTNAME command.

GETTIME.CBL Use of GETTIMEFROMSERVER command.

GOBACK. CBL How to terminate a program using GOBACK.

HMATHFUNCS.CBL Higher math functions (logs, natural logs, rounding, roots, etc).

IF.CBL IF conditions.

INIT.CBL How to initialize variables.

INPUT.CSV Input data file for RECCOPY.CBL sample program.

MAIL.CBL How to send simple emails, retrieve emails, and get count of emails on an SMTP
server.

MOVE.CBL Use of the MOVE statement.

OCCURS.CBL How to use the OCCURS clause.

OPENCLSE.CBL How to open and close files.

PERFORM.CBL Use of the PERFORM statement.

POSITION.CBL How to use the POSITION statement to position to a particular record in a text data
file.

PROBFUNCS.CBL Probability functions (random number generator, factorials, etc).

PROFOCCR.CBL Professional Edition OCCURS clause example.

RECCOPY.CBL A command-line program that demonstrates how to convert delimited files that were
created in Excel or other applications to CobolScript delimited files, if record updates
are necessary to the data.

READ.CBL How to read data from files.

REPLICA.CBL How to use the REPLICA clause.

REWRITE.CBL How to use the REWRITE statement to update records in a text data file.

SERV.CBL TCP/IP server example – use with CLIENT.CBL.

SET.CBL Use of SET statement.

SQL.CBL Professional Edition SQL example.

SQL.CPY SQL return variable copybook.

STOPRUN.CBL How to terminate a program using STOP RUN.

TCPIP.CPY TCP/IP return variable copybook.

WEB.CBL How to retrieve web pages and save them to a file.

WRITE. CBL How to write data to a file.

CobolScript® Developer’s Guide Page 179

Web-Based Sample Programs
The following sample programs are meant to be executed from a web browser. A web server must
be running on the machine on which CobolScript is installed, and CobolScript and the CobolScript
programs must be placed in the web server's cgi-bin directory. On Unix machines, make certain that
file and directory permissions allow reading and writing to the cgi-bin directory.

If the web server is running properly and all files are in the correct location, any of the programs
below can be run by typing:

http://<ip address>/cgi-bin/cobolscript.exe?<filename>

in the web browser's URL, where <ip address> is the web server's IP address or domain name, and
<filename> is the name of the program to be run.

Program Name Demonstrates...

DEP.CBL Depreciation calculator.

DNS.CBL How to obtain information about IP addresses or domain names.

DOWN.CBL How to construct a download MIME header and use DISPLAYFILE and
DISPLAYASCIIFILE.

EMAIL.CBL Web based form for sending email with CobolScript.

EPRB.CBL Problem Tracking entry editing.

HELLO.CBL `Hello world` program.

HELLO1.CBL Chapter 5 CGI Sample #1.

HELLO2.CBL Chapter 5 CGI Sample #2.

HELLO3.CBL Chapter 5 CGI Sample #3.

INPUT.CBL How to accept CGI data.

OPER.CBL Mathematical operator example program.

PAGE.CBL Chapter 7 Sample.

PIC.CBL CobolScript Picture clause variation.

PRB.CBL Problem Tracking system example application.

SPRB.CBL Problem Tracking entry submission.

UTS.CBL Time Sheet example application.

VPRB.CBL Problem Tracking entry viewing.

WEBBAN.CBL How to print a Unix-style banner to a web page.

Page 180 CobolScript® Developer’s Guide

CobolScript® Developer’s Guide Page 181

CobolScript® Picture Clauses
he picture clause is a byte-by-byte definition of the format of a variable. It describes the
general characteristics and editing requirements of an elementary data item, which can be
either numeric or alphanumeric in CobolScript. For example, a picture clause of PIC X(1)
represents a variable that has 1 byte of alphanumeric storage, while a picture clause of PIC

9(02) represents a variable that has 2 bytes of numeric storage (the zero in 9(02) is not required).

The general format of a variable definition is:

<level-number> <variable> PIC <picture-clause> [VALUE <value-literal>].

where level-number is the level number of the variable, variable is the variable name, picture-clause is the
numeric or alphanumeric picture clause, and value-literal is an initial value for the variable, either an
alphanumeric literal, such as `abc`, or a numeric literal, such as 157. Below are some example variable
definitions:

1 variable_1 PIC X(10) VALUE `abcdefghij`.

1 variable_2 PIC Z,999 VALUE 123.

Following are definitions of the allowed components of CobolScript picture clauses.

Alphanumeric Picture Clauses
Alphanumeric picture clauses use an X to represent a single byte of storage; a single-byte
alphanumeric variable will have a picture clause of PIC X, while a five-byte alphanumeric can be
defined as PIC XXXXX, PIC X(5), or PIC X(05).

PIC X(n)

CobolScript also provides a special alphanumeric picture clause − PIC X(n). PIC X(n) can be used
for FILLERs, or for any alphanumeric variables with initial values specified in VALUE clauses. PIC
X(n), when specified, automatically calculates the length of the value specified in the VALUE clause,
and allocates this number of bytes to the FILLER or variable. For example, the following FILLER
definition:

5 FILLER PIC X(n) VALUE `testing`.

Appendix

E
T

Page 182 CobolScript® Developer’s Guide

will allocate seven bytes of space to an alphanumeric FILLER variable as the variable is assigned the
value testing. This can also be written in a shorthand as follows, eliminating the keywords from the
definition:

5 `testing`.

The above form is called an implied filler variable, and can be used for any PIC X(n) FILLER variable
that has a VALUE clause.

Numeric Picture Clauses
Basic numeric picture clauses use a 9 to represent a single byte of storage; a single-digit, single-byte
numeric variable will have a picture clause of PIC 9, while a five-digit, five-byte numeric variable can
be defined as PIC 99999, PIC 9(5), or PIC 9(05).

Signed Numeric Variables
Signed numeric variables use an S to represent the sign, followed by a normal numeric picture clause.
The S indicates that a sign value will be maintained at the leftmost byte position. PIC S9(05) is an
example of a signed numeric variable.

Implied Decimal Points
An implied decimal point in a numeric picture clause is represented by a V. The V indicates that an
invisible decimal point will exist between the two digits on either side of the V. All calculations
performed on this number will behave as if there is a normal decimal point in the location of the V.
For example, a picture clause of PIC 999V99 represents a five-digit number with an implied decimal;
three of the digits are left of the decimal point, and two are post-decimal digits.

Literal Decimal Points
An actual decimal point in a numeric picture clause is represented by a period. The period indicates
the position of the literal decimal point; the decimal point will display when the variable is displayed,
and all internal calculations will be based on this decimal position. For example, a picture clause of
PIC 999.99 represents a five-digit number with two decimal places that requires six bytes of storage
(an additional byte of storage is required for the period).

Numeric Edited Picture Clauses
Numeric edited picture clauses are numeric clauses in which certain symbols have been placed within
the number, for purposes of clarity or legibility when the number is displayed. Like a literal decimal
point, each edit symbol added to the picture clause requires an additional byte of storage.

�	
�

Commas can be placed within a numeric picture clause to clarify number size, as in the numbers 1,000 and
2,345,678. The comma is placed between the digits of the picture clause where it should appear when the
number is displayed. For instance,

PIC 99,999 VALUE 45678.

 would display as 45,678.

CobolScript® Developer’s Guide Page 183

1��	����������	�

Leading zeros can be suppressed in numbers by replacing the usual 9 with a Z wherever the suppression is
desired. Suppression terminates at the first non-zero digit in the number, or at the first 9 in the picture clause,
whichever comes first. For instance, if two variables have the following picture clauses:

PIC Z,Z99.99 VALUE 123.55.
PIC Z,Z99.99 VALUE 3.55.

the numbers will display as ` 123.55` and ` 03.55`, respectively.

'�	
������	��
������

In addition to suppressing leading zeros like a Z, dollar signs in a numeric picture clause will force a $ to be
displayed in place of the rightmost zero that is suppressed. For example, the picture clause:

PIC $,$$$.99 VALUE 123.55.

will display as ` $123.55`.

,������2��&��2�"�	�����	�

The replacement of leading zeros in numeric character positions with asterisks is indicated by the use of the *
symbol. For example, the picture clause:

PIC *,***.99 VALUE 123.55.

will display as `**123.55`.

'�	
�����"��������

In addition to suppressing leading zeros like a Z, plus signs in a numeric picture clause will force a + to be
displayed in place of the rightmost zero that is suppressed if the number is positive, and a −−−− if the number is
negative. For instance, if two variables have the following picture clauses:

PIC +,+++.99 VALUE 123.55.
PIC +,+++.99 VALUE -123.55.

the numbers will display as ` +123.55` and ` -123.55`, respectively.

'�	
�����+���������

In addition to suppressing leading zeros like a Z, minus signs in a numeric picture clause will force a −−−− to be
displayed in place of the rightmost zero that is suppressed if the number is negative. For instance, if two have the
following picture clauses:

PIC -,---.99 VALUE 123.55.
PIC -,---.99 VALUE -123.55.

the numbers will display as ` 123.55` and ` -123.55`, respectively.

"����������	���	�

Numeric edited variables with plus sign control have a plus sign as the rightmost symbol in the picture clause.
When the variable has a positive value, a + will be displayed as the rightmost symbol in the number; when the
variable has a negative value, a −−−− will be displayed as the rightmost symbol. For instance, if two variables have the
following picture clauses:

PIC Z,999.99+ VALUE 123.55.
PIC Z,999.99+ VALUE -123.55.

the numbers will display as ` 123.55+` and ` 123.55-`, respectively.

Page 184 CobolScript® Developer’s Guide

+�����������	���	�

Numeric edited variables with minus sign control have a minus sign as the rightmost symbol in the picture clause.
When the variable has a negative value, a −−−− will be displayed as the rightmost symbol; when it has a positive value,
the minus sign will be suppressed. For instance, if two variables have the following picture clauses:

PIC -,---.99 VALUE 123.55.
PIC -,---.99 VALUE -123.55.

the numbers will display as ` 123.55 ` and ` 123.55-`, respectively.

����	���	�

Numeric edited variables with DB control have the letters DB in the rightmost position of the picture clause.
When the variable has a positive value, DB will be displayed right of the number; when the variable has a negative
value, CR will be displayed to the right of the number. For instance, if two variables have the following picture
clauses:

PIC Z,999.99DB VALUE 123.55.
PIC Z,999.99DB VALUE -123.55.

the numbers will display as ` 123.55DB` and ` 123.55CR`, respectively.

����	���	�

Numeric edited variables with CR control have the letters CR in the rightmost position of the picture clause.
When the variable has a negative value, CR will be displayed to the right of the number; if the number is positive,
display of the CR is suppressed. For instance, if two variables have the following picture clauses:

PIC Z,999.99CR VALUE 123.55.
PIC Z,999.99CR VALUE -123.55.

the numbers will display as ` 123.55 ` and ` 123.55CR`, respectively.

Replica and Occurs variables
Besides group item, alphanumeric elementary item, and numeric elementary item variables, two other
variable forms are possible in CobolScript: REPLICA variables and OCCURS clause variables. For
in-depth discussion of these two forms, refer to Chapter 3, CobolScript Language Constructs.

Picture Clause Examples
The following table contains examples that illustrate how literal values will display when moved to
variables with certain CobolScript picture clauses. The Value of Sending Field and Displayed Result
columns’ text is highlighted to accentuate any spaces that may or may not be displayed.

CobolScript® Developer’s Guide Page 185

Picture Type Value of Sending Field Picture of Receiving
Field

Displayed Result

Alphanumeric 12345678901234567890 X(20) 12345678901234567890

Alphanumeric `Cbscript` XXXXXXXXXX Cbscript `

Numeric 12345 99999 12345

Signed Numeric 12345 S9(05) +12345

Signed Numeric -12345 S9(05) -12345

Numeric with Implied Decimal 12345 9(05)V99 1234500

Numeric with Implied Decimal 12345 99999V99 1234500

Numeric with Literal Decimal 12345 99999.99 12345.00

Numeric Edited with Zero
Suppression

12345 ZZZZZZZZ ` 12345

Numeric Edited with Zero
Suppression And Comma

12345 ZZ,ZZZ,ZZZ.99 ` 12,345.00

Numeric Edited with Floating Dollar
Sign

12345 $$,$$$,$$$.99 ` $12,345.00

Numeric Edited with Asterisk Check
Protection

12345 **,***,***.99 ****12,345.00

Numeric Edited with Floating Plus
Sign

12345 ++,+++,+++.99 ` +12,345.00

Numeric Edited with Floating Plus
Sign

-12345 ++,+++,+++.99 ` -12,345.00

Numeric Edited with Floating Minus
Sign

12345 --,---,---.99 ` 12,345.00

Numeric Edited with Floating Minus
Sign

-12345 --,---,---.99 ` -12,345.00

Numeric Edited with Plus Sign
Control

12345 ZZZ,ZZZ.99+ `12,345.00+

Numeric Edited with Plus Sign
Control

-12345 ZZZ,ZZZ.99+ `12,345.00-

Numeric Edited with Minus Sign
Control

12345 ZZZZZZZ- ` 12345`

Numeric Edited with Minus Sign
Control

-12345 ZZZZZZZ- ` 12345-

Numeric Edited with DB Control 12345 ZZZ,ZZZ.99DB `12,345.00DB

Numeric Edited with DB Control -12345 ZZZ,ZZZ.99DB `12,345.00CR

Numeric Edited with CR Control 12345 ZZZCR 345 `

Numeric Edited with CR Control -12345 ZZZCR 345CR

Page 186 CobolScript® Developer’s Guide

CobolScript® Developer’s Guide Page 187

CobolScript® Basic Program
Structure

obolScript does not explicitly require a fixed framework of divisions, sections, and modules
in every program. Instead, CobolScript variable definitions, file descriptions, and procedural
statements can be placed in any location in a program and be considered valid. However,
basic COBOL program framework is supported by CobolScript for former COBOL

programmers to use, if desired. This appendix defines the components of that framework, for those
programmers that wish to follow older coding conventions. Again, all header sentences are optional,
and variable definitions and code statements may still appear anywhere within a program (except
within the Identification and Environment divisions, if they are included in your program).

CobolScript Program Templates
The code below is a basic, complete CobolScript program template. CobolScript enforces
conventions for code placement and commenting, so the column position, or offset, of your code is
relevant; comments must begin with an asterisk in the seventh column, and all code statements must
begin after the seventh column. (Column 7 is the seventh character position from the left edge of the
text file that contains your code.) Note the lack of division and section headers, and the FD
statement or variable definition placed between procedural statements:

 * Comments begin with an * in the 7th column.

 FD `<filename>` RECORD IS <record-size-in-bytes> BYTES.

 1 <variable> PIC <picture-clause> VALUE `<value>`.

 1 <group-item-name>.

 5 <variable> PIC <picture-clause> VALUE `<value>`.

 1 <occurs-variable> OCCURS <dimension> TIMES PIC <picture-clause>.

 <procedural statement>.

 .

 .

 <FD statement or variable definition>.

 <procedural statement>.

 .

 .

 <STOP RUN>.

Appendix

F
C

Page 188 CobolScript® Developer’s Guide

In contrast, the following code is a template of a CobolScript program that makes use of COBOL
division and section headers:

 IDENTIFICATION DIVISION.

 * Comment lines are any lines with an asterisk in column 7 *

 PROGRAM-ID. <this-filename>.

 AUTHOR. <authors-name>.

 ENVIRONMENT DIVISION.

 CONFIGURATION SECTION.

 SOURCE COMPUTER. <source-computer-type>.

 OBJECT COMPUTER. <object-computer-type>.

 DATA DIVISION.

 FILE SECTION.

 FD <filename> RECORD IS <record-size-in-bytes> BYTES.

 WORKING-STORAGE SECTION.

 01 <data-item-name> PIC <picture-clause> VALUE `<value>`.

 01 <group-item-name>.

 05 <data-item-name> PIC <picture-clause> VALUE `<value>`.

 01 <table-name> OCCURS <table-size> TIMES.

 05 <data-item-name> PIC <picture-clause> VALUE `<value>`.

 PROCEDURE DIVISION.

 <module-name>.

 <procedural statement>.

 .

 .

 <STOP RUN | GOBACK>.

 <module-name>.

 <procedural statement>.

 .

 .

 .

 .

Division headers, section headers, and module names, when used, must begin in column 8 or higher,
just like code statements.

There are four program division headers, or sentences, that can optionally be specified in CobolScript
programs. These headers indicate the beginning of a particular division to the CobolScript engine.
The division headers are:

• The Identification Division sentence;
• The Environment Division sentence;

CobolScript® Developer’s Guide Page 189

• The Data Division sentence;
• The Procedure Division sentence.

The entire content of the Identification and Environment divisions is treated as informational only by
the CobolScript engine. Thus, no program logic or variable definitions can be specified in either of
these divisions. Instead, they are used to describe the program and the machines it will be executed
on.

The Data division normally contains file and variable information. File Description statements (FDs),
COPY statements that load variable-only copybooks, and variable definitions may all be located
within the Data Division.

The Procedure division contains the program logic. In COBOL, this division is restricted to only
allow code statements, but in CobolScript, variable definitions and file descriptions may also be
included.

Although the division style of program layout may strike some programmers today as unwieldy, the
existence of the divisions has a historical basis, and arguably still has merit. Originally, COBOL was
designed to follow the layout of technical specifications, and the four program divisions were meant
to match the divisions of the specifications. This layout is familiar to COBOL programmers, and it
does lend itself well to maintenance and documentation.

Each program division begins with its own sentence, called a division header, which is just the name
of the division, followed by a period, as in:

IDENTIFICATION DIVISION.

Some of the divisions can be further divided into sections, which have their own section header
sentences. Convention dictates that the division and section header sentences are in all capital letters,
as in the example above and in the program template on the previous page, but this is not a
requirement in CobolScript.

Either the GOBACK or STOP RUN command is required as the last statement in the first module
of a program, if there is more than one module in your program. These statements both terminate
the execution of the program and prevent control from ‘falling through’ to subsequent modules.

Note that it is acceptable to exclude certain division headers from a program but not others, if
division headers are being used. For instance, the Identification division sentence can be excluded
from a program that uses the Environment, Data, and Procedure division sentences, but the
Procedure division sentence should not be excluded from a program that includes the Identification
division sentence.

For this reason, we recommend that you either use all of the division headers, or else completely
exclude them from your programs, in order to avoid confusion. If you are a programmer who is
accustomed to languages like C, you will probably be most comfortable in completely excluding division and section
headers from your programs. If this is the case, you may opt to skip the remainder of this appendix.

Each of the divisions is described below, in the order that their header sentences should appear within
a program, if you choose to use them.

Page 190 CobolScript® Developer’s Guide

The Identification Division
The Identification Division contains descriptive information about the program. This information is
essentially for documentation purposes; because of this, and because the Identification Division is the
first division of every program, it is also an excellent place to put a comment block that gives an
overview of the program.

The Identification Division contains only four sentences: The PROGRAM-ID sentence and its
argument sentence, and the AUTHOR sentence and its argument sentence. The PROGRAM-ID
sentence and its argument describe the name of the program, as in:

PROGRAM-ID. TEST.CBL.

The AUTHOR sentence and its argument name the creator of the program, as in:

AUTHOR. B. SHAKE-SPEARE.

The Identification Division is strictly an optional component of CobolScript programs.

Here’s what a complete Identification Division might look like:

 IDENTIFICATION DIVISION.

* Comment lines are any lines with an asterisk in column 7 *

 PROGRAM-ID. TEST.CBL.

 AUTHOR. DESKWARE.

The Environment Division
The Environment Division contains descriptive information about the computer that the program
was developed on, and the computer that the code will be executed on. Like the Identification
Division, the Environment Division is solely for informational purposes in CobolScript and is entirely
optional.

In CobolScript, the Environment Division contains a single section called the Configuration Section.
The Configuration Section contains four sentences: The SOURCE COMPUTER and its argument
sentence, and the OBJECT COMPUTER and its argument sentence. The SOURCE COMPUTER
describes the environment the source was developed on, as in:

SOURCE COMPUTER. FreeBSD.

The OBJECT COMPUTER describes the execution environment for this program, as in:

OBJECT COMPUTER. LINUX.

The Input-Output Section (a COBOL section) is not required or supported in CobolScript.

CobolScript® Developer’s Guide Page 191

Here’s what a complete Environment Division could look like:

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE COMPUTER. WinNT.

OBJECT COMPUTER. FreeBSD.

The Data Division
The Data Division is the division where files may be described and variables defined.

Describing Files
The File Section of the Data Division is an optional section header that indicates where file
description (FD) statements will be located. If you prefer, you can also place your record variable
definitions in the File Section. The syntax of the FD statement is described in the Data and
Copybook Files section of Chapter 3, CobolScript Language Constructs.

A File Section with one file description sentence and one record definition looks like this:

FILE SECTION.

FD `info.txt` RECORD IS 500 BYTES.

1 info_record.

 5 ir_cust_name PIC X(18).

 5 ir_free_text PIC X(480).

Note that specifying the File Section header does not preclude you from placing FD statements or
record definitions elsewhere in your program.

Defining Variables
The Working-Storage Section of the Data Division is an optional section header that indicates where
variables definitions are to be placed. Here’s an example Working-Storage Section:

WORKING-STORAGE SECTION.

1 text_input PIC X(40).

1 order_info.

 2 cust_info.

 3 name PIC X(12).

 3 loc PIC $,999.99.

 2 order_amt PIC 99.

1 input_val PIC X(25).

Each CobolScript variable definition, whether group item or elementary item, has a level number and
variable name, and elementary items also have picture clauses that define the variable’s length.
Variable definitions are described in detail in the Variables section of Chapter 3, CobolScript Language
Constructs, and picture clause formats in Appendix E, CobolScript Picture Clauses.

For a more detailed explanation of level numbers and how to use them to manipulate data see
Chapter 8, Other Advanced Programming Techniques Using CobolScript.

Page 192 CobolScript® Developer’s Guide

As with the File Section header, specifying the Working-Storage Section header does not preclude
you from placing variable and record definitions elsewhere in your program.

Here’s what one version of a complete Data Division might look like:

DATA DIVISION.

FILE SECTION.

FD `test.dat` RECORD IS 500 BYTES.

1 info_record.

 5 ir_cust_name PIC X(18).

 5 ir_free_text PIC X(480).

WORKING-STORAGE SECTION.

1 text_input PIC X(40).

1 order_info.

 2 cust_info.

 3 name PIC X(12).

 3 loc PIC $,999.99.

 2 order_amt PIC 99.

1 component_1 OCCURS 10 TIMES PIC 99.

The Procedure Division
The Procedure Division is where the logic of your program is located. Since CobolScript code is
executed sequentially, the first line of code in the Procedure Division of a CobolScript program is the
line that will be performed first. Good programming practice warrants the use of modules (also
known as paragraphs) however, so your first code sentence after the Procedure Division sentence
would normally be the name of your first (parent) module. This is conventionally a name like MAIN,
so that the first two lines of the Procedure Division might be:

PROCEDURE DIVISION.

MAIN.

This first paragraph is unique in that it should end with either the STOP RUN or GOBACK
statement. These statements terminate the control flow of the program and prevent subsequent
paragraphs from sequentially executing. A complete main module could look like this:

MAIN.

 DISPLAY `This is a test`.

 PERFORM MODULE-1.

 STOP RUN.

Code modularity is achieved by naming other paragraphs with paragraph header sentences, and then
calling these other named paragraphs with the PERFORM statement, as in the PERFORM above. A
paragraph header sentence is just a module name, with no spaces between characters, and a period
following the name. Like MAIN, which is a paragraph header sentence, the code for a module begins
with the line that follows the header sentence.

A particular paragraph ends where the subsequent one begins, i.e., immediately prior to the next
paragraph header sentence. In the following example, the module MODULE-1 ends with the line

CobolScript® Developer’s Guide Page 193

prior to MODULE-2 (the MOVE statement) and MODULE-2 ends after the DISPLAY statement,
since this is the last line of code in this particular program.

