

FileFire
FileMaker Plug-In Manual

Dacons

© 2008-2012 Dacons LLP. All rights reserved.

This manual assumes that you have elementary knowledge of FileMaker.

This manual, as well as the software described in it, is furnished under a license and may not be copied, photocopied,
reproduced, translated, or converted to any electronic or machine-readable form in whole or in part without prior writ-

ten approval of Dacons LLP. Dacons assumes no responsibility or liability for any errors or inaccuracies that may
appear in this manual.

All trademarks and registered trademarks mentioned in this manual are the property of their respective owners.

Please send feedback to info@dacons.net

Website: http://www.dacons.net

April 19, 2012

CONTENTS

FUNCTION INDEX .. vi

FUNCTION OVERVIEW .. 7
FileFire Features .. 7

Function overview ... 7
Possible solutions ... 8

INTRODUCTION .. 9
Getting Started ... 9

About this manual ... 9
Software requirements .. 10
Installing the FileMaker plug-in ... 10
Hands-on examples .. 10
Multi-user setups ... 10

CHAPTER 1 ... 11
FileFire Basics ... 11

How to use FileFire functions .. 11
Function parameters ... 13
Required and optional parameters .. 13
Result codes ... 14
Path formats .. 16

CHAPTER 2 ... 18
Retrieve Item Paths ... 18

List folder items ... 18
List volumes .. 19
Retrieve system and user folders .. 20

CHAPTER 3 ... 21
Retrieve Attributes and Icons ... 21

Retrieve attributes ... 21

Retrieve icons ... 22
Check file and folder existence ... 23

CHAPTER 4 ... 24
File and Folder Dialogs .. 24

Show a file dialog .. 24
Show a folder dialog .. 26

CHAPTER 5 ... 27
Work with Paths ... 27

Convert path formats ... 27
Retrieve the parent folder .. 28
Retrieve item name ... 29

CHAPTER 6 ... 31
Launch Files and Open Folders ... 31

Launch anything .. 31

CHAPTER 7 ... 32
Import and Export Text* ... 32

Import text ... 32
Export text ... 33

CHAPTER 8 ... 35
Change Attributes* ... 35

Change file and folder attributes ... 35
Show an info dialog for attributes .. 36

CHAPTER 9 ... 37
Copy, Move and Delete* .. 37

Copy files and folders .. 37
Move files and folders ... 38
Delete files and folders .. 40

CHAPTER 10 .. 41
Find Items* ... 41

Find files and folders ... 41

CHAPTER 11 .. 43
Create Folders and Aliases* .. 43

Create folders .. 43
Create aliases ... 44

CHAPTER 12 .. 45
Work with ZIP Archives* .. 45

Archive files and folders .. 45
Decompress archives .. 46

CHAPTER 13 .. 48
Status Dialog* .. 48

Setup the status dialog .. 48
Show the status dialog .. 49
Hide the status dialog .. 49

CHAPTER 14 .. 50
Additional Functions ... 50

Retrieve last result code .. 50
Configure the log engine ... 51
Retrieve plug-in version .. 52
Register the plug-in ... 52
Configure debug mode* .. 53

FUNCTION INDEX

FFire_ConvertPath ... 27
FFire_Copy* ... 37
FFire_CreateAlias* ... 44
FFire_CreateFolder* .. 43
FFire_Delete* ... 40
FFire_GetAttribute .. 21
FFire_GetFindResult* .. 41
FFire_GetFolderItems .. 18
FFire_GetIcon .. 22
FFire_GetItemExistence .. 23
FFire_GetItemName .. 29
FFire_GetLastResultCode ... 50
FFire_GetParentFolder .. 28
FFire_GetSystemFolder ... 20
FFire_GetTextFile* ... 32
FFire_GetVersion ... 52
FFire_GetVolumes ... 19
FFire_HideStatusDialog* .. 49
FFire_Launch ... 31
FFire_Move* ... 38
FFire_RegisterSession ... 52
FFire_RegisterServer ... 53
FFire_SetAttribute* ... 35
FFire_SetupDebugMode* .. 53
FFire_SetupLog ... 51
FFire_SetupStatusDialog* .. 46
FFire_ShowFileDialog .. 24
FFire_ShowFolderDialog ... 26
FFire_ShowInfoDialog* .. 36
FFire_ShowStatusDialog* .. 49
FFire_Unzip* .. 46
FFire_Version ... 52
FFire_WriteTextFile* .. 33
FFire_Zip* .. 45

FUNCTION OVERVIEW
FileFire Features

FileFire is an indispensable plug-in that lets you go beyond the file management capabilities
of FileMaker. FileFire comes in two editions, Express and Advanced. Both editions share a
rich set of features that improves the way you import and reference external files. Retrieve
all items of specific folders or volumes in FileMaker. Import file attributes such as name,
size and even icons. Launch referenced files from within FileMaker together with their par-
ent applications.

In addition to these features, FileFire Advanced lets you manage external files from within
FileMaker. Rename, copy, move or delete files and folders. Import and export text and work
with ZIP archives. Features exclusively provided by FileFire Advanced are marked with an
asterisk (*) in this manual.

Use FileFire to enrich your solution with stunning file management features not seen in Fi-
leMaker before.