MODULE-1.

 PERFORM MODULE-2.

 MOVE var_1 TO var_2.

MODULE-2.

 DISPLAY `This is a test from MODULE-2`.

The entire Procedure Division in this example looks like this:

PROCEDURE DIVISION.

MAIN.

 DISPLAY `This is a test`.

 PERFORM MODULE-1.

 STOP RUN.

MODULE-1.

 PERFORM MODULE-2.

 MOVE var_1 TO var_2.

MODULE-2.

 DISPLAY `This is a test from MODULE-2`.

For a detailed description of how to code in a modular fashion and how to use modules, see Chapter
8, Other Advanced Programming Techniques Using CobolScript.

Page 194 CobolScript® Developer’s Guide

CobolScript® Developer’s Guide Page 195

Setting Up ODBC and ODBC Data
Sources for LinkMaker™

obolScript LinkMaker™ is the database conduit technology that is integrated with
CobolScript Professional Edition. LinkMaker™ uses the Open DataBase Connectivity
(ODBC) specification to connect to a broad range of data sources such as DB2®, Oracle®,
Informix®, MS SQL Server®, MS Access®, Postgres®, and MySQL™.

For LinkMaker™ to access data sources properly, so that you will be able to embed SQL in your
CobolScript programs, some setup and configuration is required. In Microsoft® operating systems,
this setup is relatively simple, while on Unix platforms it’s slightly more involved; this is because the
normal Unix environment will not have ODBC connectivity software already installed. In this
chapter, we provide step-by-step instructions for configuring your data sources in both Windows®

and Unix environments, and for setting up unixODBC, an open source ODBC connectivity package
for Unix environments.

Prior to configuring a data source, you must obtain and install an ODBC driver for the data source
you wish to access. Microsoft® operating systems come with many popular drivers, and many others
are available from database and driver vendors. For Unix platforms, the authors of unixODBC
provide several database drivers, and several other Unix database vendors provide ODBC drivers.
Complete lists of drivers and vendor/author contact information are in the sections titled Microsoft
Windows® ODBC Drivers and UnixODBC ODBC Drivers at the end of this appendix.

Note that the setup information in this appendix is for products not developed or supported by
Deskware. For this reason, but it is not guaranteed to be current or complete, since Deskware has no
control over these external products or their evolution.

Setup and Configuration in Windows® Environments
In most Windows® environments, ODBC will already be installed (an ODBC icon will be visible in
the Windows® Control Panel if ODBC is installed). If ODBC is not already on your Windows®

machine, you should install it from your Windows® CD prior to continuing.

Once you’ve confirmed that ODBC is installed, the only setup tasks required prior to using
LinkMaker™ are:

Appendix

G
C

Page 196 CobolScript® Developer’s Guide

1. Obtaining a driver for your data source, if one is not already present on your computer;

2. Configuring the data source.

The following subsection describes the steps necessary to configure your data source so that it can be
accessed directly by LinkMaker™.

Configuring an ODBC Data Source in Windows®

1. From the Windows® Start menu, select Settings and then Control Panel. This will bring up your
Microsoft Windows® Control Panel, as shown in Figure G.1. You should see an icon named
ODBC Data Sources (32bit). If this icon does not exist, you must install ODBC from your
Windows® CD before proceeding.

2. Double-click on the ODBC Data Sources (32bit) icon. This will bring up the ODBC Data Source
Administrator window as shown in Figure G.2.

Figure G.2 – The ODBC Data Source Administrator.

Figure G.1 – The Microsoft Windows Control Panel.

CobolScript® Developer’s Guide Page 197

3. From the ODBC Data Source Administrator, click on the Add button. This will bring up the
Create New Data Source window, as shown in Figure G.3. From here you will be able to
create a new data source using any ODBC drivers that are installed on your system.
Windows® comes with ODBC drivers for many data sources; if your data source is not listed
in this window, you will need to purchase a driver from a vendor. This appendix contains an
exhaustive list of vendors that produce ODBC drivers. See the section later in this appendix
titled Microsoft Windows® ODBC Drivers for more information.

4. Select an ODBC driver for which you want to set up a data source. In Figure G.3, we have
selected SQL Server. Click on the Finish button to bring up the next window.

5. In this next window (see Figure G.4), you will give your ODBC data source a name. This is
the name that you will use as the first argument of the CobolScript OPENDB command to
connect to the data source. In this example we will use deskware. You can also provide a
description of the data source name in the Description: input box. The last input box is the
Server. This refers to the name of the server that is hosting the data source. In this example
we select (local) because our MS SQL Server database is on this machine. Because this
window could differ from Figure G.4 depending on your ODBC driver, your configuration
here may be slightly different. After you have entered all required information, click on the
Next button.

Figure G.3 – Creating a new data source in Windows®.

Page 198 CobolScript® Developer’s Guide

6. Next, you will see a window similar to Figure G.5 that allows you to enter additional
information about the data source that you are connecting to. You may want to enter a data
source Login ID and Password here. If you do not know what Login ID and Password to enter
here, you should contact your database administrator. The window that you see here may
differ slightly from the one in Figure G.5 depending on the ODBC driver that you are
installing. After you have finished, click on the Next button.

7. Depending on your driver, the next window (see Figure G.6) may allow you to specify log
files that will record and calculate statistics about the queries you send to the data source.
These file are good audit trails, but they do slow down the performance of your application.
After you have selected the options you want, click on the Finish button.

Figure G.5 – Entering a data source Login ID and Password.

Figure G.4 – Selecting a data source.

CobolScript® Developer’s Guide Page 199

8. For most drivers, Figure G.7 is the last window you will see before your data source is set up.
It gives you a chance to review the options you have selected. If you need to modify any of
these, click on the Cancel button and you will be able to go back and change them. If not,
click on the OK button.

9. After you have clicked on the OK button, you will be back at the ODBC Data Source
Administrator window. If you are finished adding data sources, click on the Cancel button to
exit. If you want to check the settings for the data source that you just added, select it and
click on the Configure button.

Figure G.7 – Verify data source settings.

Figure G.6 – Specifying data source log files.

Page 200 CobolScript® Developer’s Guide

10. Now you will be able to connect to databases with CobolScript for Windows®. See
Appendix H for more information on embedded SQL programming in CobolScript.
Remember that you need to use the data source name that you set up and a valid data source
Login ID and password.

Setup and Configuration in Unix Environments

UnixODBC Installation and Setup
You must install unixODBC in order to use the LinkMaker™ version of CobolScript Professional for
Linux®, FreeBSD®, or SunOS®. UnixODBC also has a GUI (Graphical User Interface) component
that requires installation of the QT graphics library, but installation of the GUI is not required in
order to use LinkMaker™. If you are running Linux with a kernel older than 2.2.12, you should not
install the GUI. Also, if you are interested in getting started as quickly as possible and with the least
effort, and you are comfortable working in a non-graphical environment, you can skip the GUI
installation.

The next two subsections provide step-by-step instructions on how to install unixODBC. The first
subsection describes installation without the GUI; the second, the more involved installation with the
GUI component.

����
���������-�����
��&	����&��.!�

The unixODBC manager is a freely available open source package developed by unixODBC.org
You will need to go to the unixODBC web site to obtain this software.

Figure G.8 – ODBC Data Source Administrator.

CobolScript® Developer’s Guide Page 201

1. Go to the unixODBC site and download the unixODBC driver manager package. The web
site is at http://www.unixodbc.org. You can go directly to the download page by typing the
following in URL in your web browser:

http://www.unixodbc.org/download.htm

2. Once you’ve located the unixODBC web site, download the latest copy of unixODBC to
your hard drive. The name of the file will be unixODBC*.tar.gz, where * is the version
number of the latest release. You should save this file to the /usr/local directory on your
machine. If you save it to another directory, bring up a command prompt and go to that
directory. Then copy the file to the /usr/local directory by typing the following at the
command prompt:

cp unixODBC*.tar.gz /usr/local

3. The unixODBC package is tar’d and compressed with the gzip format. You will need to
uncompress it and un-tar it. Uncompress it by using the gunzip program and typing the
following at the command prompt, making sure you are in the /usr/local subdirectory on
your machine when you do this:

gunzip unixODBC*.tar.gz

4. You will now have what is called a tar file. This file contains many other files. Un-tar this file
by typing the following command at the system prompt. It will create a new subdirectory in
your /usr/local directory that will contain the unixODBC files. Again, make sure you are still
in the /usr/local subdirectory on your machine when you type this command:

tar -xvf unixODBC*.tar

5. Change your current directory to the unixODBC directory that was created by the tar
command in step 4. Do this by typing:

cd unixODBC*

6. You will be inside the unixODBC directory at this point. This directory contains the
unixODBC make files. These make files will allow you to compile the unixODBC driver
manager on your machine. Before you can run the make files you must configure them. Do
this by entering the following at the command prompt:

./configure –-enable-gui=no

Notice that the option to the configure script is -–enable-gui=no. This tells that configuration
script that you wish to configure the make files for an installation of unixODBC without the
graphical user interface.

7. After running the configuration script, you can compile the unixODBC package on your
machine. You will do this by running the Unix make command. This command will look at a
file named makefile in the current directory. This file was created by the configuration script.
Enter the following at the command prompt to begin compiling the unixODBC package (it
may take a few minutes to compile):

make

http://www.unixodbc.org/
http://www.unixodbc.org/download.htm

Page 202 CobolScript® Developer’s Guide

8. After you have run make and compiled the unixODBC package, install it on your machine by
typing the following at the command prompt:

make install

9. Now unixODBC is compiled and installed on your system. This installation process creates
various shared libraries on your machine and places them in the /usr/local/lib directory. In
order for your system to recognize these libraries, you must directly edit the ld.so.conf file on
your system and add a line to this file that contains /usr/local/lib in it. To edit this file, type
the following at the command prompt (consult your operating system’s documentation for
instructions on how to use the vi editor):

cd /etc

vi ld.so.conf

10. After you have edited and saved the ld.so.conf file, run the following from the command
prompt. This will update your system that it can find the newly added shared libraries:

ldconfig

11. Next, you will set up the odbcinst.ini file for the data source you wish to access on this machine.
You will need to go to the /usr/local/etc directory and edit the file named odbcinst.ini:

cd /usr/local/etc

vi odbcinst.ini

12. You should consult the unixODBC documentation at http://www.unixodbc.org for
additional information on how to edit odbcinst.ini. Here is an example of two entries in
odbcinst.ini, one for MySQL and one for PostgreSQL:

[MySQL]

Description = MySQL Driver

Driver = /usr/local/lib/libmyodbc.so

Setup = /usr/local/lib/libodbcmyS.so

FileUsage = 1

[PostgreSQL]

Description = PostgreSQL Driver

Driver = /usr/local/lib/libodbcpsql.so

Setup = /usr/local/lib/libodbcpsqlS.so

FileUsage = 1

13. The next step is to create data source definitions in the odbc.ini file that is located in the
/usr/local/etc directory: Assuming you are still in the /usr/local/etc directory, just type the
following:

vi odbc.ini

14. Below are examples of odbc.ini file definitions for PostgreSQL and MySQL. Consult the
unixODBC documentation at http://www.unixodbc.org for additional information on how
to create these entries:

http://www.unixodbc.org/
http://www.unixodbc.org/

CobolScript® Developer’s Guide Page 203

[PostgreSQL]

Description = PostgreSQL

Driver = PostgreSQL

Trace = No

TraceFile =

Database = test

Servername = localhost

UserName = postgres

Password = mypass

Port = 5432

Protocol = 6.4

ReadOnly = No

RowVersioning = No

ShowSystemTables = No

ShowOidColumn = No

FakeOidIndex = No

ConnSettings =

[MySQL]

Description = MySQL

Driver = MySQL

Trace = Yes

TraceFile = /tmp/mysql.odbc.log

Server = localhost

Port = 3306

Database = deskware

User = root

Password = mypass

1. You are now ready to connect to a unixODBC data source using CobolScript LinkMaker™.
Since you are working on a Unix platform, make certain that you have renamed the
LinkMaker™-enabled version of CobolScript Professional Edition to cobolscript.exe and are
using it instead of the default version of CobolScript Professional (see the readme.txt file
included with Unix versions of CS Professional for more information). Also, be sure to
remember to use the database name that you create in the odbc.ini file for your first argument of
the CobolScript OPENDB command. See Appendix H for information on how to use SQL
statements with CobolScript.

����
���������-�����
��&��&��#�3���	
��.!�

The GUI portion of the unixODBC package requires the QT graphics library. This library is freely
available and can be obtained from a company called Troll Tech. Here are step-by-step instructions
that explain where to get it and how to install this library.

1. The first step to installing unixODBC with the X Windows graphical user interface is to
install the QT graphics library. Start a web browser and enter the following URL:

http://www.trolltech.com/dl/qtfree-dl.html

2. After the above URL has successfully loaded, download the QT graphics library (the file
named qt-2.0.2.tar.gz) to the /usr/local directory on your machine. If you download it to

http://www.trolltech.com/dl/qtfree-dl.html

Page 204 CobolScript® Developer’s Guide

another directory, bring up a command prompt and go to that directory. Now copy the file
to the /usr/local directory by typing the following at the prompt:

cp qt-2.0.2.tar.gz /usr/local

3. This file is a tar’d file that is compressed with the Unix gzip program. You will need to
uncompress it. Do so by typing the following at the command prompt:

gunzip qt-2.0.2.tar.gz

4. Now you will have a tar file in your /usr/local directory. It contains many files. To extract
these files, type the following at the command prompt. This will un-tar the files into a
directory named /usr/local/qt-2.0.2:

tar –xvf qt-2.0.2.tar

5. You now need to change the name of the /usr/local/qt-2.0.2 directory to just plain
/usr/local/qt. You will accomplish this by typing the following at the command prompt:

mv qt-2.0.2 qt

6. The next step involves setting environment variables in either your .profile or .login files,
depending on which Unix shell you are using.

In .profile (if your shell is bash, ksh, zsh or sh), add the following lines:

QTDIR=/usr/local/qt

PATH=$QTDIR/bin:$PATH

if [$MANPATH]

then

 MANPATH=$QTDIR/man:$MANPATH

else

 MANPATH=$QTDIR/man

fi

if [$LD_LIBRARY_PATH]

then

 LD_LIBRARY_PATH=$QTDIR/lib:$LD_LIBRARY_PATH

else

 LD_LIBRARY_PATH=$QTDIR/lib

fi

LIBRARY_PATH=$LD_LIBRARY_PATH

if [$CPLUS_INCLUDE_PATH]

then

 CPLUS_INCLUDE_PATH=$QTDIR/include:$CPLUS_INCLUDE_PATH

else

 CPLUS_INCLUDE_PATH=$QTDIR/include

fi

export QTDIR PATH MANPATH LD_LIBRARY_PATH LIBRARY_PATH

export CPLUS_INCLUDE_PATH

CobolScript® Developer’s Guide Page 205

In .login (if your shell is csh or tcsh), add the following lines:

if (! $?QTDIR) then

 setenv QTDIR /usr/local/qt

endif

if ($?PATH) then

 setenv PATH $QTDIR/bin:$PATH

else

 setenv PATH $QTDIR/bin

endif

if ($?MANPATH) then

 setenv MANPATH $QTDIR/man:$MANPATH

else

 setenv MANPATH $QTDIR/man

endif

if ($?LD_LIBRARY_PATH) then

 setenv LD_LIBRARY_PATH $QTDIR/lib:$LD_LIBRARY_PATH

else

 setenv LD_LIBRARY_PATH $QTDIR/lib

endif

if (! $?LIBRARY_PATH) then

 setenv LIBRARY_PATH $LD_LIBRARY_PATH

endif

if ($?CPLUS_INCLUDE_PATH) then

 setenv CPLUS_INCLUDE_PATH $QTDIR/include:$CPLUS_INCLUDE_PATH

else

 setenv CPLUS_INCLUDE_PATH $QTDIR/include

endif

7. After you have completed this step, you will need to either login again, or re-source the
profile before continuing, so that the $QTDIR environment variable is set. This step is
crucial; if you don’t do this, the installation will fail. To re-source the profile, type one of the
following (depending on whether you have a .profile or .login file) at the system prompt:

source .profile

source .login

8. Now that you have logged in again or re-sourced the profile, bring up a command prompt
and enter the following command.

cd /usr/local/qt

9. You are now in the QT directory. This directory contains the configuration script that is
required for the installation of the QT library. Run the configuration script by typing the
following at the prompt:

./configure

Page 206 CobolScript® Developer’s Guide

10. The above step will create the make file that is required to compile QT on your system. You
now need to run make to build QT on your system. Do this by entering the following at the
command prompt (this step will take several minutes to complete):

make

11. You are now ready to install unixODBC with the graphical user interface. Go to the
unixODBC web site and download the unixODBC driver manager package. Their web site
is at http://www.unixodbc.org. You can go directly to the download page by typing the
following in URL in your web browser:

http://www.unixodbc.org/download.htm

12. Now that you are at the unixODBC web site, download the latest copy of unixODBC to
your hard drive. The name of the file will be unixODBC*.tar.gz, where * is the version
number of the latest release. You should save this file to the /usr/local directory on your
machine. If you save it to another directory, bring up a command prompt and go to that
directory. Then copy the file to the /usr/local directory by typing the following at the
command prompt:

cp unixODBC*.tar.gz /usr/local

16. Now that you are at the unixODBC web site, download the latest copy of unixODBC to
your hard drive. The name of the file will be unixODBC*.tar.gz, where * is the version
number of the latest release. You should save this file to the /usr/local directory on your
machine. If you save it to another directory, bring up a command prompt and go to that
directory. Then copy the file to the /usr/local directory by typing the following at the
command prompt:

cp unixODBC*.tar.gz /usr/local

17. The unixODBC package is tar’d and compressed with the gzip format. You will need to
uncompress it and un-tar it. Uncompress it by using the gunzip program and typing the
following at the command prompt, making sure you are in the /usr/local subdirectory on
your machine when you do this:

gunzip unixODBC*.tar.gz

18. Now that you have uncompressed the file, you will have what is called a tar file. This file
contains many other files. Un-tar this file by typing the following command at the system
prompt. It will create a new subdirectory in your /usr/local directory that will contain the
unixODBC files. Again, make sure you are still in the /usr/local subdirectory on your
machine when you type this command:

tar -xvf unixODBC*.tar

19. Change your current directory to the unixODBC directory that was created by the tar
command in step 4. Do this by typing:

cd unixODBC*

http://www.unixodbc.org/
http://www.unixodbc.org/download.htm

CobolScript® Developer’s Guide Page 207

20. You will be inside the unixODBC directory at this point. This directory contains the
unixODBC make files. These make files will allow you to compile the unixODBC driver
manager on your machine. Before you can run the make files you need to configure them.
You will do this by entering the following at the command prompt:

./configure

21. Continue on by performing Steps 7-15 in the previous subsection, Installing unixODBC
without the GUI.

unixODBC non-GUI Component (isql)
UnixODBC has a special interactive mode that can be entered with the isql command. You can
connect to your data sources, send SQL commands to the data source, and receive results from the
data source by using isql. You can start this tool by typing the following at the system prompt:

/usr/local/bin/isql

Specify an ODBC data source name as an argument in order to directly interact with your database, as
in the following command line entry:

/usr/local/bin/isql MySQL

This will bring up an isql interactive session like the one shown in Figure G.9.

UnixODBC GUI Components
These components are only available if you have installed the GUI portion of unixODBC.

The unixODBC Data Source Administrator, or ODBCConfig, is a tool designed to allow you to easily set
up data sources. Start the Data Source Administrator by typing the following at the system prompt:

Figure G.9– unixODBC isql command line tool.

Page 208 CobolScript® Developer’s Guide

/usr/local/bin/ODBCConfig

A window similar to Figure G.10 will appear. From here, you can add, remove, and configure data
sources.

Data Manager is a graphical tool for exploring data sources. Start the Data Manger by typing the
following at the system prompt:

/usr/local/bin/DataManager

Figure G.11– The unixODBC Data Manager

Figure G.10– The unixODBC Data Source Administrator.

CobolScript® Developer’s Guide Page 209

A window like the one in Figure G.11 will appear on your desktop. Using this tool, you can browse
your data sources and execute SQL queries against them.

Microsoft Windows ODBC Drivers
Some ODBC drivers are included with the Microsoft Windows operating system. If you plan to
work with a data source that Microsoft does not provide an ODBC driver for, you will need to
purchase an ODBC driver from one of these companies.

Company ODBC Driver Data Source

Acucorp, Inc.
Telephone: 619-689-4500
Fax: 619-689-4550
http://www.acucobol.com

AcuODBC Vision Driver Vision indexed file system

Aonix
Telephone: 415-543-0900
Fax: 415-543-0145
http://www.aonix.com

NOMAD
RP/Server
OD/Server

DB2
Teradata
IMS
IDMS
ISAM
QSAM
VSAM

Applied Information Services
Telephone: 301-489-1024
Fax: 301-489-1021
http://www.uniaccess.com

UniAccess ODBC Server Unisys RDBMS
MAPPER

Applix, Inc.
Telephone: 508-870-0300
Fax: 508-366-2278
http://www.applix.com

TM1 ODBC TM1 databases

Ardent Software Corporation
Telephone: 508-366-3888
Fax: 508-366-3669
http://www.ardentsoftware.com

UniVerse ODBC
UniDesktop ODBC

UniVerse
UniData RDBMS

August Software Corp.
Telephone: 714-454-9007
Fax 714-454-9032
http://www.augsoft.com

OverDriver
ODBC Router (server)

Data sources with ODBC drivers

Autodesk Inc.
Telephone: 415-507-5000
Fax: 415-507-5100
http://www.autodesk.com

AutoCAD ODBC Driver AutoCAD SQL Extension (ASE)

Automation Technology Inc.
Telephone: 408-473-0200
Fax: 408-473-0201
http://www.atinet.com

OpenAccess ODBC SDK
OpenRDA ODBC drivers

Any non-SQL database and SQL
Server, Microsoft Access from
non-Window platforms

BORN Information Services
Telephone: 612-404-4000
Fax: 612-404-4444
http://www.born.com

ODBC for the AS/400 IBM AS/400

http://www.acucobol.com/
http://www.aonix.com/
http://www.uniaccess.com/
http://www.applix.com/
http://www.ardentsoftware.com/
http://www.augsoft.com/
http://www.autodesk.com/
http://www.atinet.com/
http://www.born.com/

Page 210 CobolScript® Developer’s Guide

Company ODBC Driver Data Source

Bull Worldwide Information Systems
Telephone: 602-980-8575
Telephone: 602-862-6062
Fax: 602-862-3606
http://www.bull.com

DDA ODBC Oracle
DB2
Informix
Teradata
IMS
VSAM
OpenIngres
Rdb
RMS
IDS II
RFM II
UFAS

Byte Designs, Ltd.
Telephone: 604-534-0722
Fax: 604-534-2601
http://www.bytedesign.com

Byte Design ODBC C-ISAM
D-ISAM
DISAM96
Informix

Centura Software Corp.
Telephone: 415-321-9500
Fax: 415-321-5471
http://www.centurasoft.com

ODBC Drivers for SQLBase
SQLHost/DB2

SQLBase
DB2
Velocis

Cincom Systems
Telephone: 513-662-2300
Fax: 513-459-7145
http://www.cincom.com

Supra ODBC Driver
UniSQL ODBC Driver

Supra Server UniSQL (except
Japan)

Computer Associates Int'l, Inc.
Telephone: 800-225-5224
http://www.cai.com

CA-IDMS Server ODBC
CA-Visual Express
ODBC Driver for Ingres
CA-Datacom Server

IDMS
OpenIngres
IBM DB2
IMS
Rdb
RMS
VSAM
AllBase/SQL
Image/SQL
CA-Datacom/DB

Computer Corporation of America
http://www.cca-int.com

ODBC V2, Connect* System 1032
Model 204

Computer Solutions Limited
Telephone: +44 (0) 1905 794400
Fax: +44 (0) 1905 794 464
http://www.csllink.com/products.html

Linkway 32 AllBase/SQL
Image/SQL

Cornerstone
Telephone: 603-595-7480
Fax: 603-882-7313
http://www.corsof.com

Dyna Access Tandem NonStop SQL
Tandem Enscribe

Cross Access Corp.
Telephone: 408-735-7545
Fax: 408-735-0328
http://www.crossaccess.com

Cross Access ODBC Driver Adabas
Datacom
DB2
DL/1
IDMS
IMS
Oracle
Sequential
VSAM

Datafit Ltd.
Telephone: 011-44-1-480-454-604

Datafit DP4 Datafit DP4

http://www.bull.com/
http://www.bytedesign.com/
http://www.centurasoft.com/
http://www.cincom.com/
http://www.cai.com/
http://www.cca-int.com/
http://www.csllink.com/products.html
http://www.corsof.com/
http://www.crossaccess.com/

CobolScript® Developer’s Guide Page 211

Company ODBC Driver Data Source

Decision Support, Inc.
Telephone: 704-849-8904
Fax: 704-487-4875
http://www.dsinc.com

UniStar ODBC Driver DMS II
DARGAL server

Dharma Systems
Telephone: 603-886-1400
Fax: 603-883-6904
http://www.products.dharma.com

Dharma ODBC SDK
ODBC SDK Lite

BASISplus
GT.M
PROMIS
custom drivers

Doric Computer Systems International
Telephone: 800-223-2942
Telephone: 206-367-7974
http://www.doric.com

INFO~ODBC Direct Client
INFO~ODBC Server

C-ISAM
D-ISAM
ESRI ARC/INFO Coverages
INFO DBMS & 4G/L

Egan Systems, Inc.
Telephone: 800-645-9898
Telephone: 516-588-8000
Fax 516-588-8001
http://www.egns.com/ODBC/

Interactive COBOL ODBC Driver ICOBOL Server
COBOL files

Easysoft Ltd.
Telephone: +44 (0)1132220400
Fax: +44 (0)1132220500
http://www.easysoft.com

ODBC for RMS
ODBC for ISAM
ODBC for CODA
ODBC for ROSS

RMS files
C-ISAM
D-ISAM
T-ISAM

EasiRun Software
Telephone: 619-587-0467
Fax: 619-587-0466
http://www.easirun.com

EasiODBC
Relativity
USQL Client-Server drivers

AcuCOBOL files
RM-COBOL
EXTFH
C-ISAM
Business BASIC ISAM
U/FOS

Empress Software Inc.
Telephone: 301-220-1919
Fax 301-220-1997
http://www.empress.com

Empress ODBC driver Empress

Ensodex, Inc.
Telephone: 612-766-8787
Fax 612-766-8792
http://www.ensodex.com

Hot Sockets ODBC Driver (server) Data sources with 32-bit ODBC
drivers

Esker, Inc.
Telephone: 415-675-7777
Fax: 415-675-7775
http://www.esker.com

ODBC Driver Pack
TunSQL

C-ISAM
D-ISAM
IBM DB2
Informix
Oracle
Progress
Sybase

EveryWare Development Corp.
Telephone: 905-819-1173
Fax 905-819-1172
 http://www.everyware.com

Butler SQL ODBC Driver Butler SQL

Farabi Technology Corp.
Telephone: 800-565-3455
Telephone: 514-332-3455
Fax 514-332-3915
http://www.farabi.com

ODBC for Ultima/400 AS/400

FairCom Corp.
Telephone: 800-234-8180
Telephone: 314-445-6833
Fax 314-445-9698
http://www.faircom.com

FairCom ODBC Driver FairCom Server
c-tree Plus

http://www.dsinc.com/
http://www.products.dharma.com/
http://www.doric.com/
http://www.egns.com/ODBC/
http://www.easysoft.com/
http://www.easirun.com/
http://www.empress.com/
http://www.ensodex.com/
http://www.esker.com/
http://www.everyware.com/
http://www.farabi.com/
http://www.faircom.com/

Page 212 CobolScript® Developer’s Guide

Company ODBC Driver Data Source

FFE Software
Telephone: 510-232-6800
Fax 510-237-7433
http://www.firstsql.com

FirstSQL ODBC FirstSQL
dBASE

Filemaker, Inc.
Telephone: 800-325-2747
Telephone: 408-987-7000
http://www.filemaker.com

Filemaker Pro ODBC Driver Filemaker

FLEXquarters
Telephone: 602-732-9217
Fax: 602-732-9590
http://www.flexquarters.com

Flex/ODBC DataFlex files

M.B. Foster Associates
Telephone: 613-448-2333
Fax: 613-448-2588
http://www.mbfoster.com/

DataExpress ODBCLink HP 3000 Allbase
TurboImage

Fulcrum Technologies, Inc.
Telephone: 613-238-1761
Fax: 613-238-7695
http://www.fultech.com

Fulcrum SearchServer Fulcrum Search Server

Generix Limited
Telephone: +44 (0) 1924 500151
Fax: +44 (0) 1924 500515
http://www.generix.ltd.uk

CONNX DB2
Oracle
RDB
RMS

gfs Gesellschaft fur Informationssysteme mbH
Telephone: +49-40-450232-0
Fax: +49-40-450232-66

ODBC-Rocket BS2000 DBMS
SESAM/SQL
UDS/SQL
LEASY
ISAM

Harbinger Corporation
Telephone: 800-555-2989
Telephone: 404-467-3000
Fax: 404-841-4364
http://www.harbinger.com

STX for Windows STX

Hill Croft Information Technologies
Telephone: +44 1908 666244
Fax: +44 1908 666244
http://www.LinkEase.co.uk

LinkEase DataEase

HiT Software, Inc.
Telephone: 408-369-7290
Fax: 408-369-7299
http://www.hit.com

HS*ODBC AS/400
DB2

Hewlett Packard
Telephone: 800-637-7740
http://www.hp.com

AllBase
Image

AllBase/SQL
Image/SQL

HOB GmbH & Co. KG Germany
Brandstaetterstrasse 2-10 D-90513 Zirndorf
Telephone: +49-911-9666-393
Fax: +49-911-9666-271
http://www.hob.de

HOBLink DRDA DB2 OS/390
DB2 UDB
DB2 MVS
DB2 VSE&VM
DB2/400
DB2/6000
DB2/2
VSAM*
IMS/DB*
DL/1*
* requires HOBDB online

http://www.firstsql.com/
http://www.filemaker.com/
http://www.flexquarters.com/
http://www.mbfoster.com/
http://www.fultech.com/
http://www.generix.ltd.uk/
http://www.harbinger.com/
http://www.linkease.co.uk/
http://www.hit.com/
http://www.hp.com/
http://www.hob.de/

CobolScript® Developer’s Guide Page 213

Company ODBC Driver Data Source

IBM Corp.
Telephone: 800-IBM-4YOU
http://www.software.ibm.com/data/db2/db2
connect

DB2 Connect DB2 for OS/390
DB2 for MVS/ESA
DB2/400
DB2 for VSE and VM
DB2 UDB (UNIX, Windows NT
and OS/2 servers)

IBM Corp.
http://www.networking.ibm.com/gso/gsoho
me.html

Connection ODBC Client Connection Server

Information Builders, Inc.
Telephone: 800-969-4636
Telephone: 212-736-4433
Fax 212-629-8819
http://www.ibi.com

EDA/Extender for ODBC
EDA/SQL (server)

DB2
IMS
VSAM
IDMS
Datacom
TOTAL
Teradata
ADABAS
Oracle
SQL Server
OpenIngres
Informix
Supra Server
SQL/DS
RMS
Rdb
M
Sharebase
C-ISAM
Image/SQL
Allbase/SQL
Others

Informix Software, Inc.
Telephone: 800-388-0366
Telephone: 415-926-6300
Fax: 913-599-8753
http://www.informix.com

Informix ODBC Driver Informix OnLine Dynamic
Server, SE

Intersoft, Inc.
http://www.inter-soft.com

Essentia ODBC Essentia SQL-Server

Intersolv, Inc. (see MERANT) DataDirect ODBC Drivers
SequeLink

See MERANT

IQ Software
Telephone: 770-446-8880
Fax: 770-448-4088
http://www.iqsc.com

IQ Smart Server Several DBMSs

http://www.software.ibm.com/data/db2/db2connect
http://www.software.ibm.com/data/db2/db2connect
http://www.networking.ibm.com/gso/gsohome.html
http://www.networking.ibm.com/gso/gsohome.html
http://www.ibi.com/
http://www.informix.com/
http://www.inter-soft.com/
http://www.iqsc.com/

Page 214 CobolScript® Developer’s Guide

Company ODBC Driver Data Source

ISG International Software Group
Telephone: 781.221.1450
Fax: 781.272.2531
http://www.isgsoft.com

ISG Navigator/ODBC
ISG Navigator/Bridge

ADABAS
Btrieve
C-ISAM
D-ISAM
DB2
IMS
Informix
Mumps
OpenIngres
Oracle
SQL Server
Sybase
Rdb
Red Brick
RMS
TANDEM Enscribe
TANDEM SQL-MP
TANDEM SQL-MX
Text
VSAM
ODBC data sources, OLEDB
data sources any 3GL Application
(Application connector), any
database (SDK)
Bridge to OLE DB providers
(Windows, NT and Unix)

Javera Software, Inc.
Telephone: 412-397-4061
Fax 412-397-4062
http://www.javera.com

JetConnect Any ODBC data source

KB Systems, Inc.
Telephone: 703-318-0405
Fax: 703-318-0569
http://www.kbsystems.com

KB_SQL ODBC Driver KB_SQL
M

Kerridge Computer Company, Ltd.
Telephone: +44(1635) 523456
Fax: +44(1635) 30300
http://www.kerridge.com

K-ISAM ODBC Driver K-ISAM

KE Software, Inc
Telephone: 604-877-1960
Fax: 604-877-1961
http://www.kesoftware.com

TexODBC KE Texpress ODBMS

Liant Software Corporation
Telephone: 800-349-9222
Telephone: 508-872-8700
Fax 508-626-2221
http://www.liant.com

Relational Data Bridge (formerly
Relativity)

VSAM
ISAM
Btrieve
RMS
Micro Focus COBOL files
RM/COBOL files

http://www.isgsoft.com/
http://www.javera.com/
http://www.kbsystems.com/
http://www.kerridge.com/
http://www.kesoftware.com/
http://www.liant.com/

CobolScript® Developer’s Guide Page 215

Company ODBC Driver Data Source

Liberty Integration Software
Telephone: 604-682-8293
Fax: 604-682-8499
http://www.libertyodbc.com

Liberty ODBC Driver PICK
UniData
UniVerse
PI-Open
Sequoia/Pro
GA-Power95
GA-R91
mvBase
jBase
Reality/X
UltPlus
Alpha Microsystems
Mentor/Pro
Advanced PICK
D3

Lotus Development Corp.
Telephone: 617-577-8500
Fax: 617-693-6080
http://www.lotus.com

NotesSQL Driver Lotus Notes

Marxmeier Software GmbH
Telephone: +49 202 24314-40
Fax: +49 202 24314-20
http://www.msede.com

SQL/R ODBC (server) HP Eloquence databases

MEGAsoft, Inc.
Telephone: 407-423-0460
Email: 72702.1303@compuserve.com

ODBC driver for MEGAdata PASSdata
MEGAdata

MERANT
Telephone: 800-876-3101
Telephone: 919-461-4200
Fax 919-461-4526
http://www.merant.com/datadirec

DataDirect ODBC Drivers
DataDirect SequeLink (server)

Btrieve
Clipper
DB2
dBASE
FoxPro
Excel
Informix
OpenIngres
Oracle
Paradox
Progress
AS/400
SQL/DS
SQLBase
SQL Server
Teradata
Text
XDB
DB2-DDCS/2
MDI Gateway
Sybase Net-Gateway
IBM DB2
Oracle
Microsoft SQL Server
Sybase
Informix OnLine and SE
OpenIngres
any ODBC-compliant database

http://www.libertyodbc.com/
http://www.lotus.com/
http://www.msede.com/
http://www.merant.com/datadirec

Page 216 CobolScript® Developer’s Guide

Company ODBC Driver Data Source

Micro Data Base Systems Inc.
Telephone: 800-445-6327
Telephone: 765-463-7200
Fax 765-463-1234
http://www.mdbs.com

Titanium ODBC Driver
GURU ODBC Driver

Titanium
GURU
KnowledgeMan
Object/1

Micro Focus (see MERANT)
Telephone: 415-856-4161
Fax: 415-856-6134

Correlate Micro Focus files

Microrim Inc. (see R:BASE Technologies) Ottero ODBC Ottero

Microsoft Corp.
Telephone: 800-426-9400
Telephone: 206-882-8080
Fax: 206-936-7329
http://www.microsoft.com

ODBC Desktop Database Drivers
Microsoft SQL Server Driver
DB2/Integrator

SQL Server
Excel
Text
dBASE
Paradox
Access
FoxPro
Btrieve
DB2

MiniSoft, Inc.
Telephone: 800-682-0200
Telephone: 360-568-6602
Fax: 360-568-2923
http://www.minisoft.com

MiniSoft ODBC/32 HP Image/SQL

Monette Information Systems
Telephone: 1-800-MONETTE
Fax: 757-357-5163
http://www.monette.org

Synergex ODBC Driver Monette application data

NCR Corporation
Telephone: 513-445-5000
http://www.ncr.com

Teradata ODBC Driver Teradata

Neon Systems
Telephone: 218-491-4200
Telephone: 800-505-6366
Fax: 281-242-3880
http://www.neonsys.com

ShadowDirect Enterprise Direct
(server)

DB2
IMS
VSAM
Oracle
Sybase
ADABAS

NobleNet, Inc. (Rogue Wave)
Telephone: 508-460-8222
Fax: 508-460-3456
http://www.noblenet.com

NobleNet One Driver SDK
(server)

Data sources with ODBC drivers

Nogginware Corporation
http://www.nogginware.com

RemoteDB Gateway (server) Data sources with ODBC drivers

NTT Data Corporation
Telephone: 03-3647-8611
Fax: 03-3647-7511
http://unisql.www.nttdata.co.jp

Inforover ODBC Driver Inforover
UniSQL

Oberon microsystems, Inc.
Telephone: ++41-1-445-1751
Fax: ++41-1-445-1752
http://www.oberon.ch

ODBC Driver for Sql Subsystem Oberon/F Sql Subsystem (Black
Box Component Builder)

Object Design, Inc.
Telephone: 617-674-5000
Fax: 617-674-5010
http://www.odi.com

ObjectStore ODBC Driver
Open Access (server)

ObjectStore

http://www.mdbs.com/
http://www.microsoft.com/
http://www.minisoft.com/
http://www.monette.org/
http://www.ncr.com/
http://www.neonsys.com/
http://www.noblenet.com/
http://www.nogginware.com/
http://unisql.www.nttdata.co.jp/
http://www.oberon.ch/
http://www.odi.com/

CobolScript® Developer’s Guide Page 217

Company ODBC Driver Data Source

Objectivity, Inc.
Telephone: 650-254-7100
Fax: 650-254-7171
http://www.objectivity.com

Objectivity ODBC Driver Objectivity/DB

Ocelot Computer Services
Telephone: 780-472-6838
Email: 71022.733@compuserve.com

Ocelot ODBC Driver Ocelot SQL-92

Open Horizon Inc. (See IBM) Connection ODBC Client Connection Server

OpenLink Software Inc.
Telephone: 781-273-0900
Fax: 781-229-8030
http://www.openlinksw.com

OpenLink Universal Data Access
Driver Suite (client or server-side)

Informix
Ingres
Kubl
Oracle
Microsoft SQL Server
Postgres
Progress
SOLID
Sybase
Velocis

Operating System Support
Telephone: 561- 241-9900
Telephone: 800-333-5899
Fax 561-241-0003
http://www.ossfl.com

ViaODBC-32 Advanced Plus
UltPlus

Oracle Corporation 415-506-7000
http://www.oracle.com

Oracle ODBC Driver
Rdb ODBC Driver
Oracle Open Gateways

Oracle
ADABAS
Access
Btrieve
IDMS
Datacom
DB2
DMS II
FOCUS
Image/SQL
IMS
Infoman
Informix
Ingres
ISAM
M
Model 204
QSAM
Rdb
RDMS
RMS
SAP
SESAM
SQL Server
Supra
 Sybase
System 2000
Teradata
TOTAL
UDS
Jukebox
VSAM

http://www.objectivity.com/
http://www.openlinksw.com/
http://www.ossfl.com/
http://www.oracle.com/

Page 218 CobolScript® Developer’s Guide

Company ODBC Driver Data Source

PARKWAY Software GmbH
Telephone: +49 089 6518-034
Fax: +49 089 6518-161
http://www.parkway-software.com

ConnectWare Btrieve
C-ISAM
CA-Realia
D-ISAM
Micro Focus files
mbp
VSAM

Persistent Systems Private Limited Fax
Telephone: +91 20 37 6701
http://www.pspl.co.in/PSEnList/

PS EnList LDAP servers

Pervasive Software
Telephone: 800-287-4383
Telephone: 512-794-1719
http://www.pervasive.com

Btrieve
Pervasive SQL ODBC driver

Pervasive SQL

Phoenix Systems, Inc.
Telephone: 404-633-2466
Fax: 404-634-9975
http://www.phoenix-systems-inc.com

FUNDS ODBC Interface FUNDS System Databases

Pioneer Systems, Inc.
Telephone: 513-247-1500
Fax: 513-247-1400
http://www.pioneersys.com

INFOAccess ODBC driver Unisys A series and NX systems:
DMS II and keyed files.
Unisys 2200 and IX: DMS 1100
and DMS2200

Platinum Technology Inc. (see Computer
Associates)
Telephone: 800-442-6861
Telephone: 708-620-5000
Fax: 708-691-0417
http://www.platinum.com

InfoHub IDMS
IMS
ADABAS
DB2
VSAM
Sequential Files

Poet Software Corp.
Telephone: 800-950-8845
Telephone: 415-286-4640
Fax: 415-286-4630
http://www.poet.com

Poet ODBC Driver Poet ODBMS

Professional Data Associates, Inc.
Telephone: 718-263-1334
Fax: 718-263-1350
http://www.pdaco.com/tbred.htm

TS ODBC Data Server Thoroughbred files

Progress Software
Telephone: 781-280-4000
Fax: 781-280-4895
http://www.progress.com

Apptivity Server Progress
Oracle
Microsoft Access
SQL Server
Informix
Sybase
other ODBC or JDBC data
sources

R:BASE Technologies, Inc.
Telephone: 724-733-0053
Fax: 724-733-0196
http://www.rbasetechnologies.com

Ottero ODBC Ottero Engine

QBS Software Ltd.
Telephone: +440 181 956 8001
Fax: +440 181 956 8010
http://www.qbss.com

Advantage ODBC Driver Advantage Database Server

Quadbase Systems Inc.
Telephone: 408-982-0835
Fax: 408-982-0838
http://www.quadbase.com

Quadbase-SQL ODBC Driver Quadbase-SQL

http://www.parkway-software.com/
http://www.pspl.co.in/PSEnList/
http://www.pervasive.com/
http://www.phoenix-systems-inc.com/
http://www.pioneersys.com/
http://www.platinum.com/
http://www.poet.com/
http://www.pdaco.com/tbred.htm
http://www.progress.com/
http://www.rbasetechnologies.com/
http://www.qbss.com/
http://www.quadbase.com/

CobolScript® Developer’s Guide Page 219

Company ODBC Driver Data Source

Raima (see Centura Software)
Telephone: 800-327-2462
Telephone: 206-515-9477
Fax: 206-748-5200
http://www.raima.com

Velocis ODBC Driver
RDM ODBC Gateway

Raima Data Manager++
Velocis Database Server

Real Time eXecutive, Inc.
Telephone: 508-384-7717
Fax: 504-384-9074
http://www.rtx.com

ODBC for RTXHDB RTXHDB

Recital Corporation
http://www.recital.com

Recital ODBC Developer Recital

Red Brick Systems (see Informix) Red Brick ODBC Driver Red Brick Warehouse VPT

Red Point Software
Telephone: 214-355-5200
Fax: 214-355-5201
http://www.redpt.com

SnmpQL ODBC Driver Data from SNMP devices

Santa Cruz Operation
Telephone: +44(0) 113 251 2222
Fax: +44(0) 113 251 2223
http://www.sco.com

SCO SQL Retriever Informix
Oracle
OpenIngres
InterBase
Sybase
Progress

SAS Institute
Telephone: 919-677-8000
Fax: 919-677-8123
http://www.sas.com

SAS/Access Interface to ODBC SAS

ShowCase Corp.
Telephone: 800-829-3555
Telephone: 507-288-5922
Fax: 507-287-2803
http://www.showcasecorp.com

ShowCase ODBC Driver IBM AS/400

Siemens Nixdorf Informationssysteme
http://www.sni.de

DBA.D
DBA.X
DBA.2000

Informix
Oracle
OpenIngres
SESAM/SQL
UDS/SQL

Simba Technologies Inc.
Telephone: 800-388-4933
Telephone: 604-601-5300
Fax: 604-601-5320
http://www.simbatech.com

Simba Express (server)
Simba ODBC Driver SDKs
ODBC drivers

Oracle
Sybase
DB2
Informix
SQL Server

Software AG
Telephone: 800-423-2227
Telephone: 703-860-5050
http://www.adabas.com

ADABAS ODBC Driver ADABAS D
ADABAS

Software Clearing House
Telephone: 513-579-0455
Fax: 513-579-1064
http://www.sch.com

Open/A ODBC Driver Open/A
A-Series

Software Migration and Conversion
Telephone: 612-452-9270
Fax: 612-688-2191

Open CQL Driver DMS-1100
PCIOS
RDMS-1100

SoftOption
Telephone: +44(0)1322 278603
Fax: +44(0)1322 289630

ODBC for CTOS CTOS ISAM

http://www.raima.com/
http://www.rtx.com/
http://www.recital.com/
http://www.redpt.com/
http://www.sco.com/
http://www.sas.com/
http://www.showcasecorp.com/
http://www.sni.de/
http://www.simbatech.com/
http://www.adabas.com/
http://www.sch.com/

Page 220 CobolScript® Developer’s Guide

Company ODBC Driver Data Source

Solid Information Technology, Ltd.
Fax: +358-9-4774 7390
http://www.solidtech.com

SOLID ODBC Driver SOLID Server

SolutionsIQ
Telephone: 888-882-6669
Telephone: 425-519-6613
Fax: 425-453-8871
http://www.solutionsiq.com

CONNX Oracle
DataFlex
Rdb
RMS

SQLData Systems, Inc.
http://www.sqldata.com

SQLData Enterprise Server
(server)

ODBC data sources

StarQuest Software
Telephone: 510-704-2000
Fax: 510-704-2001
http://starweb.starware.com

StarSQL ODBC Driver DRDA
DB2
SQL/DS

Superbase Developers plc 310-374-4125 +44
1223 365550 Fax +44 1223 363302
http://www.superbase.com

Superbase ODBC Driver Superbase

Sybase, Inc.
Telephone: 800-879-2273
Telephone: 800-221-3634
Telephone: 510-922-3500
Fax: 510-922-4850
http://www.sybase.com

Adaptive Server
Adaptive Server Anywhere
ODS ODBC-ODS
EnterpriseCONNECT Gateway

Adaptive Server Anywhere
Adaptive Server
DB2
SQL/DS
Teradata
SQL/400
VSAM
IMS
IDMS
ADABAS
Oracle
SQL Server
DB2/2

Sysdeco Mimer AB
Telephone: +46 18-185000
Fax: +46 18-185100
http://www.mimer.se

MIMER ODBC Driver MIMER SQL RDBMS

SYWARE, Inc.
Telephone: 617-497-1376
Fax: 617-697-8729
http://www.syware.com

Dr. DeeBee ODBC Driver Kit Xbase
ISAM

Synergex International Corporation
Telephone: 800-366-3472
Telephone: 916-635-7300
Fax: 916-635-6549
http://www.synergex.com

Synergy ODBC Driver Synergy databases

Tandem Computers
Telephone: 800-482-6336
Telephone: 408-285-5446
Fax: 408-285-6010
http://www.tandem.com

NonStop ODBC Server Tandem NonStop SQL

TimesTen Software
Telephone: 800-970-1248
Telephone: 650-526-5100
Fax: 650-526-5199
http://www.timesten.com

TimesTen ODBC TimesTen Server

TopSpeed Corporation
Telephone: 800-354-5444
Telephone: 954-785-4555
http://www.topspeed.com/tsodbc.htm

TopSpeed ODBC Interface Clarion TopSpeed databases

http://www.solidtech.com/
http://www.solutionsiq.com/
http://www.sqldata.com/
http://starweb.starware.com/
http://www.superbase.com/
http://www.sybase.com/
http://www.mimer.se/
http://www.syware.com/
http://www.synergex.com/
http://www.tandem.com/
http://www.timesten.com/
http://www.topspeed.com/tsodbc.htm

CobolScript® Developer’s Guide Page 221

Company ODBC Driver Data Source

Transoft, Ltd.
Telephone: 770-933-1965
Fax: 770-933-3464
http://www.transoft.com

Transoft U/SQL Client-Server
(server)

C-ISAM
Micro Focus COBOL
EXTFH
AcuCOBOL
Oracle
Informix
Sybase

Trifox, Inc.
http://www.trifox.com

VORTEXodbc ADABAS D
DB2
Ingres
Informix
GENESIS
Oracle
Rdb
Microsoft SQL Server
Sybase

Trilogy Technology International
Telephone: 818-854-6288
Fax: 818-854-6289
http://www.openpath.com

OpenPath RDA/ODBC Informix
Oracle
Sybase
IBM DB2
RDA

UniSQL, Inc. (for Japan, see NTT Data Corp.
Otherwise, see Cincom.)

UniSQL/X
UniSQL/M

UniSQL

Unisys
Telephone: 800-874-8647
Telephone: 800-448-1424
Telephone: 714-380-6460
http://www.unisys.com

TransIT ODBC
HDBC Component

HMP NX
A_Series: DMS II
LINC
SQLDB
KEYED1011
sequential files

Usoft
Telephone: +31 (0) 35 6990699
Fax: +31 (0) 35 6950124
http://www.usoft.com

USoft Open Rules API DB2
Informix
Oracle
SQL Server
Solid
Sybase (via USoft Open Rules
Engine)

Vertisoft
Telephone: 905-474-1862
Telephone: 800-361-0099
Fax: 905-474-0006

C-ISAM ODBC Driver C-ISAM

Versant Object Technology
Telephone: 510-789-1500
Fax: 510-789-1515
http://www.versant.com

Versant/ODBC Versant

Viaserv, Inc.
Telephone: 800-348-3964
http://www.viaserv.com

ViaSQL for VSE-VSAM
ViaSQL for VSE-SQL/DS

Viaserv Gateway
SQL/DS

Wall Data Inc.
Telephone: 206-814-9255
Fax: 206-861-3175
http://www.walldata.com

Rumba
Arpeggio

DB2
IBM DB/VM
IBM AS/400
IMS

White Cross Systems, Inc.
Telephone: 310-577-8188
Fax: 310-577-8192
Telephone: 44 1344 300 770
Fax: 44 1344 301 424
http://www.whitecross.com

White Cross 9000 White Cross RDBMS

http://www.transoft.com/
http://www.trifox.com/
http://www.openpath.com/
http://www.unisys.com/
http://www.usoft.com/
http://www.versant.com/
http://www.viaserv.com/
http://www.walldata.com/
http://www.whitecross.com/

Page 222 CobolScript® Developer’s Guide

Company ODBC Driver Data Source

XDB Systems, Inc. (see MERANT)
Telephone: 410-312-9300
Fax: 410-312-9500

ExpressLane (server) XDB
IBM DB2
IBM AS/400

YARD Software Gmbh
Telephone: +(49) 221/98664-0
Fax: +(49) 221/98664-99
http://www.yard.de

ODBC Driver for YARD-SQL YARD-SQL

UnixODBC ODBC Drivers
The following table is a list of unixODBC drivers and the companies that produce them. Most of
these are freely downloadable unixODBC drivers. There is also a project underway to create a
unixODBC driver for Oracle.

Because some of the drivers below are freeware products, they may not be production-worthy or free
of bugs. You should contact the driver author if you have problems installing or using a specific
driver. For data sources marked with a plus sign (+), we successfully installed and tested the driver
with unixODBC. For those marked with a minus (-), we were unable to succeed in making the
driver work with unixODBC. The drivers for data sources not marked by a plus or minus were not
tested.

Company unixODBC Driver Data Source

unixODBC
http://www.unixodbc.org

PostgreSQL Driver included with
unixODBC

PostgreSQL (+)

T.C.X DataKonsult AB
Fax: +46-8-7296905
http://www.mysql.com/download_myodbc.ht
ml

MyODBC Driver for unixODBC MySQL, version 3.23 and higher
(+)

IBM Corp.
Telephone: 800-IBM-4YOU
http://www.software.ibm.com/data/db2

The libdb2.so library, part of DB2
for Linux, can serve as an ODBC
driver.

DB2 for Linux

YARD Software GmbH
Telephone: +49 221 98664-0
Fax: +49 221 98664-99
http://www.yard.de

YARD unixODBC Driver YARD-SQL

Ke Jin's Net News ODBC Driver Internet News Server Driver
included with unixODBC

Internet News Server

Easysoft
Telephone: +44 (0) 113 222 0400
Fax: +44 (0) 113 222 0500
http://www.easysoft.com/

Easysoft's ODBC-ODBC Bridge ODBC-ODBC

unixODBC
http://www.unixodbc.org

MiniSQL Driver included with
unixODBC

MiniSQL (-)

unixODBC
http://www.unixodbc.org

SQL unixODBC Driver for Text
Files

Text Files (-)

http://www.yard.de/
http://www.unixodbc.org/
http://www.mysql.com/download_myodbc.html
http://www.mysql.com/download_myodbc.html
http://www.software.ibm.com/data/db2
http://www.yard.de/
http://www.easysoft.com/
http://www.unixodbc.org/
http://www.unixodbc.org/

CobolScript® Developer’s Guide Page 223

Using LinkMaker™ Embedded
SQL in CobolScript® Professional

obolScript Professional Edition with LinkMaker™ allows for the use of embedded SQL in
your Linux®, Microsoft Windows®, SunOS®, and FreeBSD® programs. Embedded SQL is
a term used to describe the use of Structure Query Language from within a programming
language. In CobolScript Professional, LinkMaker™ embedded SQL statements are

preceded by the keywords EXEC SQL and end with END-EXEC. Any valid SQL statements may
be placed between these tokens, as shown below.

The general format is:

EXEC SQL

 <SQL statement>

END-EXEC.

Before you can execute SQL statements in your CobolScript programs, you must successfully
establish an ODBC connection to your database by setting up and configuring an ODBC data source
name. If you are working in a Unix environment, you must also install unixODBC and switch to the
LinkMaker™-enabled version of CobolScript. Refer to Appendix G for platform-specific instructions
on how to install unixODBC and configure ODBC data sources.

The first step in using embedded SQL is to programmatically connect to an ODBC data source. This
is done with the OPENDB command:

OPENDB USING <data-source-name> <user-id> <password> <return-code>.

After you have finished executing SQL statements, you should close the connection to the data
source with the CLOSEDB command:

CLOSEDB USING <return-code>.

Refer to the OPENDB and CLOSEDB entries in Appendix A, Command Reference, for more
information on these two commands.

An SQL communications area is required when working with an ODBC data source. In CobolScript,
this area of memory is allocated by defining the variable sql-return-codes. You should include this
definition in your programs, or include the sample copybook SQL.CPY, which contains this variable
definition:

Appendix

H
C

Page 224 CobolScript® Developer’s Guide

1 sql-return-codes.

 5 sqlstate PIC X(5).

 5 sqlnativeerror PIC S9(6).

 5 sqlerrormessage PIC X(500).

 5 sqlstatement PIC X(500).

Below is an example of how to connect to a data source, execute an SQL statement, and close the
connection. MySQLTest is an ODBC data source name that is configured to use a MySQL database.
The parameters `testuser` and `testpass` are used to identify the UserName and Password of a
MySQL user with SELECT permission on the table named customer:

MOVE `MySQLTest` TO data_source_name.

MOVE `testuser` TO user_id.

MOVE `testpass` TO password.

OPENDB USING data_source_name

 user_id

 password

 return_code.

EXEC SQL

 SELECT firstname, lastname, description, balance

 INTO :customer_first_name

 ,:customer_last_name

 ,:customer_description

 ,:formatted_balance

 FROM customer

 WHERE lastname = 'Doe'

 AND firstname = 'Charles'

END-EXEC.

DISPLAY `firstname: ` & customer_first_name

DISPLAY `lastname: ` & customer_last_name

DISPLAY `description: ` & customer_description

DISPLAY `balance: ` & formatted_balance

CLOSEDB USING return_code.

In addition to standard SQL and DDL statements, CobolScript allows for the use of cursors. A cursor
is a result set that is declared, opened, traversed with the fetch command, and then closed. Here’s an
example:

EXEC SQL

 DECLARE cust_cursor cursor FOR

 SELECT firstname, lastname, balance

 FROM customer

 ORDER BY balance

END-EXEC.

EXEC SQL

 OPEN cust_cursor

END-EXEC.

CobolScript® Developer’s Guide Page 225

DISPLAY LINEFEED.

DISPLAY `firstname lastname balance`.

DISPLAY `--`.

PERFORM UNTIL sqlnativeerror NOT = 0 OR sqlstate NOT = `00000`

 EXEC SQL

 FETCH NEXT cust_cursor

 INTO :customer_first_name,:customer_last_name, :formatted_balance

 END-EXEC

 IF sqlnativeerror = 0 AND sqlstate = `00000`

 DISPLAY customer_first_name & SPACE

 & customer_last_name & SPACE

 & formatted_balance

 END-IF

END-PERFORM.

DISPLAY `--`.

DISPLAY LINEFEED.

EXEC SQL

 CLOSE cust_cursor

END-EXEC.

Note the steps in the life of the cursor. The cursor is first declared, then opened (the open actually
executes the SELECT statement). Next, fetches are performed inside a loop until an error is
encountered or the end of the cursor is reached (the end-of-cursor state is normally signified by a
sqlstate value of `S1010`). Finally, the cursor is closed.

Page 226 CobolScript® Developer’s Guide

Embedded SQL Quick Reference
The following reference provides basic syntax descriptions and examples of embedded SQL
statements. Refer to your database or database driver’s documentation for a more detailed
explanation of these statements, and to determine the full range of SQL statements that are available
to you for your specific data source.

ALTER TABLE
Command: ALTER TABLE
Syntax: ALTER TABLE <table-name> ADD

 <column1> <sql-data-definition>
Description: Changes some component of a database table.
Example Usage: EXEC SQL

 alter table customer add
 balance decimal(6,2)
END-EXEC.

CLOSE
Command: CLOSE
Syntax: CLOSE <cursor-name>
Description: Closes a cursor defined by a DECLARE command.
Example Usage: EXEC SQL

 close cust_cursor
END-EXEC.

COMMIT
Command: COMMIT
Syntax: COMMIT
Description: Commits the most recent changes to a database.
Example Usage: EXEC SQL

 commit
END-EXEC.

CREATE INDEX
Command: CREATE INDEX
Syntax: CREATE INDEX <index-name> ON <table-name> (<column1>,…<columnX>)
Description: Creates an index for a database table.
Example Usage: EXEC SQL

 create index cust_index on customer (firstname)
END-EXEC.

CobolScript® Developer’s Guide Page 227

CREATE TABLE
Command: CREATE TABLE
Syntax: CREATE TABLE <table-name>

(<column1> <sql-data-definition>,
 <column2> <sql-data-definition>,
 :
 <columnX> <sql-data-definition>),

Description: Creates a table inside a database.
Example Usage: EXEC SQL

 create table customer
 (firstname varchar(20),
 lastname varchar(20),
 description varchar(50))
END-EXEC.

DECLARE
Command: DECLARE
Syntax: DECLARE <cursor-name> CURSOR FOR

SELECT <column1>,
 <column2>,
 :
 <columnX>
FROM <table-name>
 WHERE <condition>

Description: Defines a result set to be traversed with the FETCH command.
Example Usage: EXEC SQL

 declare cust_cursor cursor for
 select firstname, dollar_amount
 from customer
 order by firstname
END-EXEC.

DELETE
Command: DELETE
Syntax: DELETE FROM <table-name>

 <condition>
Description: Deletes a row from a database table.
Example Usage: EXEC SQL

 delete from customer
 where firstname = 'dean6'
END-EXEC.

DROP INDEX
Command: DROP INDEX
Syntax: DROP INDEX <index-name> ON <table-name>
Description: Removes an index for a table from the database.
Example Usage: EXEC SQL

 drop index cust_index on customer
END-EXEC.

Page 228 CobolScript® Developer’s Guide

DROP TABLE
Command: DROP TABLE
Syntax: DROP TABLE <table-name>
Description: Removes a table from a database.
Example Usage: EXEC SQL

 drop table customer
END-EXEC.

FETCH
Command: FETCH
Syntax: FETCH [{NEXT | PRIOR | FIRST | LAST

 | ABSOLUTE {<int-constant> | <cobolscript-host-variable> }
 | RELATIVE {<int-constant> | <cobolscript-host-variable> }}]
 <cursor-name> INTO host-variable [,...]

Description: Retrieves data from a single row in a result set defined by a DECLARE command.

In most databases, the end-of-cursor state is signified by a sqlstate value of `S1010`.
Check for this sqlstate value (or, for sqlstate NOT = `00000`) to gracefully terminate a
FETCH loop.

Example Usage: EXEC SQL
 fetch relative :row-position cust_cursor
 into :customer-first-name, :customer-dollar-amount
END-EXEC.

INSERT
Command: INSERT
Syntax: INSERT INTO <table-name>

 VALUES (<literal | cobolscript-host-variable>,
 :
 <literal | cobolscript-host-variable>)

Description: Insert data from host cobolscript variables or literals into a database table.
Example Usage: EXEC SQL

 insert into customer
 values (:customer-first-name,
 :customer-last-name,
 :customer-description)
END-EXEC.

OPEN
Command: OPEN
Syntax: OPEN <cursor-name>
Description: Opens a cursor defined by a DECLARE command.
Example Usage: EXEC SQL

 open cust_cursor
END-EXEC.

CobolScript® Developer’s Guide Page 229

ROLLBACK
Command: ROLLBACK
Syntax: ROLLBACK
Description: Rollback or undo the most recent changes to a database.
Example Usage: EXEC SQL

 rollback
END-EXEC.

SELECT
Command: SELECT
Syntax: SELECT <column1>,

 <column2>,
 :
 <columnX>
INTO <:cobolscript-host-variable1>,
 <:cobolscript-host-variable2>,
 :
 <:cobolscript-host-variableX>
FROM <table-name>
WHERE <condition>

Description: Retrieves data from a table and places it in host cobolscript variables.
Example Usage: EXEC SQL

 select firstname, lastname, description
 into :customer-first-name,
 :customer-last-name ,
 :customer-description
 from customer
 where firstname = 'dean8 '
END-EXEC.

UPDATE
Command: UPDATE
Syntax: UPDATE <table-name>

 SET <column1> = <literal | :cobolscript-host-variable>
 :
 <condition>

Description: Updates a column or columns in a table.
Example Usage: EXEC SQL

 update customer
 set description = 'update test again'
 where firstname = :customer-first-name and
 lastname = :customer-last-name
END-EXEC.

Page 230 CobolScript® Developer’s Guide

CobolScript® Developer’s Guide Page 231

CobolScript® Error Messages
he messages described in this appendix are produced when the CobolScript engine
encounters an error while executing a CobolScript program. An error can be indicative of
incorrect syntax, program inconsistencies, missing files, or improper system setup. The error
messages listed below are in numerical order; where sequential error numbers have the same

error message and description, the error number is provided as a range, and the errors are described
in a single entry.

Error Number: 0000
Error Message: "Usage: cobolscript.exe –b <filename> "

Description: In order to build an executable from the command prompt using CobolScript AppMaker,
you must specify a target filename to build.

Error Number: 0001
Error Message: "Error opening file. File name may not exist: "

Description: The file was not found. Attempts were made to open the file as named, and with
extensions of .cbl, .cob, .CBL, .COB, but all of them failed. Check the spelling of the
filename and verify that the file exists on your machine, in the specified path. If you are
working on a Unix system, check the case of the filename as well.

Error Number: 0002
Error Message: "Program file is empty: "

Description: The specified program file exists but does not contain any CobolScript code.

Error Number: 0003
Error Message: "Unrecognized CobolScript syntax."

Description: An error has occurred that has stopped the execution of your program. This error is either
a runtime error or a syntax error. Check the syntax of the line that caused the error, as
well as the line immediately prior to it.

Appendix

I
T

Page 232 CobolScript® Developer’s Guide

Error Number: 0004
Error Message: "Stack overflow."

Description: The maximum permitted CobolScript stack size has been exceeded. With this version of
CobolScript, use fewer modules and avoid recursive calls where possible.

Error Number: 0005
Error Message: "Line limit bypassed. This version of CobolScript has a line limit of: "

Description: Your program has exceeded the maximum number of lines of code permitted per program
for this version of CobolScript. The maximum is 32,767 lines.

Error Number: 0006
Error Message: "Line limit bypassed. This version of CobolScript has a line limit of: "

Description: Interactive mode error − Your program has exceeded the maximum number of lines of
code permitted per program for this version of CobolScript. The maximum is 32,767 lines.

Error Number: 0007
Error Message: "Nothing to run Use "load <filename>" to load a program. "

Description: Interactive mode error − You are attempting to run a program in interactive mode, but no
code has been loaded into the program buffer. Use the load command to load a
CobolScript program before you try to run it.

Error Number: 0008
Error Message: "Cannot display variable: "

Description: Interactive mode error − You are trying to display a variable that has not been defined.
Either it has not been created yet, or you have misspelled the variable name. In
interactive mode, you must run a program before you can display its variables.

Error Number: 0009
Error Message: "No program in buffer. Use load <filename> to load a program."

Description: Interactive mode error − You are trying to list program code in interactive mode, but you
have not loaded it into the program buffer yet. You must load a text file containing valid
CobolScript code into the program buffer before you can list it.

Error Number: 0010, 0011
Error Message: "No variables defined in program in buffer."

Description: Interactive mode error − No variables have been defined yet. You must run a program
before you can display its variables or its variable positions in interactive mode. The
variables are defined as the CobolScript program is interpreted, so you must at least step
through your variable definitions before you can display the variables.

Error Number: 0012
Error Message: "No files defined in program in buffer."

Description: Interactive mode error − No files are in memory yet. Because CobolScript is an
interpreter, files will not be displayed until the appropriate FD statement is interpreted.
You must run or step through a program before you can display its files.

CobolScript® Developer’s Guide Page 233

Error Number: 0013
Error Message: "No modules defined in program in buffer."

Description: Interactive mode error − No modules have been defined yet. You must load a CobolScript
program before you can display its modules. The code must have at least one module in
order for it to be a valid program (modules are any paragraphs defined in your program).

Error Number: 0014-0017
Error Message: "Error dumping variables to { dump.var | dump.mod | dump.lst | dump.pos }."

Description: Interactive mode error − Make sure there is sufficient disk space to create the named
dump file. Also, verify that the appropriate permissions are set to allow writing to the
working directory.

Error Number: 0018
Error Message: "Following file not found: "

Description: Interactive mode error − The file was not found. Attempts were made to open the file as
named, and with extensions of .cbl, .cob, .CBL, .COB, but all of them failed. Check the
spelling of the filename and verify that the file exists on your machine, in the specified
path.

Error Number: 0019
Error Message: "Error saving to file: "

Description: Interactive mode error − Cannot save file because the filename you have specified cannot
be opened for writing. Check the permissions on the target directory and the available
disk space on this machine, and make certain the file is not being accessed by another
application.

Error Number: 0020
Error Message: "Error writing to file: "

Description: Interactive mode error − Cannot save to this file. The filename you have specified has
been opened correctly, but an error has occurred while writing to that file. Check available
disk space on this machine and permissions on the target directory, and make certain the
file is not being accessed by another application.

Error Number: 0021-0025
Error Message: "This line of code is too long: "

Description: A single line of code in your CobolScript program has exceeded the maximum permissible
length. Check for an unbalanced string (a missing ` symbol on either side of a string
literal), a missing period in this or a prior sentence, or simply a line of code that is too
large.

Error Number: 0026-0027
Error Message: "Error loading copybook: "

Description: A copybook could not be loaded. Make sure that the filename exists on the current
machine, in the specified path. If you are working on a Unix system, check the case of the
filename as well. Also, refer to any more specific errors issued in conjunction with this
error message.

Page 234 CobolScript® Developer’s Guide

Error Number: 0028
Error Message: "Program sentence is missing a terminating period. "

Description: A program sentence is not correctly terminated with a period. A program sentence is a
complete statement that is not embedded inside conditional or loop logic. All program
sentences must end with a period.

Error Number: 0029
Error Message: "Program sentence is missing a terminating period, END-IF, or END-PERFORM."

Description: Either an IF statement is missing an END-IF, a PERFORM statement is missing an END-
PERFORM, or a program sentence is missing a terminating period. Check the IF and
PERFORM statements in your code for their ending keywords, and check for missing
periods in the line causing the error and previous line(s).

Error Number: 0030
Error Message: "Program line should not have a terminating period."

Description: A code statement has a terminating period at the end of the line when it should not.
Remove the period from the end of the line. Terminating periods are not permitted on
lines that are embedded inside conditional or loop logic.

Error Number: 0031-0036
Error Message: "Check for missing period. { Specific problem explanation }.”

Description: The variable definition has incorrect syntax. Check for a missing period on this or the
previous line, or see Chapter 3 for information on how to define variables.

Error Number: 0037, 0038
Error Message: "String in line is not properly terminated."

Description: A string in a line is not properly terminated with an ending string delimiter. Literal strings
cannot extend across multiple lines.

Error Number: 0039
Error Message: "This version of CobolScript does not permit more than two OCCURS clauses in a single

group-level data item."
Description: This version of CobolScript permits no more than two OCCURS clauses in one group-

level data item. You must restructure your variable definitions so that this limit is not
bypassed.

Error Number: 0040
Error Message: "Nonnumeric variable not permitted in TIMES clause: "

Description: The TIMES clause of OCCURS variables is only permitted to have a literal number or
numeric variable index, but the existing index is non-numeric. Correct this by using a
numeric literal or numeric variable qualifier instead.

Error Number: 0041, 0042
Error Message: "Multilevel OCCURS clauses not permitted in CobolScript Standard Edition. Upgrade to

Professional Edition for multilevel OCCURS support."
Description: You have CobolScript Standard Edition, which does not permit multilevel OCCURS

clauses (multidimensional arrays). Upgrade to CobolScript Professional Edition at
https://www.cobolscript.com/cgi-bin/cobolscript.exe?catalog.cbl for multilevel OCCURS
clause support.

CobolScript® Developer’s Guide Page 235

Error Number: 0043
Error Message: "Variable index argument to TIMES clause not found. Make certain variable is defined

prior to this OCCURS definition."
Description: The TIMES clause index variable is not defined. Define this variable, as a numeric, prior

to defining the OCCURS variable that is causing this error.

Error Number: 0044
Error Message: "Stack error in variable stack. Check your variable definition syntax."

Description: CobolScript encountered an error while manipulating its internal variable stack. Correct
any errors in your variable definition syntax to fix the problem; make certain that all
variable definitions begin on a new line, with a positive integer value to begin the definition.

Error Number: 0045
Error Message: "Stack overflow in variable stack. Reduce amount of nesting in gldi variables."

Description: CobolScript ran out of variable stack space while pushing gldi nesting levels to its internal
variable stack. Reduce the amount of nesting in your group-level data item variables.

Error Number: 0046
Error Message: "The first variable defined in a program must be a top-level variable, with an outline level

of 1."
Description: The first variable defined in a program must have an outline level of 1. Modify the outline

level of your first variable definition to remedy this.

Error Number: 0047
Error Message: "Picture clause exceeds maximum token length permitted."

Description: A picture clause must be no more than 80 characters in length. Change your picture
clause to use shortened picture clause notation, such as PIC X(200), instead of
PIC XXX.

Error Number: 0048
Error Message: "Invalid variable definition syntax."

Description: Check the syntax of your variable definition for any extra tokens or incorrect keyword
usage.

Error Number: 0049-0051
Error Message: "There was an error while setting the VALUE of this variable: "

Description: There was a problem setting the VALUE of a variable in its definition. This may be
because the picture clause of the variable and the value clause are incompatible.
Alternatively, there may be an issue with the size of the VALUE you are setting.

Error Number: 0052
Error Message: "To use PIC X(n), you must either specify a VALUE clause or use the implied PIC X(n)

format."
Description: The use of PIC X(n) requires that you specify a VALUE clause, or alternatively use the

implied PIC X(n) format. Specify a value clause, or change the picture clause to the
implied format by omitting everything from the variable definition except the variable
outline level number and the literal value enclosed in string delimiters.

Page 236 CobolScript® Developer’s Guide

Error Number: 0053-0055
Error Message: "Missing string delimiters or misspelled keyword in VALUE clause of variable definition."

Description: This error is a result of specifying a VALUE clause in a variable definition that is not a
literal keyword such as SPACE, SPACES, LINEFEED, TAB, etc., not a numeric literal,
and not an alphanumeric literal enclosed in string delimiters (`, the accent symbol, by
default). You may not use variables in VALUE clauses; the value must either be a
keyword or literal.

Error Number: 0056-0059
Error Message: "Nonnumeric value in numeric variable's VALUE clause: "

Description: Only numeric literals (i.e., numbers that are not enclosed by delimiters) are permitted in
the VALUE clause of a numeric variable. Change the value clause to a literal number, not
enclosed by delimiters.

Error Number: 0060, 0061
Error Message: "VALUE keyword specified in variable definition but no VALUE clause exists."

Description: Insert a value clause (i.e., an alphanumeric or numeric literal) as appropriate after the
VALUE keyword.

Error Number: 0062, 0063
Error Message: "Invalid variable definition syntax."

Description: Some portion of this variable’s picture clause definition is incorrect. Check your syntax,
paying attention to the picture clause definition.

Error Number: 0064
Error Message: "Invalid alphanumeric picture clause: "

Description: Some portion of this picture clause definition is incorrect. Correct any syntax errors.

Error Number: 0065
Error Message: "Variable names must begin with a letter."

Description: You cannot use numeric or special characters as the first character of a variable name.
Modify your variable names to begin with letters only.

Error Number: 0066
Error Message: "Maximum variable name length exceeded: "

Description: The maximum length of a variable name has been exceeded. The maximum length is 80
characters. Reduce the number of characters in your variable name.

Error Number: 0067-0104
Error Message: "Variable not defined: "

Description: The named variable is not defined. Check the variable name against the variables you
have defined in your program. If you are using an array element like variable-
name(counter), make sure that counter is not zero, and is in the allowable range for that
particular OCCURS clause.

CobolScript® Developer’s Guide Page 237

Error Number: 0105
Error Message: "A CGI variable in the submitting form does not have a matching CobolScript variable."

Description: A CGI variable in the submitting form does not have a matching CobolScript variable.
Create a matching variable in your program with the same name as the field name in the
submitting form.

Error Number: 0106
Error Message: "Invalid syntax in MOVE statement."

Description: The syntax in the MOVE statement is incorrect. A MOVE statement must have at least 4
tokens, as in "MOVE <source> TO <target>". Verify the statement syntax, and verify that
there are no unbalanced string terminators in the preceding line of code.

Error Number: 0107
Error Message: "Cannot execute MOVE statement."

Description: There was a problem executing this MOVE statement. Make certain that the source
variable is a valid literal or variable, and that the target variable has been defined. It is
possible that the MOVE failed because the picture clauses of the source and target
variables were incompatible. If either the source or the target contains an array definition
or a positional variable definition, make sure that it is properly defined prior to this
statement.

Error Number: 0108
Error Message: "Functions are not allowed as stand-alone arguments in MOVE statements."

Description: Functions not allowed as stand-alone arguments in MOVE statements. If you wish to use
functions or expressions as arguments in a variable assignment use the COMPUTE
statement instead of MOVE.

Error Number: 0109
Error Message: "Unrecognized or illegal source variable type."

Description: The source variable of an illegal or unrecognized type for this MOVE statement. See the
Language Reference for information on what source – target data type combinations are
permissible in the MOVE statement.

Error Number: 0110
Error Message: "Source or target argument in MOVE statement is too long."

Description: The source or target argument in the MOVE statement is too long. It must be less than
180 characters.

Error Number: 0111
Error Message: "Invalid syntax in INITIALIZE statement."

Description: The INITIALIZE statement requires a minimum of 2 tokens to work properly; the first
should be the keyword INITIALIZE, and the second should be a valid variable name.

Page 238 CobolScript® Developer’s Guide

Error Number: 0112
Error Message: "INITIALIZE target variable not defined: "

Description: The target variable name in the INITIALIZE statement was not properly defined. Verify
that this variable is properly defined prior to this statement.

Error Number: 0113
Error Message: "Invalid syntax in SET statement."

Description: The SET command requires at least 4 tokens to work properly. See Language Reference
for proper syntax of SET.

Error Number: 0114
Error Message: "SET target variable not defined: "

Description: The target variable name in the SET command could not be found in the variables in
memory. Verify the name of this variable, and make certain it is defined prior to this
statement.

Error Number: 0115
Error Message: "Cannot execute SET statement."

Description: There was a problem executing this SET statement. Make certain that the source variable
is a valid literal or variable, and that the target variable has been defined. It is possible
that the SET failed because the picture clauses of the source and target variables were
incompatible. If either the source or the target contains an array definition or a positional
variable definition, make sure that it is properly defined prior to this statement.

Error Number: 0116
Error Message: "You have exceed the maximum allowable record length of 10k."

Description: File records must be 10,000 bytes or less. You must split your file into multiple files if the
current record size exceeds this limit.

Error Number: 0117
Error Message: "Cannot close the following file: "

Description: The file you are attempting to CLOSE has not been described in this program. Check the
name of your file against the corresponding FD statement in your program.

Error Number: 0118
Error Message: "Invalid syntax in CLOSE statement."

Description: The CLOSE statement requires at least 2 tokens. See the Language Reference for proper
syntax of the CLOSE statement.

Error Number: 0119
Error Message: "Invalid syntax in OPEN statement."

Description: At least 4 tokens are required for a properly defined OPEN statement. See the Language
Reference for proper syntax of the OPEN statement.

CobolScript® Developer’s Guide Page 239

Error Number: 0120
Error Message: "The file you are attempting to open has not been described in an FD statement: "

Description: You must describe all files used by a program in that program’s FD (File Description);
check for an appropriate FD entry for the named file, and create it if it does not exist. The
FD describes the filename and its record size to CobolScript which must be done before
any I/O operations can take place on the file.

Error Number: 0121-0124
Error Message: "Possible directory/file permission problem. This file could not be properly opened for

{ READING | UPDATING | WRITING | APPENDING } : "
Description: The specified file could not be opened properly. The filename may be in use by another

application, or may have too restrictive file permissions set. On Unix platforms, check the
permissions on the directory and the named file; they must both allow writing by the user
running the CobolScript program, and reading as well in the READING and APPENDING
cases.

Error Number: 0125-0129
Error Message: "You must open a file before you can { read from | write to | close | use POSITION on } it."

Description: You are trying to perform a file operation on a file that has not yet been opened. Use the
OPEN statement to open the file before performing any other file operations.

Error Number: 0130
Error Message: "Cannot set buffering for file: "

Description: There is a problem with the internal file buffering on your machine. If you get this error,
raise a Problem Tracking Report (PTR) on the Deskware Registered User web site for
further assistance.

Error Number: 0131
Error Message: "Variables that are not alphanumerics or GLDIs cannot be used as file arguments: "

Description: You used a non-alphanumeric, non-group item variable as a file argument in a file
processing statement. Only alphanumeric variables and group-level data item variables
can be used as filename arguments.

Error Number: 0132-0135
Error Message: "Cannot find the FD for this file: "

Description: The FD statement for the named file could not be found. Check that the FD statement
exists. If it does, check for misspelling, or a wrong alphabetic case.

Error Number: 0136
Error Message: "Invalid syntax in FD sentence."

Description: A File Description sentence requires at least 6 tokens to be valid. See Chapter 3 for more
on the syntax of FD.

Error Number: 0137
Error Message: "Invalid syntax in READ statement."

Description: At least 4 tokens are required for a properly defined READ statement. See the Language
Reference for proper syntax of the READ statement.

Page 240 CobolScript® Developer’s Guide

Error Number: 0138
Error Message: "Invalid target variable in READ statement: "

Description: You have attempted to read a record from a file and move it into a variable that is either
invalid or does not exist. Check to make sure that this variable has been properly defined
prior to this statement.

Error Number: 0139
Error Message: "End of file reached. Use AT END clause in READ statement to trap this error. File is: "

Description: You have READ from a file and have encountered the end of the file. Avoid this error by
placing an AT END MOVE <literal|var> TO <var> clause at the end of the READ
statement. This will trap this error and set a variable to indicate the end of file has been
reached. See the Language Reference for a full description of the READ statement.

Error Number: 0140
Error Message: "Incorrect CobolScript syntax following AT END clause in READ statement."

Description: A complete and valid CobolScript statement must follow the AT END clause in a READ
statement.

Error Number: 0141
Error Message: "Missing imperative following AT END clause in READ statement."

Description: The AT END clause in this READ statement is missing an imperative statement after it. A
complete and valid CobolScript statement must follow the AT END clause.

Error Number: 0142
Error Message: "You are attempting to read data that contains a decimal into a variable with an implied

decimal format. "
Description: This error occurs when you are trying to read a field of data that contains a explicit decimal

into a variable that has an implied decimal (“V”) format. If your numeric data for this field
in the record contains a decimal, you should use a decimal format for the variable that is
to receive this data. This error can also occur when you are moving a group level data
item to another group level data item and there is a mismatch of implied decimal and
explicit decimal variables.

Error Number: 0143
Error Message: "The file you are attempting to write to has not been described in an FD statement: "

Description: You must describe all files used by a program in that program’s FD (File Description);
check for an appropriate FD entry for the named file, and create it if it does not exist. The
FD describes the filename and its record size to CobolScript which must be done before
any I/O operations can take place on the file.

Error Number: 0144-0150
Error Message: "{ Write | Rewrite | POSITION statement } error. Possible directory/file permission

problem, disk space problem, or file has not been opened: "
Description: An error occurred while attempting to write to or position a file. The file may not have

been opened with the OPEN statement, the permissions in the directory where the file
exists may not be properly set to permit writing, or the disk may be full.

CobolScript® Developer’s Guide Page 241

Error Number: 0151, 0152
Error Message: "Error writing to file. File may not have been opened properly."

Description: An error has occurred while trying to write data to a file. Verify that the permissions in the
directory where the file exists allow writing by the user running the program. Also make
certain that the file you are attempting to write to has been opened.

Error Number: 0153
Error Message: "Rewrite error. Check data file record length against byte size declared in FD statement

for: "
Description: When using the REWRITE statement, the record byte size that you specify in the FD

statement for the file must exactly match the actual physical record length of the file
records. Determine the actual record length of your file record and use this value in the
BYTE clause of your FD statement.

Error Number: 0154-0157
Error Message: "POSITION offset argument is invalid. It should be a numeric integer variable or value: "

Description: The offset argument to a position statement must be either an integer numeric literal, or a
numeric variable containing an integer value. If you are specifying a variable as an
argument, make certain that the variable is defined with a numeric picture clause, and that
it does not have any post-decimal component.

Error Number: 0158, 0159
Error Message: "POSITION offset argument is causing an out of range value for the record position: "

Description: The argument that you have specified to the POSITION statement has a value that is
pointing to a position that is either before the beginning of the file or after the end of the
file.

Error Number: 0160
Error Message: "POSITION statement error. Check data file record length against byte size declared in FD

statement for: "
Description: When using the POSITION statement, the record byte size that you specify in the FD

statement for the file must exactly match the actual physical record length of the file
records. Determine the actual record length of your file record and use this value in the
BYTE clause of your FD statement.

Error Number: 0161
Error Message: "Cannot open file: "

Description: The specified file argument to DISPLAYFILE could not be opened. The filename may not
exist as named on your machine (a file must already exist on your machine in order for it
to be successfully opened for reading). On Unix platforms, check the permissions on the
directory and the named file; they must both allow reading by the user running the
CobolScript program.

Error Number: 0162
Error Message: "Error in internal DISPLAY of: "

Description: This error applies to an internal Deskware debugging command. It should not arise in
your normal programming.

Page 242 CobolScript® Developer’s Guide

Error Number: 0163, 0164
Error Message: "Error in { DISPLAY | DISPLAYLF } of: "

Description: You have attempted to DISPLAY or DISPLAYLF an argument to standard output, but it
failed. If the argument is a variable name or contains a variable name, check to see if this
variable has been properly defined prior to the display statement.

Error Number: 0165
Error Message: "No arguments specified."

Description: No arguments have been specified in this DISPLAY statement. There must be at least
one argument to DISPLAY.

Error Number: 0166
Error Message: "Line too long in DISPLAY statement."

Description: You have exceeded the maximum line length of 500 characters in this DISPLAY
statement. Shorten this DISPLAY by placing a portion of the argument on another line in
a new DISPLAY statement.

Error Number: 0167, 0168
Error Message: "Missing ampersand or string delimiter in DISPLAY of literal."

Description: A error in the DISPLAY of a literal has occurred. Check for missing string delimiters, or
missing ampersands (&) between multiple DISPLAY arguments.

Error Number: 0169-0191
Error Message: " TCP/IP is not currently available."

Description: You are attempting to use a command that requires TCP/IP, but the TCP/IP protocol is not
currently available on your machine. Make certain that you have an open internet or
network connection utilizing TCP/IP before using this command.

Error Number: 0192-0194
Error Message: "{ FTPCLOSE | FTPBINARY | FTPASCII } failed."

Description: An FTP statement has failed. Your connection may have timed out prior to the execution
of the statement.

Error Number: 0195
Error Message: "The FTPCONNECT statement has failed to connect to the following server name: "

Description: An attempt to connect to an FTP server has failed. Make certain that the named remote
server is available, and is running as an FTP server. Also, if you are using variable names
to contain your parameters, make sure they have been properly defined prior to this
statement.

Error Number: 0196
Error Message: "The FTPCD statement failed to change directories to the following path: "

Description: The FTPCD command has failed. Verify that the named path exists on the remote server.
If you are using a variable to hold the directory name, make certain it has been properly
defined prior to this statement. It is also possible that the FTP connection timed out
before the FTPCD statement could be successfully executed.

CobolScript® Developer’s Guide Page 243

Error Number: 0197
Error Message: "The FTPGET statement failed for the file: "

Description: The FTPGET command has failed for the named file. Verify that the file exists on the
remote server. Also, if you are using a variable to hold the file name, make certain it has
been properly defined prior to this statement. It is also possible that the FTP connection
timed out before the FTPGET command could be successfully executed.

Error Number: 0198
Error Message: "The FTPPUT statement failed for the file: "

Description: The FTPPUT command has failed. Verify that the local file exists in the specified path. If
you are using a variable to hold the file name, make certain it has been properly defined
prior to this statement. It is also possible that the FTP connection timed out before the
FTPPUT command could be successfully executed.

Error Number: 0199-201
Error Message: "The { SENDMAIL | GETMAILCOUNT | GETMAIL } statement has failed."

Description: A mail command that you are trying to execute has failed. If you are using variables to
hold the contents of your parameters, verify that they are properly defined prior to this
statement. Verify that the userid and password are valid for the SMTP server you are
trying to connect to, and verify that you can establish connectivity to the SMTP server from
your local machine, using ping or a similar operating system command.

Note: Some firewalls will prevent you from connecting and receiving data from a SMTP
server. Also, some SMTP servers will not allow you to forward mail unless you have a
valid userid and password.

Error Number: 0202
Error Message: "The GETWEBPAGE statement failed."

Description: The GETWEBPAGE command you are trying to execute has failed. If you are using
variables to hold the contents of your parameters, verify that they are properly defined
prior to this statement. Verify that the URL you are trying to GET is valid. Also, verify that
you can establish connectivity to the remote server.

Error Number: 0203, 204
Error Message: "{ CREATESOCKET | CLOSESOCKET } failed for socket: "

Description: A socket command has failed. Check the contents of the TCP/IP return code variables for
further information.

Error Number: 0205-0210
Error Message: "Could not { use SHUTDOWNSOCKET on | BINDSOCKET to | LISTENTOSOCKET on

| ACCEPTFROMSOCKET on | SENDSOCKET to | RECEIVESOCKET from } socket: "
Description: A socket command has failed. Check the contents of the TCP/IP return code variables for

further information.

Error Number: 0211
Error Message: "The GETENV statement failed to get: "

Description: If you are using a variable name as a parameter, verify that is has been properly defined
prior to this statement.

Page 244 CobolScript® Developer’s Guide

Error Number: 0212
Error Message: "Syntax error in GETENV statement."

Description: Your GETENV statement syntax is incorrect. See the Language Reference for the correct
syntax.

Error Number: 0213, 0214
Error Message: "There was an error getting the { hostname | host by name } : "

Description: There was a problem getting the hostname or host by name. If you are using a variable to
store the hostname, make sure that it is properly defined prior to this statement.

Error Number: 0215
Error Message: "There was an error with GETTIMEFROMSERVER."

Description: There was an error getting the time from a server. If you are using a variable to store the
hostname, make sure that it is properly defined prior to this statement. Also, make certain
that the machine has a time daemon running on it – if it doesn’t, you will not be able to get
the time from it.

Error Number: 0216-0222
Error Message: "{ TCPIP-HOSTENT-ADDRESS-TYPE | TCPIP-HOSTENT-ADDRESS-LENGTH |

TCPIP-HOSTENT-ADDRESS | TCPIP-HOSTENT-ALIAS |
TCPIP-HOSTENT-HOSTNAME | TCPIP-RETURN-CODE | TCPIP-RETURN-MESSAGE }
not defined."

Description: You attempted to use an internetworking command, but the named variable was not
properly defined in your program. This variable must be defined when this command is
used. See the Language Reference for the internetworking command you are attempting
to implement.

Error Number: 0223-0232
Error Message: "Maximum number of sockets exceeded."

Description: Your socket command has exceeded the maximum number of sockets allowed in this
version of CobolScript. The maximum number of sockets is 20.

Error Number: 0233
Error Message: "Shutdown method must be 0,1, or 2."

Description: SHUTDOWNSOCKET requires that a shutdown method equal to 0, 1, or 2 be specified.

Error Number: 0234
Error Message: "SLEEP statement failed. Argument was : "

Description: This error message should not be encountered with this version of CobolScript

Error Number: 0235-0238
Error Message: "Module not defined: "

Description: The named module could not be found, probably because of a misspelling. Verify that the
module named references a valid module name.

CobolScript® Developer’s Guide Page 245

Error Number: 0239,0240
Error Message: "This PERFORM statement is missing an UNTIL keyword."

Description: A PEFORM statement was found to be missing the UNTIL keyword in a case where
UNTIL was required. See the Language Reference for proper syntax of PERFORM ..
UNTIL.

Error Number: 0241,0242
Error Message: "Missing UNTIL keyword in this PERFORM VARYING."

Description: A PEFORM .. VARYING statement was found to be missing the UNTIL keyword. See the
Language Reference for proper syntax of PERFORM .. VARYING.

Error Number: 0243-0246
Error Message: "Invalid syntax in { inline PERFORM | PERFORM VARYING | PERFORM UNTIL }

statement."
Description: A PERFORM statement was found to have too few tokens to be valid. See the Language

Reference for proper syntax of the type of PERFORM you are attempting to implement.

Error Number: 0247-0250
Error Message: "The PERFORM VARYING statement must contain a { FROM | BY } keyword and value."

Description: The FROM and BY keywords and values are required in PERFORM .. VARYING; the
FROM value specifies the initial value for the varying variable, while the BY value specifies
the quantity by which the varying variable will be incremented.

Error Number: 0251,0252
Error Message: "The VARYING variable is not defined as numeric: "

Description: The variable name after the VARYING keyword in the PERFORM .. VARYING statement
was not defined with a numeric picture clause. Make sure that it is defined as a numeric
prior to this statement.

Error Number: 0253, 0254
Error Message: "Cannot initialize VARYING variable to the starting value: "

Description: The variable name after the VARYING keyword in the PERFORM .. VARYING statement
could not be initialized to the starting value (value after FROM keyword). Make sure that
the VARYING variable is defined as a numeric, and that the FROM value is also a valid
numeric.

Error Number: 0255, 0256
Error Message: "Inline { PERFORM | PERFORM VARYING } must have code statements between the

PERFORM and END-PERFORM."
Description: In your version of CobolScript, inline PERFORMs must have statements between the

PERFORM and END-PERFORM. Modify your code accordingly.

Page 246 CobolScript® Developer’s Guide

Error Number: 0257
Error Message: "IF or PERFORM statement missing END-IF or END-PERFORM keyword."

Description: Either an IF statement is missing an END-IF, or a PERFORM statement is missing an
END-PERFORM. Check the IF and PERFORM statements in your code for their ending
keywords.

Error Number: 0258-0261
Error Message: "Missing END-IF for IF clause."

Description: An END-IF is missing for an IF statement. Insert the END-IF.

Error Number: 0262-0264
Error Message: "{ ELSIF | ELSE | END-IF } without initial IF clause."

Description: The named keyword is not preceded by an IF clause. This keyword must succeed an IF
clause for the syntax to be correct.

Error Number: 0265
Error Message: "An ACCEPT statement has failed."

Description: The ACCEPT statement has failed, possibly because one of the receiving variables is not
defined. Alternatively, the syntax is incorrect. See the Language Reference for proper
syntax of the ACCEPT statement.

Error Number: 0266
Error Message: "The FROM keyword is missing from this ACCEPT statement."

Description: The FROM keyword was missing in the ACCEPT statement. See the Language
Reference for the proper syntax of the ACCEPT statement.

Error Number: 0267
Error Message: "Error ACCEPTing standard input into: "

Description: There was an error accepting standard input into the named target variable. Check the
picture type and length of the variable, and make certain it is properly defined.

Error Number: 0268
Error Message: "An error occurred while ACCEPTing CGI data from the web server."

Description: An ACCEPT of CGI data from a web server failed. Make certain that there is data to
ACCEPT; this can be verified by accepting and examining the environmental variable
CONTENT_LENGTH; if CONTENT_LENGTH is populated with zero, then there is no data
to accept from the web server.

Error Number: 0269
Error Message: "Syntax error in ACCEPT statement."

Description: A syntax error was found in the ACCEPT statement. See the Language Reference for the
proper syntax of the ACCEPT statement.

CobolScript® Developer’s Guide Page 247

Error Number: 0270
Error Message: "Third parameter to GETBANNER must be a group-level data item: "

Description: The third parameter of the GETBANNER function must be a 01 level group-level data
item.

Error Number: 0271
Error Message: "GETBANNER requires a group-level data item with 8 elementary data items as the target

variable."
Description: The GETBANNER command requires, as the target variable, a group-level data item with

eight elementary data items defined as subvariables.

Error Number: 0272, 0273
Error Message: "Unable to allocate memory required to { print | create } calendar."

Description: There is not sufficient memory available when this program runs to successfully print or
create the calendar. Either reduce the size of your program or the number of variables
declared in your program, or use a computer with more memory.

Error Number: 0274, 0275
Error Message: "{ CALENDAR | GETCALENDAR } year data type mismatch. Year input must be

numeric: "
Description: There is a data type mismatch - the year parameter to this statement must be a numeric

literal, or a variable defined with a numeric picture clause. See the Language Reference
for the proper syntax of the CALENDAR or GETCALENDAR statement.

Error Number: 0276, 0277
Error Message: "{ CALENDAR | GETCALENDAR } month data type mismatch. Month input must be

numeric: "
Description: There is a data type mismatch - the month parameter to this statement must be a numeric

literal, or a variable defined with a numeric picture clause. See the Language Reference
for the proper syntax of the CALENDAR or GETCALENDAR statement.

Error Number: 0278, 0279
Error Message: "Range error in month input to { CALENDAR | GETCALENDAR } statement. Following

input month does not fall within range of 1-12: "
Description: The month input to this statement must be a numeric value in the range 1 to 12 (January

to December).

Error Number: 0280, 0281
Error Message: "{ CALENDAR | GETCALENDAR } year must be greater than zero, but following input year

is not greater than zero: "
Description: Range error: The input year to this statement must be greater than zero.

Error Number: 0282, 0283
Error Message: "{ CALENDAR | GETCALENDAR } statement does not support pre-Julian calendar dates

(dates prior to August 1752)."
Description: This statement does not handle pre-Julian dates, but your input is pre-Julian. Only dates

after August 1752 will be correctly processed.

Page 248 CobolScript® Developer’s Guide

Error Number: 0284
Error Message: "Third parameter to GETCALENDAR must be a group-level data item: "

Description: The third parameter of the GETCALENDAR function must be a 01 level group-level data
item with eight elementary data item subvariables.

Error Number: 0285
Error Message: "GETCALENDAR requires a group-level data item with 8 elementary data items as the

target variable."
Description: The GETCALENDAR statement requires, as the target variable, a group-level data item

with eight elementary data items defined as subvariables.

Error Number: 0286
Error Message: "An argument to the EXECUTE statement contains an undefined variable or a literal that is

missing delimiters."
Description: Check the variable that is the statement argument for the EXECUTE statement. There is

a problem with one of the underlying variable or literal constructs of your dynamic
statement variable.

Error Number: 0287
Error Message: "The syntax of the statement being executed is incorrect."

Description: Check the variable that is the statement argument for the EXECUTE statement. There is
a problem with the statement syntax.

Error Number: 0288
Error Message: "Missing argument in EXECUTE statement."

Description: Check the syntax of your EXECUTE statement and specify an appropriate argument.

Error Number: 0289
Error Message: "Invalid CobolScript statement. This syntax is unsupported."

Description: You have entered an invalid CobolScript statement. Check your syntax and try again.

Error Number: 0290-0294
Error Message: "A { COMPUTE | ADD | SUBTRACT | MULTIPLY | DIVIDE } statement has failed."

Description: Verify that the variables in your math statement are properly defined, and make certain
that any expressions and function calls are valid.

Error Number: 0295
Error Message: "Error encountered while evaluating COMPUTE expression."

Description: Make sure that the variables you are using in the COMPUTE statement are properly
defined, and that the expression has valid syntax.

CobolScript® Developer’s Guide Page 249

Error Number: 0296
Error Message: "Alphanumeric literals are not permitted inside computational statements."

Description: String literals are not permitted inside computational statements; computational
statements are used for mathematical operations only. To manipulate strings, use the
MOVE statement.

Error Number: 0297
Error Message: "Incorrect use of ROUNDED keyword in COMPUTE statement."

Description: The ROUNDED keyword is used incorrectly in a COMPUTE statement. See the
Language Reference entry for the COMPUTE statement for information on proper use of
the ROUNDED keyword.

Error Number: 0298
Error Message: "Invalid or missing variable name after REMAINDER keyword."

Description: You have used the REMAINDER keyword in a DIVIDE statement, but have not specified a
valid variable name to accept the remainder information. See the Language Reference
entry for the DIVIDE statement for information on proper use of the REMAINDER clause.

Error Number: 0299, 0300
Error Message: "Syntax error in REMAINDER clause in DIVIDE statement."

Description: You have used the REMAINDER keyword in a DIVIDE statement, but the syntax is
incorrect. See the Language Reference entry for the DIVIDE statement for information on
proper use of the REMAINDER clause.

Error Number: 0301
Error Message: "A GIVING clause must accompany DIVIDE statements that use the BY keyword."

Description: You have used the BY keyword in a DIVIDE statement, but have failed to specify a
GIVING clause. See the Language Reference entry for the DIVIDE statement for
information on proper syntax.

Error Number: 0302
Error Message: "Input length issue. Your expression must be smaller."

Description: In this version of CobolScript expressions must be less than 180 characters total; the
expression down into multiple statements, or make it less than 180 characters.

Error Number: 0303
Error Message: "Expression expected in statement."

Description: An expression was expected in the statement, but none was found. Check for the proper
syntax of your statement in the Language Reference.

Error Number: 0304-0309
Error Message: "Syntax error in expression."

Description: Check the syntax of any expressions in this statement. If you are displaying an
expression, make certain you separate multiple arguments with an ampersand. Refer to
Chapter 3, CobolScript Language Constructs, for more information on expression syntax

Page 250 CobolScript® Developer’s Guide

Error Number: 0310, 0311
Error Message: "Expressions are not allowed in this statement’s syntax."

Description: Expressions are not allowed in positional string referencing for this particular statement.
You must first set a variable equal to the expression of interest using a COMPUTE
statement, then substitute this variable for the expression in the positional string reference.

Error Number: 0312, 0313
Error Message: "Maximum individual argument length exceeded in expression."

Description: The maximum individual argument length in an expression has been exceeded. Insert
spaces between expression elements to reduce argument length. The maximum
individual argument length is 80 characters.

Error Number: 0314-0316
Error Message: "Missing parenthesis in expression."

Description: A parenthesis was missing from an expression. Insert the missing parenthesis.

Error Number: 0317
Error Message: "Operator encountered without appropriate operand in expression."

Description: An operator (+, -, /, *, %, etc.) was encountered in an expression but there was no target
operand. In other words, the operator was a dangling operator. Insert the operand in the
expression.

Error Number: 0318
Error Message: "Non-numeric variables are not permitted here. Contents of this variable are non-

numeric:"
Description: You are attempting to use a non-numeric variable in a computational statement. Revise

your statement to only use numeric variables.

Error Number: 0319
Error Message: "Misplaced comma in expression."

Description: You have placed a comma inside an expression when it should not be there. Commas
are only valid in expressions as function parameter separators or occurs clause argument
separators (Professional Edition only). Remove the misplaced comma.

Error Number: 0320
Error Message: "Invalid terminating character in expression."

Description: The terminating character in the expression is an operator or other inappropriate
character. Check your expression syntax.

Error Number: 0321
Error Message: "OCCURS clause group items are not allowed in expressions."

Description: OCCURS clause group items are not allowed in expressions. Rewrite this expression
using an elementary data item. If necessary, substitute an elementary data item directly
for the OCCURS clause group item.

CobolScript® Developer’s Guide Page 251

Error Number: 0322
Error Message: "Group-level data items are not allowed in expressions."

Description: Group-level data items are not permitted in expressions, since their value is not strictly
numeric, but is comprised of other variables Modify the expression or condition to use
only numeric literals and variables.

Error Number: 0323
Error Message: "Missing parenthesis in function call."

Description: A parenthesis is missing from a function call. Add the missing parenthesis.

Error Number: 0324
Error Message: "Function called with wrong number of parameters. Function is: "

Description: The function was called with the wrong number of parameters. Check the function syntax
in the Function Reference.

Error Number: 0325
Error Message: "Too many parameters in call to function."

Description: The function was called with the wrong number of parameters. Check the function syntax
in the Function Reference.

Error Number: 0326
Error Message: "Undefined function."

Description: A function is undefined. Check the spelling of your function name.

Error Number: 0327
Error Message: "In function: "

Description: Parameter error in function. Specific error messages always follow this message.

Error Number: 0328, 0329
Error Message: "Division by zero is not permitted."

Description: Your are attempting to perform division with a zero-valued divisor. Correct the expression
so that division by zero does not occur.

Error Number: 0330
Error Message: "Raising negative numbers to fractional powers is not permitted."

Description: You are attempting to raise a negative number to the power of a fractional number. Even
roots of negative numbers are imaginary numbers, which are not supported; however,
because of the difficulty in determining whether a root is even or odd, raising negative
numbers to any fractional power is prohibited. Modify the expression so that no negative
numbers are raised to fractional powers.

Page 252 CobolScript® Developer’s Guide

Error Number: 0331
Error Message: "Empty argument in reference modification or array variable."

Description: No argument was specified in an array or reference modification. Insert a valid index in
your positional string reference or array.

Error Number: 0332
Error Message: "Empty second argument in reference modification."

Description: The positional string reference was missing the second argument. Insert a valid numeric
argument in your positional string reference or array.

Error Number: 0333
Error Message: "Invalid syntax in reference modification."

Description: You have specified more than two arguments or more than one separating colon in a
reference modification argument. Proper reference modification syntax is of the form:
 variable-name(start-pos:end-pos)

Error Number: 0334, 0335
Error Message: "Incorrect syntax inside reference modification or array variable. Value of argument must

be a positive integer: "
Description: All arguments to arrays and positional string references must be positive (strictly greater

than zero) integers. Correct the argument that is not a positive integer.

Error Number: 0336
Error Message: "Reference modification is not permitted with numeric variables or group-level data items."

Description: Positional string referencing is not permitted with numeric variables or group-level data
items. If you are working with a numeric or group-level data item variable and wish to
isolate certain component characters or digits, move the variable to a group-level data
item with the appropriate elementary items.

Error Number: 0337
Error Message: "Internal error in variable processing."

Description: Internal error in variable processing. This error should not be encountered in the course of
normal programming.

Error Number: 0338-0341
Error Message: "Internal error in processing of { ADD | SUBTRACT | MULTIPLY | DIVIDE } statement."

Description: Internal error with math statement processing. This error should not be encountered in the
course of normal programming.

Error Number: 0342-0344
Error Message: "Internal error - stack space violation."

Description: The expression stack limit was violated. Break your expression into multiple assignment
statements with smaller component expressions.

CobolScript® Developer’s Guide Page 253

Error Number: 0345-0348
Error Message: "Internal error – explanatory text."

Description: Internal error with expression evaluation. These errors should not be encountered in the
course of normal programming.

Error Number: 0349-0352
Error Message: "LinkMaker SQL { FETCH | CLOSE | OPEN } error: Cursor is not declared: "

Description: Before you can use an SQL FETCH, CLOSE, or OPEN statement, your cursor must be
declared using an SQL DECLARE.

Error Number: 0353
Error Message: "LinkMaker SQL FETCH error: ABSOLUTE row number must be a positive integer. "

Description: When using FETCH ABSOLUTE, the row number value following the ABSOLUTE
keyword must be a positive integer, but the row number value that you specified was not.

Error Number: 0354
Error Message: "LinkMaker SQL FETCH error: Invalid extended fetch type."

Description: The extended fetch type (the keyword that follows FETCH in an extended fetch) is invalid.
Valid extended fetch types are FETCH NEXT, FETCH PRIOR, FETCH FIRST, FETCH
LAST, FETCH ABSOLUTE, and FETCH RELATIVE.

Error Number: 0355
Error Message: "LinkMaker error: You have exceeded the maximum number of allowable cursors."

Description: The maximum number of allowed cursors open at one time is 100. Reduce the number of
open cursors in your program.

Error Number: 0356
Error Message: "LinkMaker error: Data source returned an invalid column datatype."

Description: The data source that you have established a connection with has returned a column
datatype that is not a valid ODBC column datatype. Valid ODBC column datatypes are
CHAR, VARCHAR, SMALLINT, INTEGER, DECIMAL, NUMERIC, REAL, FLOAT, AND
DOUBLE. Your database’s ODBC driver must convert any native database datatypes to
these ODBC datatypes, so this error indicates that a bug exists in your ODBC driver.
Contact your ODBC driver vendor to report the problem.

Error Number: 0357
Error Message: "LinkMaker error: SQL host variable not found: "

Description: A host (receiving) variable was not defined. Host variables must be defined in your
CobolScript program using normal variable definition syntax before being used in a
LinkMaker SQL statement.

Error Number: 0358
Error Message: "LinkMaker DBOPEN error: Return code variable not found: "

Description: The return code variable for your DBOPEN statement was not defined.

Page 254 CobolScript® Developer’s Guide

Error Number: 0359
Error Message: "LinkMaker DBCLOSE error: Return code variable not found: "

Description: The return code variable for your DBCLOSE statement was not defined.

Error Number: 0360
Error Message: "LinkMaker error: You must be connected to a data source before executing SQL

statements."
Description: You attempted to execute a LinkMaker SQL statement, but there is not data source

connection established. Establish a connection with your data source first by using
DBOPEN.

Error Number: 0361
Error Message: "LinkMaker DBOPEN error: Data source name variable is not defined: "

Description: The data source name specified in the OPENDB statement is not a validly defined
variable. If you wish to specify a literal value instead of a variable, enclose the literal in
string delimiters.

Error Number: 0362
Error Message: "LinkMaker DBOPEN error: Data source user id variable is not defined: "

Description: The data source user id specified in the OPENDB statement is not a validly defined
variable. If you wish to specify a literal value instead of a variable, enclose the literal in
string delimiters.

Error Number: 0363
Error Message: "LinkMaker DBOPEN error: Data source password variable is not defined: "

Description: The data source password specified in the OPENDB statement is not a validly defined
variable. If you wish to specify a literal value instead of a variable, enclose the literal in
string delimiters.

Error Number: 0364
Error Message: "LinkMaker DBOPEN error: Return code must be a variable instead of a literal: "

Description: You have specified a literal to accept the return code value, but the return code must be a
previously defined variable.

Error Number: 0365
Error Message: "LinkMaker DBCLOSE error: Return code must be a variable instead of a literal: "

Description: You have specified a literal to accept the return code value, but the return code must be a
previously defined variable.

Error Number: 0366
Error Message: "LinkMaker error: Unable to establish connection with data source.

SQLERRORMESSAGE is: "
Description: There was a problem while attempting to connect with the data source. See the

SQLERRORMESSAGE text following this error message for further details.

CobolScript® Developer’s Guide Page 255

Error Number: 0367
Error Message: "REPLICA variable's value parent is not already defined: "

Description: A variable must be defined before a REPLICA of that variable can be defined. Check to
make sure that the variable you are making a REPLICA of has been defined. Also, check
to make sure that the spelling of the REPLICA variable and its parent are the same.

Error Number: 0368
Error Message: "REPLICA variable does not have the same level number as its value parent."

Description: The contents of the value parent cannot be properly duplicated if it has a different level
number than the REPLICA variable.

Error Number: 0369
Error Message: "REPLICA variable's value parent cannot be a group level data item."

Description: The value parent of a REPLICA variable cannot be a group level data item. Only
elementary data items can be used as value parents.

Error Number: 0370
Error Message: "REPLICA variable cannot be a group level data item: "

Description: A REPLICA variable must be defined as an elementary data item.

Error Number: 0371
Error Message: "An argument to the CALL statement contains an undefined variable or a literal that is

missing delimiters."
Description: One of the arguments of the CALL statement is either an undefined variable, or a literal

that is not enclosed in string delimiters. If it is a variable, verify that it has been defined
and that you have used the correct spelling in the statement. If it is a literal, make sure
that you put a string delimiter before and after the literal.

Error Number: 0372
Error Message: "The syntax of the statement being called is incorrect."

Description: See Appendix A for a description of the CALL command. You may use multiple
arguments for the CALL statement. These arguments may be literals, keywords or
variables. Verify that your literals are properly delimited and that your variables have been
defined.

Error Number: 0373
Error Message: "Missing argument in CALL statement."

Description: The CALL statement requires at least one literal or keyword argument. See Appendix A
for a description of the CALL command.

Error Number: 0374
Error Message: "Variable not defined: "

Description: The named variable is not defined. Check the variable name against the variables you
have defined in your program.

Page 256 CobolScript® Developer’s Guide

Error Number: 0375
Error Message: "This variable argument to the BYTES clause must be defined as a numeric: "

Description: You are attempting to define the byte size of a record with a variable that is not defined as
a numeric data type. Change the definition so that it is a numeric data type.

Error Number: 0376
Error Message: "BYTES clause argument cannot have a value of zero."

Description: You cannot specify a BYTES clause argument that has a value of zero. If you need to
create data files with 0 bytes in them, use an arbitrary BYTES clause size (For example:
80) and then OPEN and CLOSE the file for WRITING. A file of zero length will be created.

Error Number: 0377, 0378
Error Message: "The maximum number of permitted files has been exceeded. {Explanatory text}."

Description: You have exceeded the maximum number of permitted files for your edition of
CobolScript. If you have CobolScript Standard Edition, you should upgrade to the
Professional Edition at https://www.cobolscript.com/cgi-bin/cobolscript.exe?catalog.cbl for
support for greater numbers of variables. If you have the Professional Edition and you
require additional variable support, call the number provided in the error message to order
a custom edition of CobolScript with enhanced file support.

Error Number: 0379-0386
Error Message: "The maximum number of allowed variable declarations has been exceeded. {Custom

text}."
Description: You have exceeded the maximum number of permitted variables for your edition of

CobolScript. If you have CobolScript Standard Edition, you should upgrade to the
Professional Edition at https://www.cobolscript.com/cgi-bin/cobolscript.exe?catalog.cbl for
support for greater numbers of variables. If you have the Professional Edition and you
require additional variable support, call the number provided in the error message to order
a custom edition of CobolScript with enhanced variable support.

Error Number: 0387
Error Message: “The EXECUTE recursive stack limit has been exceeded. Reduce the number of

recursive EXECUTE calls in your program."
Description: You have exceeded the maximum number of recursive calls using the EXECUTE

statement. You must reduce the number of recursive calls in this particular EXECUTE
recursion.

Error Number: 0388-420
Error Message: “Variable not defined: "

Description: The named variable is not defined. Check the variable name against the variables you
have defined in your program. If you are using an array element like variable-
name(counter), make sure that counter is not zero, and is in the allowable range for that
particular OCCURS clause.

Error Number: 0421
Error Message: "Cannot open file: "

Description: The specified file argument to DISPLAYASCIIFILE could not be opened. The filename
may not exist as named on your machine (a file must already exist on your machine in
order for it to be successfully opened for reading). On Unix platforms, check the
permissions on the directory and the named file; they must both allow reading by the user
running the CobolScript program.

CobolScript® Developer’s Guide Page 257

Error Number: 0422
Error Message: “The argument of the GETHOSTNAME command must be a variable."

Description: You must specify an alphanumeric variable (not a literal or numeric variable) to receive the
value that is returned from the GETHOSTNAME command. The value returned will be the
host name of your machine.

Error Number: 0423
Error Message: “The email number must be a variable. "

Description: You must specify a numeric variable (not a literal) that will receive the email number when
you use the GETMAILCOUNT command.

Error Number: 0424
Error Message: “The argument to the INITIALIZE command cannot be a literal."

Description: You cannot use a literal as an argument to the INITIALIZE command. Specify a variable
that is to be initialized as the INITIALIZE argument.

Error Number: 0425
Error Message: "The last argument to GETBANNER cannot be a literal."

Description: The last argument to the GETBANNER statement must be a group item variable with eight
elementary item subvariables, rather than a literal or an elementary item. Once populated,
it will contain the contents of a Unix-style banner. See the GETBANNER entry in
Appendix A for more information about this command.

Error Number: 0426
Error Message: "Non-numeric data and/or group items are not permitted in this statement."

Description: Non-numeric literals and group item variables are not permitted in expressions, since their
value is not strictly numeric, but is comprised of other variables Modify the expression or
condition to use only numeric variables and literals.

Error Number: 0427
Error Message: "This group item variable is too large to evaluate inside this statement: "

Description: Group item variables must be less than 2000 bytes when they are tested or evaluated
inside a condition. The group item variable that you are testing exceeds 2000 bytes in
length.

Error Number: 0428
Error Message: "Group item variables are not permitted in this type of expression."

Description: Group item variables may only appear in conditions, not in COMPUTE or other
mathematical expressions.

Error Number: 0429
Error Message: "File mode could not be set to binary."

Description: An error occurred while attempting to redirect standard output using DISPLAYFILE on a
Windows®-platform computer. Reboot your computer and try again.

Page 258 CobolScript® Developer’s Guide

CobolScript® Developer’s Guide Page 259

Glossary

A

alias An alternative name for something, such as a
variable, file, or IP address.

algorithm Well-defined rule or process for
arriving at a solution to a problem. Also, a step-
by-step approach, in which improvement is made
in every step until the solution is reached.

alphabetic character A character that belongs to
the following set of letters: {A, B, C, D, E, F, G,
H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X,
Y, Z, the space character, a, b, c, d, e, f, g, h, i, j,
k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z} .

alphanumeric character Any character in the
computer’s character set.

ANSI American National Standards Institute. This
organization is responsible for standards like
ASCII and ANSI85 COBOL.

anonymous FTP Method for logging into certain
FTP servers. Entering ‘anonymous’ as your login
at an FTP site allows you to use resources that
the system administrator has made available to
the public.

API Application Programming Interface. A set of
routines, protocols, and tools for building
software applications.

AppMaker™ A feature of CobolScript
Professional Edition that creates executables
from CobolScript programs.

arithmetic expression A sequence of numeric
variables, numeric literals, or other expressions,
that are separated by arithmetic operators and can
be enclosed in parentheses to show evaluation
order.

arithmetic operator See operator.
argument An identifier, literal, or an expression

that specifies a value to be used as input or a
variable to hold output for a command.

array A series of variables, all of which are the
same size and type. Each variable in an array is
called an array element.

ASCII American National Standard Code for
Information Interchange. This a standard based
on a coded character set of 7-bit characters used
for information exchange between computer
systems.

B

bind To assign a value to a symbolic placeholder.
During compilation, for example, the compiler
assigns symbolic addresses to some variables and
instructions, thereby binding them.

breakpoint The place in a program where
execution may be interrupted by a user-specified
intervention.

browser GUI-based hypertext client application,
such as Netscape Navigator or Internet Explorer,
which is used to access hypertext documents and
services located on the Internet.

BSD Berkeley Software Distribution. Term used
to describe any of a variety of Unix-type
operating systems based on the UC-Berkeley
BSD operating system.

buffer A storage area used for handling data in
transit.

byte A string of bits, usually 8, that represents a
character.

C

called program An external program that is
executed through the use of the CALL command.

CGI Common Gateway Interface. This is the
parameter-passing technique used to enable web
browsers to pass data to web servers.

character A single unit of a language.
character set A list of all valid characters

available on a computer.
client A computer program that requests services

from another computer (called the server).
COBOL COmmon Business-Oriented Language.

A business programming language, invented by
U.S. Navy Rear Admiral Grace Hopper.

code A programming term loosely used to describe
the statements in a computer program.

CodeBrowser™ The code browsing and colorizing
component of CobolScript Professional Edition.

column The position in a text file, counting from
left to right, that describes the placement of a
character in a set of characters.

comment line A line of code in your program that
has an asterisk in the eighth column and is not
executed when the program is run. Usually
comment lines are used for documentation
purposes.

compiler A program than translates programs
from a high-level language into machine

Page 260 CobolScript® Developer’s Guide

language.
condition A special type of expression that is

evaluated in order to determine the flow of logic.
Conditions that evaluate to 1 are considered to be
TRUE; all other condition values are FALSE.

Control Panel An administrative feature of
CobolScript Professional Edition that provides
GUI access to other Professional Edition
features.

copybook An external file that contains a
sequence of code that is to be included in a
program at run time.

CRLF Carriage Return/Line Feed. One common
combination of ASCII characters used to end one
line of text and start a new one. Used on
Windows® platforms.

cron A Unix system utility that executes tasks at
regularly scheduled intervals.

cross-platform A term used to describe the ability
to run a program on different operating systems
without having to modify code.

cursor In SQL, the current row of a table being
manipulated by one query statement. Similar to a
pointer.

D

Data Division An optional division header of a
CobolScript program that indicates where file
descriptions and variable definitions will be
located.

database A shared collection of logically related
data, designed to meet the information needs of
multiple users.

Database Administrator A person who is
responsible for controlling the use, maintenance,
and upkeep of computer databases. Commonly
referred to as DBA.

data type A classification of a particular type of
information. In CobolScript, there are numeric
and alphanumeric data types.

DBMS DataBase Management System. A
software product for keeping computerized
records and managing the storage and retrieval of
the data. Normally, the term DBMS is used to
refer to relational databases, which store data in
tables that have rows (records) and columns
(fields).

DDL Data Definition Language. The language
component of a DBMS that is used to describe
the logical (and sometimes physical) structure of
a database. DDL enables the definition of tables,
indexes, and other database components.

debugging The process of finding and correcting
errors that exist in a program's logic.

delimiter A character that identifies the end of a
field in a record and the beginning of the next

field; a field separator.
device Any machine or component that attaches to

a computer.
device driver A program that controls an external

device.
directory A special kind of file used to organize

other files into a hierarchical structure.
Directories contain bookkeeping information
about files.

DNS Domain Name Service. An Internet service
that maps symbolic names to IP addresses by
distributing queries among the available pool of
computers supporting the service. Also, Domain
Name Server, used to describe a server that
stores and provides these symbolic mappings.

DML Data Manipulation Language. A language
component of a DBMS that is used by a
programmer to access and modify the contents of
a database.

domain A part of the DNS name. The domain to
the right of the rightmost period is called the top-
level domain. For example, in the domain name
deskware.com, .com is the domain. In the name
my.yahoo.au, .au is the domain.

download The process of copying files from
another computer to your own computer via a
network.

DSN Data Source Name. The named used to
define an ODBC data source.

E

editor A software tool to aid in writing and
modifying text documents; in programming, a
tool that aids in editing program code.

elementary data item A variable that has a
defined format and size; a CobolScript variable
that does not have subvariable components.

encryption The process of coding (or scrambling)
data so that it cannot be read by unauthorized
parties.

Environment Division An optional division
header of a CobolScript program used to describe
the computer on which the program was
developed and executed.

environment variable An operating system
variable, external to the program and provided to
the program by the operating system.

executable A term sometimes used to describe a
binary file that can be directly launched and run
by the operating system. Executable files contain
machine code native to the computer platform on
which they are running.

export To transfer data from one
location/application to another in a format that is
comprehensible to the receiving
location/application.

CobolScript® Developer’s Guide Page 261

extranet An organizational network that uses the
public Internet as part of its infrastructure.
Access to an extranet can be controlled by a
number of security measures such as user logins
and passwords. Often extranets are used so that
information contained in them can be accessed
externally by remote offices or business partners
without the expense of creating a private WAN
(Wide Area Network).

F

FAQ Frequently Asked Question. Document
which contains a list of commonly asked
questions on a specific topic.

FreeBSD A free Unix operating system based on
the Berkeley Software Distribution (BSD) of
Unix.

field In web systems, an HTML form component
that contains data submitted for processing by a
user. In data files, an individual data component
of a record.

file A term used to describe the place where data is
stored on a disk system.

file system The operating system's management
program that handles the request for input and
output from disk storage devices.

fixed width record A file organization in which
all records contain the exact same number of
character positions, and individual fields begin in
specific positions within the record.

FTP File Transfer Protocol. A protocol used to
transfer files across remote machines. FTP
requires that FTP server software be configured
and running on the serving machine.

function A command that performs a calculation;
the calculation should be related to the
descriptive name of the function.

G

GIF Graphics Interchange Format file; the most
common type of image file used on the Internet.

gldi See group-level data item.
group-level data item A variable that is made up

of one or more subordinate variables or
subvariables.

group item See group-level data item.
GUI Graphical User Interface. A graphical

interface to a software program, that makes use
of components such as buttons, menus, and
toolbars, and relies heavily on mouse input for
user interaction.

gzip A Unix compression program that reduces the
size of a file and saves it with a .gz extension.

H

HDML Handheld Device Markup Language. A
protocol similar to HTML, that defines a
communication standard between web servers
and handheld devices.

host A computer connected to a network.
hostent A name used to describe any set of

variables that contains the results of a host name
or address query against a DNS.

hostname The name of an individual computer on
the Internet.

HTTP HyperText Transfer Protocol. The basic
web protocol that defines the interaction between
web browsers and web server.

hyperlink A highlighted, underlined phrase or
word on a web page that can be clicked to go to
another part of the page or to another web page.

I

Identification Division An optional division
header of a CobolScript program that contains
comments that describe the nature of the program
and its intended use.

imperative A statement of code that is dependent
on a condition being met by a previous statement
of code. For example:
READ file INTO record
AT END

MOVE 1 TO eof.

In the above statement, MOVE 1 TO eof is an
imperative.

import To load and use data produced by another
application/location.

INI A text file that contains configuration
information. With respect to LinkMaker™, a
configuration file with ODBC information.

inline code Statements inside a module that
continue to execute until a certain condition is
met, but do not call any other modules or external
programs.

input A term used to describe the process of
accepting data from a user or the act of reading
data from a file.

interface Any type of information that is
exchanged between computer programs or
systems. This can be either exchanging files or a
real-time data exchange.

Internet The term used to describe all the
worldwide TCP/IP-based computer networks that
are connected together.

intranet An internet-style network internal to an
organization; an intranet can be used by anyone
who is directly connected to the organization’s
network.

interpreter A special type of computer program
that directly executes the instructions specified in
a high-level programming language program file,

Page 262 CobolScript® Developer’s Guide

without compiling the program code first.
I/O Input/Output; usually used to refer to file input

and output.
IP Internet Protocol.
IP address An identifier that describes the unique

location of a computer on a network or the
Internet, similar to a telephone number. An IP
address is expressed in numbers separated by
periods, e.g., 25.92.80.170.

J

JavaScript A client-side interpreter that runs
inside a web browser. Used to control actions in
a user’s browser between web server interactions.

JPEG Joint Photographic Experts Group file; a
type of image file used on the Internet.

K

KB Kilobyte. 1000 bytes.
kernel Software that is the heart of an operating

system.
keyword A special word that is reserved for use as

a command, statement component, function, or
identifier in a programming language.

L

level A number that refers to the hierarchy of a
variable. If a variable has a level number greater
than 1, then it is a subvariable of a higher-level
group item variable.

literal A character string that is interpreted as the
figurative constant is represents.

LinkMaker™ The database conduit technology
that is integrated with CobolScript Professional
Edition.

Linux® An open source Unix-like operating
system initially developed by Linus Torvalds.

logical operator A reserved word that is used in
evaluating conditions. AND, OR, XOR, and
NOT are logical operators.

M

MIME Multipurpose Internet Mail Extensions.
module The term used to describe a separate

paragraph of code. Modules normally are used to
partition code into logically distinct units of
work.

middleware Software that connects two otherwise
separate applications.

N

network A number of computers physically

connected to each other to enable inter-
communication.

numeric A variable that is defined in a way that
permits it to only have a value that contains
numbers or numeric formatting characters.
Numerics can be used in calculations and
expressions.

O

ODBC Open DataBase Connectivity. A standard
developed by Microsoft® that enables
applications to access data from a variety of
database management systems using SQL.

operator A single character that belongs to the
following set:
Character Meaning
+ addition
- subtraction
* multiplication
/ division
% modulus (mod)
^ raised to the power of

 See also unary operator, logical operator and
relational operator.

operand The variable that is modified or given a
new value upon execution of a calculation.

OS Operating System. The software on a
computer that controls the interaction between
the user and the computer, and provides a
platform on which other software can run.

output A term used to describe the displaying of
data to a user or the writing of data to a file.

P

paragraph A term used to describe a unit of code
that performs a specific piece of logic. See also
module.

paragraph header A data name that is used as a
descriptor of a paragraph in a program.

parsing The process of decoding data based on a
set of predefined rules.

path A list of directories where the operating
system looks for executable files if it is unable to
find them in the working directory; an operating
system environment variable that contains this
information, that is normally set at system startup
or user login.

picture clause Term used to describe the length
and format of a variable.

POP3 Post Office Protocol 3. Protocol for
retrieving email.

portable Term used to describe a program that can
be executed on dissimilar operating systems

CobolScript® Developer’s Guide Page 263

without modification.
Procedure Division An optional division header

used to indicate where the processing logic in a
program will be located.

protocol Any standard that defines a structured
method for systems to interact with each other.

pseudo-conversational A programming technique
in which interaction only takes place when a
request is made by a user.

R

random access The ability to access any record in
a file by specifying the record number and using
the POSITION statement.

readme file A text file copied onto software
distribution disks that contains last-minute
updates or errata that have not been printed in
normal documentation.

record A term used to describe the logical units of
data in a file.

redirection Directing input and output to files and
devices other than the default I/O devices.

relational operator A reserved word or special
character(s) used to describe a specific type of
value comparison in a condition. In CobolScript,
a member of the following set:
Operator Meaning
= equal to
EQUAL [TO] equal to
NOT = not equal to
NOT EQUAL [TO] not equal to
> greater than
GREATER [THAN] greater than
< less than
LESS [THAN] less than
>= greater than or equal to
NOT < greater than or equal to
NOT LESS [THAN] greater than or equal to
<= less than or equal to
NOT > less than or equal to
NOT GREATER [THAN]less than or equal to

relational database A database whose records are
organized into tables that can be processed by
either relational algebra or relational calculus.

Replica A special type of CobolScript variable
that may be defined in several places, but which
points to the contents of a single variable.

reserved word A character string that has special
meaning in a program.

root directory The top directory in a file system.

S

script A synonym for computer program, often
used when the program is interpreted rather than
compiled. Programmers often refer to their

programs as scripts.
sentence A sequence of one or more statements

that is terminated by a period.
sequential file A data file organization in which

records are physically stored one after the other.
SMTP Simple Mail Transfer Protocol. A protocol

used to send and deliver email.
socket A software structure that describes and

identifies a logical end point for communications
when using the TCP/IP protocol.

SQL Structured Query Language. A standard data
definition and manipulation language for
relational databases.

Sql State A value describing a database statement
or cursor state, as defined by the X/Open and
SQL Access Group SQL CAE specification
(1992). Sql state values are strings that contain
five characters.

SSL Secure Sockets Layer. A protocol developed
by Netscape for transmitting private documents
via the Internet.

standard input Term used to describe the normal
data that is accepted by a program for processing.

standard output Term used to describe the
normal output of data from a program.

string Group of alphanumeric characters enclosed
within string delimiters.

string delimiter Character that indicates where a
string begins and stops. By default, the string
delimiter in CobolScript is the Gravé accent (`)
symbol.

syntax The rules for placing and ordering terms,
punctuation, and values when writing computer
programs.

subdirectory A directory contained within another
directory.

subscript A symbol or number used to identify an
element in an array. Usually, the subscript is
placed in brackets or parentheses following the
array name, depending on language syntax.

SunOS® A Unix operating system developed by
Sun Microsystems®.

T

tag A term used to describe the basic components
that make up HTML documents.

TCP/IP Transmission Control Protocol/Internet
Protocol. A relatively low-level protocol for
communicating and transmitting data across
networks and the Internet.

tar Tape ARchival program. A utility used to
compress and uncompress files. These files
usually have a .tar extension.

telnet A program that allows remote login to
another computer.

text/html The MIME Content-type for HTML.

Page 264 CobolScript® Developer’s Guide

This is used when displaying HTML data to web
browsers.

text/plain The MIME Content-type for plain text.
This is used when displaying plain text data to
web browsers.

transaction A sequence of steps that constitute
some well-defined business activity.

U

unary operator A plus or minus sign that
precedes a variable or expression, or the logical
operator NOT when used to negate a whole
expression, e.g.:
Unary Operator Expression

- -(variable_val)
- -(x + y + z – 2)
+ +(variable_val)
+ +(x + y + z – 2)

 NOT NOT (x > y)

Unix - An operating system, originally developed
by Ken Thompson of AT&T BellLabs.

unixODBC - A Unix-based implementation of the
Microsoft® Open Database Connectivity
standard.

upload The process of copying files from your
own computer to another computer via a network.

URL Uniform Resource Locator. The naming
scheme used to identify Web sites. Also, the text
input box in a web browser where a URL name
can be entered in order to directly navigate to a
web site.

URL encoding A method used by web browsers to
pass data to web servers. URL encoding replaces
spaces with plus signs, and substitutes hex codes
for a range of other characters.

V

variable A unit of data that has a specific format
and size.

W

web browser A graphical application that allows a
user to retrieve HTML (Hypertext Markup

Language) documents from web servers across
the Internet.

web server A program that runs on a computer
and processes requests for HTML (Hypertext
Markup Language) or other types of markup
documents.

wild card character A special symbol that stands
for one or more characters.

WML Wireless Markup Language. A protocol
similar to HTML, that defines a standard way of
communications between web servers and
browsers on hand-held devices.

WWW World Wide Web. A large network of
Internet servers providing hypertext services to
client applications such as web browsers.

Z

zero suppression Used to describe the format of a
variable that, when printed, will display spaces in
place of zero characters.

ZIP A compression format that is used to combine
many files into one file of smaller size with a .zip
extension.

CobolScript® Developer’s Guide Page 265

Index

\ (the backslash) ...23
` (the Gravè accent)..23

A

A_Series DMS II ...221
ABS ...160
ACCEPT..66, 118, 246
ACCEPTFROMSOCKET119
Access...216-218
ACOS...160
ACOSH..160
ACTION, FORM tag attribute66
AcuCOBOL files211, 221
ADABAS..210-220
ADABAS D ...219, 221
Adaptive Server ...220
ADD...120
Advanced PICK...215
Advanced Plus ...217
Advantage Database Server218
AI...41
algorithm..259
alias..259
aliases...75
AllBase/SQL...210-213
Alpha Microsystems ..215
ALPHABETIC38, 39, 161
alphabetic character ...259
alphanumeric character259
animate, interactive mode command....................15
ANNUITY...161
ANNUITYFV..161
anonymous FTP ...259
ANSI..259
API...259
AppMaker ..112, 115, 259
argument ..259
Arithmetic Commands

ADD ...120
DIVIDE ..129, 249
MULTIPLY..146
SUBTRACT ...155

arithmetic operator...259
array...28, 259
AS/400 ..211-222
ASCII text......................................55, 59, 259, 260
A-Series ...219
ASIN..161
ASINH...162
ATAN ..162

ATAN2.. 162
ATANH... 162
AUTHOR sentence.. 190
AutoCAD .. 209

B

BANNER .. 120, 121
BASISplus... 211
bind.. 259
BINDSOCKET ... 78, 121
break, interactive mode command....................... 15
breakpoint.. 259
browser .. 64, 264
BS2000 DBMS.. 212
Btrieve .. 214-218
Business BASIC ISAM 211
Butler SQL .. 211
byte.. 259

C

CA-Datacom/DB ... 210
CALENDAR ... 122, 247
CALL .. 56, 58, 122, 259
called program... 259
CALTOJ.. 162
CA-Realia.. 218
CARRIGERETURN ... 24
CCTOIN.. 163
CEILING... 163
CGI.. 63, 259
CGI Data, capturing .. 66
CGI directory... 5, 7
CGI form components ... 86

Checkboxes .. 89
Hidden Fields ... 90
List Boxes .. 88
Radio Buttons... 89
Text Area ... 87
Text Boxes ... 87

CGI Programming
Environment Variables............................... 84, 85
Sending email using CGI input 92

character .. 259
character set... 259
chmod.. 7, 15, 17, 18
CHOOSE... 163
CINTOCC ... 163
C-ISAM.. 210-221
Clarion Top Speed... 220
clear, interactive mode command 16

Page 266 CobolScript® Developer’s Guide

client ..259
Clipper ...215
CLOSE...47, 48, 122, 238
CLOSEDB ...123, 223
CLOSESOCKET ...123
CMTOIN ...163
COBOL..259
CobolScript Professional

AppMaker...112, 115
CodeBrowser ..109, 114
Control Panel ..113
Using LinkMaker to access databases223

code..259
CodeBrowser ...109, 114

Controlling access to110
column ...259
Command line, running CobolScript from...........10
commands

database ..40
dynamic processing ..41
email ...40
file processing...39
FTP...40
general program control....................................39
TCP/IP..41
Unix shell-style ...41
web processing ...40

Comments ..45, 259
compiler ...259
COMPUTE37, 124, 129, 171, 248
condition37, 38, 142, 147, 260-262
Conditions

evaluation of ...37
general rules of ...37
syntax of ...38
Type I ...38
Type II ..38

CONNECTTOSOCKET......................80, 124, 125
CONTINUE...125
Control Panel, CobolScript113
Conversion Functions

CALTOJ ...162
CCTOCIN ..163
CINTOCC ..163
CMTOIN ..163
FTOM...165
GMTOOZ...166
HPTOKW...166
INTOCM ..166
JTOCAL ...167
KGTOPD..167
KMTOML ..167
KWTOHP...167
LTOGAL ..168
MLTOKM ..168
MTOF...168
OZTOGM...169
PDTOKG..169

COPY .. 33, 125, 144
Copy Book Commands

COPY... 33, 125, 144
INCLUDE 33, 125, 143, 144

copybook ... 260
Copybook files .. 33
COS... 164
COSH .. 164
count, interactive mode command....................... 16
CREATESOCKET.............................. 78, 126, 243
CRLF... 24, 260
csaccess file ... 110, 114
CTOFAHR .. 164
CTOS ISAM.. 219
c-tree Plus.. 211

D

D3.. 215
DARGAL server.. 211
Data Division... 191, 260
Data files ... 32
Data Sources

Configuring in Unix 200
Configuring in Windows 195

Databases, relational, interacting with CS Standard
... 55

Datacom .. 210, 213, 217
DataEase.. 212
Datafit DP4.. 210
DataFlex .. 212, 220
Date Commands

ACCEPT .. 118, 246
CALENDAR .. 122, 247
GETCALENDAR 137, 248

DB2 .. 209-222
DB2/2 .. 220
dBASE... 212, 215, 216
debugging .. 260
delimited data 21, 23, 32, 48, 50-53
delimiter .. 260
Delimiter, string... 23
Depreciation Functions

DDBAMT .. 124, 164
STRLINEAMT .. 172
SYDAMT... 172

design .. 100
design, program... 99
deskware, interactive mode command................. 16
D-ISAM..................................... 210, 211, 214, 218
DISAM96.. 210
display ... 126
DISPLAY.. 68, 126
display, interactive mode command 16
DISPLAYASCIIFILE 94, 95, 127, 128
DISPLAYFILE...................................... 94, 95, 128
DISPLAYLF ... 68, 128
DIVIDE... 129, 249
DL/1 .. 210, 212

CobolScript® Developer’s Guide Page 267

DMS ..218
DMS II...211, 217
DMS-1100 ...219
DNS ...75, 260
DNS Commands ..75

GETHOSTBYNAME...................75, 77, 85, 138
GETHOSTNAME75, 139, 242

domain ...260
DOUBLEQUOTE....................................12, 23, 24
DRDA..220
dump ..233
dump, interactive mode command16
Dynamic File Naming..104
Dynamic Statement Execution105

E

Editing programs..9
Elementary Data Item ..25
ELSE..142, 143
ELSIF...142, 143
email ..139, 140

sending, using CGI form input..........................92
Email Commands

GETMAIL ..74, 139, 140
GETMAILCOUNT74, 140
GETMAILCOUNT ..140
SENDMAIL73, 92, 153, 243

Empress ...211
Environment Division................................190, 260
Environment Variables6, 84, 85, 260
Error Messages

complete listing of ..231
HTML-based ..19
in command line mode......................................13

ESRI ARC/INFO Coverages211
Essentia SQL Server ..213
Excel ..215, 216
EXEC SQL ..130
EXECUTE...105, 131
EXP..164
expression ..34, 259
Expressions

Inside DISPLAY statements103
rules of construction ...36
Segment and OCCURS clause variable

arguments ..103
EXTFH ..211, 221

F

FACT...165
FAHRTOC...165
FairCom...211
FAQ ...261
FD..................32, 33, 44, 48, 51, 52, 131, 238, 239
field..261
file..261
file descriptor ...48
file system..261

Filemaker... 212
Files

Appending new records to................................ 50
Closing ... 48
Copybook... 33
Data .. 32
Describing .. 32
Opening.. 48
Reading records from....................................... 49
Transferring.. 71
Transmitting through the web........................... 93
Updating... 52, 53
Writing to ... 50

files, interactive mode command......................... 16
FILLER variables 24, 27, 96
Financial Functions

ANNIUTYFV .. 161
ANNUITY ... 161
FV .. 165
PV .. 170
PVANNUITY .. 170

FirstSQL.. 212
fixed width........................... 32, 48, 51, 52, 88, 261
FLOOR.. 165
FOCUS.. 217
forms ... 124, 146
FoxPro... 215, 216
FTP Commands

FTPASCII .. 72, 132
FTPBINARY ... 72, 133
FTPCD ... 72, 133, 242
FTPCLOSE .. 134, 242
FTPCONNECT................................ 72, 134, 242
FTPGET..................................... 72, 73, 135, 243
FTPPUT..................................... 72, 73, 135, 243

FTP, anonymous.. 71
Fulcrum Search Server 212
function.. 261
FUNDS System Databases 218
FV.. 165
FVANNUITY.. 166

G

GALTOL... 166
GA-Power95.. 215
GA-R91 ... 215
GENESIS .. 221
Geometric Functions

ACOS... 160
ACOSH .. 160, 161
ASIN .. 161
ASINH ... 162
ATAN .. 162
ATAN2 .. 162
ATANH.. 162
COS.. 164
COSH... 164
PI.. 36, 169, 170

Page 268 CobolScript® Developer’s Guide

GETBANNER ...136, 247
GETCALENDAR......................................137, 248
GETENV ...137
GETHOSTBYNAME......................75, 77, 85, 138
GETHOSTNAME75, 139, 242
GETMAIL ...74, 139, 140
GETMAILCOUNT......................................74, 140
GETTIMEFROMSERVER141, 244
GETWEBPAGE69, 141, 142, 243
GMTOOZ ..166
GOBACK ..142
Group-level data items...26
GT M ...211
GUI ..261
GURU..216
gzip ..261

H

HDML ...261
help screen ...15
help, interactive mode command15, 16
Hidden fields, using ...90
Higher Math Functions

ABS ..160
CEILING ..163
EXP ..164
FLOOR...165
LN...167
LOG..168
ROOT ...171
SIGN...171
SQRT..36, 124, 172

HMP NX..221
host ..261
hostent..261
hostname75, 134, 138, 139, 141, 244, 261
HP 3000 Allbase..212
HP Eloquence databases215
HP Image/SQL...216
HPTOKW ..166
HTML

Forms, creating ...66
Virtual HTML ..64, 65

HTTP protocol...261

I

IBM AS/400 ..209
ICOBOL ..211
Identification Division190, 261
IDMS209-213, 217, 218, 220
IDS II ...210
IF..37, 142, 143, 168
Image/SQL.................................210, 212, 213, 217
imperative ..261
implied decimal..240
Implied operators ...37
implied PIC X(n) ...27, 68
Implied subjects ...37

IMS... 209-221
INCLUDE 33, 125, 143, 144
INFO DBMS ... 211
Infoman ... 217
Informix.. 210-221
Inforover.. 216
Ingres... 217, 221
INITIALIZE...................................... 144, 237, 238
inline code ... 261
input... 261
Inserts, table, in CS Standard 59
Installation

FreeBSD... 1, 4, 5, 6, 18
Linux .. 1, 4, 5, 6
Microsoft Windows.. 1
SunOS .. 1, 4, 5

Interactive Mode Commands
animate ... 15
break... 15
clear.. 16
count... 16
deskware... 16
display .. 16
dump listing.. 16
dump modules .. 16
dump positions ... 16
dump variables ... 16
files... 16
help... 15, 16
ip .. 14, 16
list... 14, 16
load... 16
modules .. 16
positions ... 16
q .. 17
run .. 14, 17
save .. 17
stack ... 17
stepoff .. 17
stepon ... 17
variables ... 14, 17
ver .. 17

Interactive Mode, running CobolScript in 14
InterBase ... 219
Internal Line Number .. 14
Internet .. 261
Internet News Server ... 222
interpreter .. 4, 6, 261
INTOCM... 166
IP ... 262
IP Address ... 262
ip, interactive mode command....................... 14, 16
ISAM................................. 209, 212, 214, 217, 220

J

JavaScript .. 95, 96, 262
jBase.. 215
JTOCAL.. 167

CobolScript® Developer’s Guide Page 269

K

KB_SQL ..214
KE Texpress ODBMS214
KEYED1011..221
Keywords...21, 24, 262
KGTOPD...167
K-ISAM ...214
KMTOML ...167
Knowledge Man...216
Kubl ...217
KWTOHP ..167

L

LDAP...218
ldconfig..202
LEASY ..212
level ...262
LINC..221
LINEFEED ..24, 65
LinkMaker ...195, 223
list, interactive mode command14, 16
LISTENTOSOCKET...........................78, 144, 145
literal..262
Literals

Alphanumeric ...22
Numeric ..22

LN..167
load, interactive mode command16
LOG...168
logical operator ..262
loopback address..65, 80
Lotus Notes..215
LTOGAL ...168

M

M..213, 214, 217
maintenance ...189
MAPPER ...209
mbp ..218
MEGAdata...215
Mentor Pro...215
Micro Focus COBOL files.................214, 218, 221
MIME ..262
MIME header...65, 94, 95
MIMER SQL RDBMS220
MiniSQL..222
MLTOKM ...168
Model 204..210, 217
modular programming..99
module ...262
modules, interactive mode command...................16
Monette..216
MOVE ...145
MOVE Techniques

Basic Moves ...101
ELDI to GLDI Moves.....................................102
GLDI to ELDI Moves.....................................102

Segmented Moves .. 101
MTOF.. 168
multidimensional arrays....................................... 30
MULTIPLY... 146
Mumps... 214
mvBase .. 215
MySQL.. 222

N

NAME, INPUT tag attribute 66
network.. 262
numeric.. 262
NUMERIC .. 38, 39, 168
NUMPMTS... 169

O

Oberon... 216
OBJECT COMPUTER sentence....................... 190
Object/1 ... 216
Objectivity/DB .. 217
ObjectStone ... 216
OCCURS clause variables................................... 28
Ocelot SQL.. 217
ODBC.. 195
ODBC Drivers

Alpha Microsystems....................................... 215
ODBC Drivers... 209

A_Series DMS II.. 221
Access ... 216-218
AcuCOBOL files.................................... 211, 221
ADABAS .. 210-220
ADABAS D ... 219, 221
Adaptive Server.. 220
Advanced PICK ... 215
Advanced Plus.. 217
Advantage Database Server............................ 218
AllBase/SQL ... 210-213
AS/400 .. 211-222
A-Series.. 219
AutoCAD ... 209
BASISplus.. 211
BS2000 DBMS .. 212
Btrieve... 214-218
Business BASIC ISAM.................................. 211
Butler SQL ... 211
CA-Datacom/DB.. 210
CA-Realia... 218
C-ISAM................................... 210-214, 218, 221
Clarion Top Speed ... 220
Clipper.. 215
CTOS ISAM .. 219
c-tree Plus... 211
DARGAL server .. 211
Datacom ... 210, 213, 217
DataEase .. 212
Datafit DP4 .. 210
DataFlex... 212, 220
DB2... 209-222

Page 270 CobolScript® Developer’s Guide

DB2/2 ...220
dBASE..212, 215, 216
D-ISAM..................................210, 211, 214, 218
DISAM96 ...210
DL/1..210, 212
DMS ...218
DMS II..211, 217
DMS-1100 ..219
DRDA...220
Empress ..211
ESRI ARC/INFO Coverages211
Essentia SQL Server213
Excel...215, 216
EXTFH ...211, 221
FairCom..211
Filemaker ..212
FirstSQL ...212
FOCUS ...217
FoxPro ..215, 216
Fulcrum Search Server212
FUNDS System Databases218
GA-Power95...215
GA-R91 ..215
GENESIS..221
GT M..211
GURU...216
HMP NX...221
HP 3000 Allbase...212
HP Eloquence databases.................................215
HP Image/SQL ...216
IBM AS/400 ...209
ICOBOL ...211
IDMS...............................209, 210, 213, 217-220
IDS II..210
Image/SQL.......................................210-213, 217
IMS...209
IMS..210-221
INFO DBMS ..211
Infoman...217
Informix...210-221
Inforover ...216
Ingres ..217, 221
InterBase...219
ISAM..............................209, 212, 214, 217, 220
jBase ...215
KB_SQL...214
KE Texpress ODBMS214
KEYED1011 ..221
K-ISAM..214
Knowledge Man ...216
Kubl ..217
LDAP..218
LEASY ...212
LINC...221
Lotus Notes...215
M ..213, 214, 217
MAPPER..209
mbp...218

MEGAdata ... 215
Mentor Pro ... 215
Micro Focus COBOL files 214, 218, 221
MIMER SQL RDBMS................................... 220
Model 204 .. 210, 217
Monette .. 216
Mumps ... 214
mvBase... 215
Oberon.. 216
Object/1.. 216
Objectivity/DB ... 217
ObjectStone.. 216
Ocelot SQL .. 217
Open/A... 219
OpenIngres 210, 213-215, 219
Oracle.. 210-221
Ottero ... 216, 218
Paradox .. 215, 216
PASSdata ... 215
PCIOS .. 219
Pervasive SQL.. 218
PI Open .. 215
PICK .. 215
Poet ODBMS ... 218
Postgres .. 217
Progress................................... 211, 215, 217-219
PROMIS... 211
QSAM .. 209, 217
Quadbase-SQL ... 218
Raima ... 219
RDA ... 221
Rdb.................................. 210-214, 217, 220, 221
RDB ... 212
RDMS .. 217
RDMS-1100 ... 219
Reality/X .. 215
Recital .. 219
Red Brick ... 214, 219
RFM II ... 210
RM COBOL... 211
RM/COBOL... 214
RMS .. 210-214, 217, 220
RTXHDB ... 219
SAP .. 217
SAS .. 219
Sequoia/Pro .. 215
SESAM .. 217
SESAM/SQL.. 212, 219
Sharebase ... 213
SNMP... 219
SOLID.. 217, 220, 221
SQL Server... 213
SQL Server.. 214-221
SQL/400... 220
SQL/DS.................................. 213, 215, 220, 221
SQLBase .. 210, 215
SQLDB .. 221
STX.. 212

CobolScript® Developer’s Guide Page 271

Superbase..220
Supra...217
Supra Server ...213
Sybase..211-221
Synergy databases...220
System 1032 ...210
Tandem Enscribe ..210
TANDEM Enscribe ..214
Tandem NonStop SQL210, 220
TANDEM SQL MP..214
TANDEM SQL MX214
Teradata...209-220
Thoroughbred files ...218
Times Ten Server ...220
T-ISAM ..211
Titanium ...216
TM1..209
TOTAL...213, 217
TurboImage ..212
U/FOS...211
UDS..217
UDS/SQL ...212, 219
UFAS..210
UltPlus ..215, 217
UniData ..215
UniData RDBMS..209
UniSQL...210, 216, 221
Unisys RDBMS ..209
UniVerse...209, 215
Velocis..210, 217, 219
Versant..221
Viaserv Gateway...221
Vision indexed file system..............................209
VSAM ...209-220
White Cross RDBMS221
Xbase ..220
XDB ...215, 222
YARD-SQL..222

OPEN.....................47, 48, 146, 147, 238, 239, 240
Open/A...219
OPENDB ...147, 223
OpenIngres..................................210, 213-215, 219
operand ..262
operations, order of..35
operators ..34, 259, 262
Oracle ...210-221
Ottero...216, 218
output ...262
OZTOGM ..169

P

Paradox ..215, 216
paragraph ...262
paragraph headers192, 262
parsing12, 47, 68, 102, 104, 262

Intelligent variable ..104
of CGI data ...67

PASSdata ...215

PATH variable .. 4
PCIOS ... 219
PDTOKG .. 169
PERFORM 88, 100, 147, 168, 245
PERFORM VARYING..................................... 149
Perl, interacting with ... 92
permissions, setting ... 7, 17
PERMUTAT ... 169
Pervasive SQL... 218
PI ... 36, 169, 170
PI Open ... 215
PICK.. 215
Picture ... 262
picture clauses ... 181

alphanumeric .. 181
implied PIC X(n).. 27
numeric... 182

implied decimals 182, 185
signed .. 182

Numeric
literal decimals .. 182

numeric edited.. 182
asterisk check protection..................... 183, 185
commas ... 182
cr control ... 184, 185
db control .. 184, 185
floating dollar sign 183, 185
floating minus sign 183, 185
floating plus sign................................. 183, 185
minus sign control 184, 185
plus sign control 183, 185
zero suppression.................................. 183, 185

PIC X(n)................................. 2, 22, 27, 181, 235
Poet ODBMS .. 218
POP3 Protocol... 262
portable.. 262
POSITION .. 47, 53, 150
positional string referencing 88, 103, 126, 250, 252
positions, interactive mode command 16
POST method .. 63
Postgres ... 217
PostgreSQL ... 222
Probability Functions

CHOOSE.. 163
FACT ... 165
PERMUTAT .. 169
RANDOM.. 170

Procedure Division.............................. 44, 192, 263
program flow........................... 39, 40, 41, 118, 142
PROGRAM-ID sentence 190
Progress .. 211, 215-219
PROMIS.. 211
protocol ... 263
Protocols

HTTP ... 261
POP3 .. 262
SMTP ... 263
TCP/IP ... 263

Page 272 CobolScript® Developer’s Guide

pseudo-conversational263
PV..170
PVANNUITY..170

Q

q, interactive mode command17
QSAM..209, 217
QT Graphics Library..203
Quadbase-SQL...218

R

Raima...219
RAM ..4
RANDOM..170
RDA...221
Rdb210, 213, 214, 217, 220, 221
RDB...212
RDMS..217
RDMS-1100...219
READ47, 49, 151, 239, 240
Reality/X..215
RECEIVESOCKET.....................................80, 152
Recital..219
record definition...33, 48
record, defined ...263
records ...26, 32, 47
Red Brick...214, 219
relational operator..263
relative file processing ...53
REMAINDER..129, 249
REPLICA...27, 184
reserved words ...42, 263
REWRITE ...47, 52, 152
RFM II ...210
RM COBOL...211
RM/COBOL ..214
RMS..210-214, 217, 220
ROOT ..171
ROUNDED..................36, 117, 124, 129, 146, 171
RTXHDB...219
run, interactive mode command.....................14, 17

S

sample programs ..19, 177
SAP..217
SAS..219
save, interactive mode command17
script ..263
Segmented Moves..101
Selects, table, in CS Standard

Dynamic..57
Static...56

SENDMAIL...................................73, 92, 153, 243
SENDSOCKET ...80, 154
Sentence...263
Sentences ...44
sequential file...263
Sequoia/Pro..215

SESAM ... 217
SESAM/SQL... 212, 219
SET.. 154, 238
Sharebase... 213
SHUTDOWNSOCKET 123, 155, 243, 244
SIN .. 36, 171
SINGLEQUOTE keyword 23
SINH ... 172
SMTP .. 73, 74, 92, 243
SNMP.. 219
sockets ... 77, 244, 263
SOLID... 217, 220, 221
SOURCE COMPUTER sentence...................... 190
Source Line Number.. 14
SPACE .. 24
SPACES .. 24
Spaces, CGI input fields and 87
SQL Commands

ALTER TABLE... 226
CLOSE... 226
COMMIT ... 226
CREATE INDEX... 226
CREATE TABLE .. 227
DECLARE ... 227
DELETE .. 227
DROP INDEX.. 227
DROP TABLE ... 228
FETCH... 228
INSERT.. 228
OPEN ... 228
ROLLBACK .. 229
SELECT... 229
UPDATE.. 229

SQL Server... 213-221
SQL, embedded... 223
SQL/400 .. 220
SQL/DS 213, 215, 220, 221
SQLBase ... 210, 215
SQLDB.. 221
SQRT .. 36, 124, 172
stack, interactive mode command........................ 17
standard input .. 263
standard output .. 263
Statements ... 43
stepoff, interactive mode command..................... 17
stepon, interactive mode command 17
STOP RUN.. 142, 156
string delimiter .. 12, 23
STRLINEAMT.. 172
STX ... 212
subscript .. 29, 263
SUBTRACT.. 155
Superbase .. 220
Supra ... 217
Supra Server .. 213
Sybase .. 211-221
SYDAMT.. 172
Synergy databases ... 220

CobolScript® Developer’s Guide Page 273

syntax...263
syntax, command ...117
System 1032...210

T

tag ..263
TAN...173
Tandem Enscribe ...210
TANDEM Enscribe ...214
Tandem NonStop SQL...............................210, 220
TANDEM SQL MP...214
TANDEM SQL MX ..214
TANH ..173
tar...263
TCP/IP Socket Commands

BINDSOCKET...78, 121
CLOSESOCKET..123
CONNECTTOSOCKET80, 124, 125
CREATESOCKET78, 126, 243
LISTENTOSOCKET78, 144, 145
RECEIVESOCKET..................................80, 152
SENDSOCKET ..80, 154
SHUTDOWNSOCKET..........123, 155, 243, 244

telnet ..263
Template, CobolScript program.........................187
Teradata ..209-217, 220
text/html...65, 263
text/plain ..264
Thoroughbred files...218
Times Ten Server...220
T-ISAM ...211
Titanium...216
TM1 ...209
TOTAL..213, 217
TurboImage ...212

U

U/FOS..211
UDS ...217
UDS/SQL...212, 219
UFAS...210
UltPlus ...215, 217
unary operator..264
UniData..215
UniData RDBMS...209
UniSQL..210, 216, 221
Unisys RDBMS ...209
UniVerse..209, 215
Unix ...9, 17

unixODBC... 200
unixODBC Drivers.. 222

DB2.. 222
Internet News Server 222
MiniSQL .. 222
MySQL... 222
PostgreSQL .. 222
YARD-SQL.. 222

Updates, file record ... 50
Updates, table, in CS Standard 60
URL... 264
URL encoding ... 264

V

VALUE, Input tag attribute 89
variables .. 24, 264
Variables

Basic Moves... 101
Manipulating CobolScript Variables.............. 101
Segmented Move.. 101

variables, interactive mode command 14, 17
Velocis... 210, 217, 219
ver, interactive mode command........................... 17
Versant .. 221
Viaserv Gateway ... 221
Vision indexed file system................................. 209
VSAM .. 209-218, 220

W

web .. 141
Web page input, capturing................................... 66
Web pages, retrieving.. 69
web server ... 264
White Cross RDBMS .. 221
WML... 264
WRITE.. 50, 156

X

Xbase... 220
XDB .. 215, 222

Y

YARD-SQL... 222

Z

ZERO .. 24
zero suppression .. 264
ZEROS .. 24

	Table of Contents
	Introduction to CobolScript® / Installation Instructions
	CobolScript Features
	About this Manual
	Installing CobolScript
	System Requirements
	Installing CobolScript on a Windows®-compatible machine
	Step 1. Download CobolScript.
	Step 2. Install CobolScript.
	Step 3. Run CobolScript.
	Step 4. Configure ODBC on your computer.

	Installing CobolScript on a Linux®, SunOS®/Solaris®, or FreeBSD® machine
	Step 1. Download CobolScript.
	Step 2. Install CobolScript.
	Step 3. Run CobolScript.
	Step 4. Set up ODBC on your computer.

	Getting Started with CobolScript®
	Creating and Editing CobolScript Programs
	Running CobolScript from the Command Line
	CobolScript Error Messages in Command Line Mode

	Running CobolScript in Interactive Mode
	Interactive Mode Commands

	Running CobolScript from a Web Server and Browser
	CobolScript Error Messages in Web Browser Mode

	CobolScript® Language Constructs
	Literals and Literal Keywords
	Numeric Literals
	Alphanumeric Literals
	The CobolScript String Delimiter
	Literal Keywords

	Variables
	The Elementary Data Item
	The Group-Level Data Item
	The FILLER Variable
	Using PIC X(n) with FILLER variables
	Implied PIC X(n) FILLER variables

	REPLICA Variables
	The OCCURS Clause Variable
	Multidimensional Arrays Using CobolScript Professional

	Data and Copybook Files
	Data Files
	Copybook Files

	Expressions and Conditions
	Expressions
	CobolScript permitted operators
	Order of operations
	Example expressions
	Expression construction rules

	Conditions
	General condition rules
	Condition syntax
	Type I conditions:
	Rules specific to Type I conditions:
	Type II conditions:
	Rules specific to Type II conditions:

	Commands
	General Program Control Commands
	File Processing Commands
	LinkMakerTM Database Interactivity Commands
	Web Processing Commands
	Basic Email Commands
	FTP Commands
	TCP/IP Commands
	Unix Shell-style Commands
	Dynamic Processing Command

	CobolScript Reserved Words
	Statements
	Sentences
	Comments

	File Processing and I/O
	Describing Files and Defining Data Records
	Opening Files
	Closing Files
	Reading Records From Files
	Overwriting a File
	Appending New Records to an Existing File
	Writing to a File by Updating Existing Records
	Relative and Absolute File Positioning
	Relational Database Interaction with CobolScript Standard Edition
	Selects (Queries)
	Static Selects
	Dynamic Selects

	Inserts
	Updates

	Building Web-Based Systems
	Interacting with a Web Server and Web Browser
	Creating Virtual HTML
	Creating an HTML Form
	Capturing Input Data from a Web Page
	DISPLAY and DISPLAYLF
	Retrieving Web Pages

	Network and Internet Programming Using CobolScript®
	Transferring Files using FTP
	Using Email Commands
	Using TCP/IP Commands
	DNS Commands
	TCP/IP Socket Commands

	Advanced Internet Programming Techniques Using CobolScript®
	Environment Variables
	CGI Form Components
	Text Box Input
	Text Area Input
	List and Dropdown List Boxes
	Radio Buttons
	Checkboxes

	Using Hidden Fields
	Sending Email from CobolScript Using CGI Form Input
	Using CobolScript to Transmit Files
	Embedding JavaScript in CobolScript Programs

	Programming Techniques and Advanced CobolScript® Features
	Designing a Modular Program
	Manipulating CobolScript Variables
	Basic Moves
	Segmented Moves
	Elementary Item to Group Item Moves
	Group Item to Elementary Item Moves

	Advanced CobolScript Features
	Expression Evaluation within the DISPLAY statement
	Expressions as Segment Arguments and Occurs Clause Variable Arguments
	Intelligent Variable Parsing
	Dynamic File Naming
	Dynamic Statement Creation and Execution

	CS Professional CodeBrowser™, AppMaker™, and Control Panel
	Feature Requirements
	Using CodeBrowser™
	The .csaccess File
	Running CodeBrowser™ from a URL

	Building Executables with AppMaker™
	Using the CobolScript Control Panel
	Running a CobolScript program from the Control Panel
	Accessing CodeBrowser™ from the Control Panel
	Administering File-level CodeBrowser™ Privileges
	Using AppMaker™ from the Control Panel

	Language Reference
	Syntax and Description of Commands
	ACCEPT
	ACCEPTFROMSOCKET
	ADD
	BANNER
	BINDSOCKET
	CALENDAR
	CALL
	CLOSE
	CLOSEDB
	CLOSESOCKET
	COMPUTE
	CONNECTTOSOCKET
	CONTINUE
	COPY
	CREATESOCKET
	DISPLAY
	DISPLAYASCIIFILE
	DISPLAYFILE
	DISPLAYLF
	DIVIDE
	EXEC SQL
	EXECUTE
	FD
	FTPASCII
	FTPBINARY
	FTPCD
	FTPCLOSE
	FTPCONNECT
	FTPGET
	FTPPUT
	GETBANNER
	GETCALENDAR
	GETENV
	GETHOSTBYNAME
	GETHOSTNAME
	GETMAIL
	GETMAILCOUNT
	GETTIMEFROMSERVER
	GETWEBPAGE
	GOBACK
	IF
	INCLUDE
	INITIALIZE
	LISTENTOSOCKET
	MOVE
	MULTIPLY
	OPEN
	OPENDB
	PERFORM
	PERFORM .. VARYING
	POSITION
	READ
	RECEIVESOCKET
	REWRITE
	SENDMAIL
	SENDSOCKET
	SET
	SHUTDOWNSOCKET
	SUBTRACT
	STOP RUN
	WRITE

	Function Reference
	ABS
	ACOS
	ACOSH
	ALPHABETIC
	ANNUITY
	ANNUITYFV
	ASIN
	ASINH
	ATAN
	ATAN2
	ATANH
	CALTOJ
	CCTOCIN
	CEILING
	CHOOSE
	CINTOCC
	CMTOIN
	COS
	COSH
	CTOFAHR
	DDBAMT
	EXP
	FACT
	FAHRTOC
	FLOOR
	FTOM
	FV
	FVANNUITY
	GALTOL
	GMTOOZ
	HPTOKW
	INTOCM
	JTOCAL
	KGTOPD
	KMTOML
	KWTOHP
	LN
	LOG
	LTOGAL
	MLTOKM
	MTOF
	NUMERIC
	NUMPMTS
	OZTOGM
	PDTOKG
	PERMUTAT
	PI
	PV
	PVANNUITY
	RANDOM
	ROOT
	ROUNDED
	SIGN
	SIN
	SINH
	SQRT
	STRLINEAMT
	SYDAMT
	TAN
	TANH

	CobolScript® Constraints
	Sample CobolScript® Programs
	Command Line Sample Programs
	Web-Based Sample Programs

	CobolScript® Picture Clauses
	Alphanumeric Picture Clauses
	PIC X(n)

	Numeric Picture Clauses
	Signed Numeric Variables
	Implied Decimal Points
	Literal Decimal Points
	Numeric Edited Picture Clauses
	Commas
	Zero Suppression
	Floating Dollar Sign
	Asterisk Check Protection
	Floating Plus Sign
	Floating Minus Sign
	Plus Sign Control
	Minus Sign Control
	DB Control
	CR Control

	Replica and Occurs variables
	Picture Clause Examples

	CobolScript® Basic Program Structure
	CobolScript Program Templates
	The Identification Division
	The Environment Division
	The Data Division
	Describing Files
	Defining Variables

	The Procedure Division

	Setting Up ODBC and ODBC Data Sources for LinkMaker™
	Setup and Configuration in Windows® Environments
	Configuring an ODBC Data Source in Windows®

	Setup and Configuration in Unix Environments
	UnixODBC Installation and Setup
	Installing unixODBC without the GUI
	Installing unixODBC with the X Windows GUI

	unixODBC non-GUI Component (isql)
	UnixODBC GUI Components

	Microsoft Windows ODBC Drivers
	UnixODBC ODBC Drivers

	Using LinkMaker™ Embedded SQL in CobolScript® Professional
	Embedded SQL Quick Reference
	ALTER TABLE
	CLOSE
	COMMIT
	CREATE INDEX
	CREATE TABLE
	DECLARE
	DELETE
	DROP INDEX
	DROP TABLE
	FETCH
	INSERT
	OPEN
	ROLLBACK
	SELECT
	UPDATE

	CobolScript® Error Messages
	Glossary
	Index