Function overview

• List items of any folder or volume in FileMaker
• Show file attributes like name, icon, size, creation and modification timestamps
• Have users specify external files or folders using system dialogs and retrieve selected

paths in ScriptMaker
• Reference or importFM8/9 all items of a specific folder, including office documents
• Batch export files or references from container fields to user specified foldersFM8
• Launch any external file from FileMaker together with its parent application
• Copy, move or delete files and folders*
• Rename files and folders and change other attributes*
• Create folders and aliases/shortcuts*
• Compress and decompress ZIP archives*
• Import and export text files*
• Find files that match specific criteria*
• Show a status dialog with a progress bar during file operations*

Possible solutions

• Create professional document libraries that link relevant files to FileMaker records
• Add file attributes to solutions that import or reference external files
• Tightly integrate FileFire features with FileMaker script steps such as Insert File, Insert

Picture, Insert QuickTime and Export Field Contents (requires FileMaker 8 or later) to
create dynamic file management solutions

• Manage external files on disk from within FileMaker*
• Archive database backups in ZIP format*

INTRODUCTION
Getting Started

This chapter describes how to use this manual and provides all information you need to in-
stall the plug-in. In addition, you will see how to explore the powerful features of FileFire us-
ing the files that come with this plug-in.

About this manual

The manual is structured as follows. Chapters 1 through 6 explain functions provided by
both editions of FileFire – Express and Advanced. Chapters 7 through 13 show you how to
use functions exclusively provided by FileFire Advanced.

Chapter 1 (FileFire Basics, p. 11) explains how to use FileFire functions with FileMaker.
You will learn about plug-in functions, parameters, result codes and path formats. Chapter
2 (Retrieve Item Paths, p. 18) provides all information you need to list folder contents in Fi-
leMaker. Chapter 3 (Retrieve Attributes and Icons, p. 21) teaches you how to retrieve at-
tributes of files and folders. In Chapter 4 (File and Folder Dialogs, p. 24) you will see how to
show dialogs that let users select files or folders. Chapter 5 (Work with Paths, p. 27) ex-
plains how to convert and use the paths that FileFire returns. In Chapter 6 (Launch Files
and Open Folders, p. 31), you will learn how to launch any items.

Chapter 7 (Import and Export Text*, p. 32) provides information about FileFire functions
that improve the way you work with external text files. Chapter 8 (Change Attributes*, p. 35)
tells you how to modify file and folder attributes. Need to copy, move or delete files or fold-
ers? Check out Chapter 9 (Copy, Move and Delete*, p. 37). Chapter 10 (Find Items*, p.
41) shows you how to find files based on search criteria. See how to create folders and ali-
ases in Chapter 11 (Create Folders and Aliases*, p. 43). Chapter 12 (Work with ZIP Ar-
chives*, p. 45) enables you to operate with archives from within FileMaker. Learn how to
show a status dialog for file operations in Chapter 13 (Status Dialog*, p. 48).

Finally, Chapter 14 (Additional Functions, p. 50) provides information about advanced plug-
in functions that let you retrieve result codes, configure the log engine and more.

Software requirements

FileFire requires FileMaker 7 or later. The FileMaker editions Pro, Advanced/Developer and
Runtime are supported. The plug-in is shipped in two different file formats, one for Windows
and one for Mac OS X.

When mentioning “FileMaker”, this manual assumes FileMaker 7 or later.

Installing the FileMaker plug-in

Before installing the FileFire plug-in, ensure you select the correct version from the down-
load package according to your operating system (Windows or Mac OS X).

Next, ensure that FileMaker is closed. Then copy the FileFire plug-in for your operating sys-
tem in the Extensions folder which is located in the FileMaker application folder. Now,
please launch FileMaker.

Hands-on examples

After installing FileFire, open the Quick Start file that comes with the download package.
The Quick Start file demonstrates some of the most powerful FileFire features. Take some
time to explore the demo tour.

Continue reading this manual to find out how the features shown in the Quick Start file have
been implemented in FileMaker using FileFire plug-in functions.

Multi-user setups

To use FileFire functions in multi-user network solutions, the plug-in needs to be installed
on every computer that uses its functions. Due to the software architecture of FileMaker
Server, plug-ins cannot operate on the server side.

Alternatively, you can set up a copy of FileMaker Pro or Advanced (Developer) with FileFire
installed on a dedicated computer (or the server computer) that processes plug-in functions
for all users. However, in most cases plug-in functions will be requires on every client com-
puter and thus the first scenario applies.

CHAPTER 1
FileFire Basics

This chapter explains how to use FileFire functions with FileMaker. You will also learn about
path formats. After reading this chapter advance to any of the other chapters of this manual
that provide the information you currently require.

How to use FileFire functions

Since FileFire is a FileMaker plug-in, so-called external functions are used to trigger the
plug-in from a FileMaker database solution. They are called external functions because the-
se functions are provided by a plug-in and thus are not part of the actual FileMaker applica-
tion. In order to use the external functions provided by a plug-in it must be installed and en-
abled in the FileMaker application preferences.

To access external functions provided by a plug-in the FileMaker calculation editor is used.
The calculation editor is provided by the FileMaker editions Pro and Advanced (Developer
in version 7). FileMaker shows the calculation editor dialog window whenever a calculation
has to be defined (e.g. for calculated fields, validation calculations etc). In most cases you
will invoke FileFire functions from a script. The easiest bridge between scripts and the cal-
culation editor that invokes plug-in functions is a script step called Set Field. Add a Set Field
script step to your script to start using FileFire.

Next, specify the target field which will contain the result of the plug-in operation. There are
two types of FileFire results. Some FileFire functions return content (such as the name of a
file) which can be stored directly in a FileMaker field. Other functions do not return content.
Instead, result codes are provided by these functions that tell you if an operation succeeded
or failed for a certain reason. Click the Specify button provided by the Set Field script step
in ScriptMaker and define the target field of your plug-in command depending on the type of
result. Refer to the functions reference (starting on p. 18) for further details about the results
returned by each plug-in function.

In the following figure a global field called pluginResult (defined in the table Tests) has been
specified as result field. In most cases, you will choose a global field as result field if the
plug-in function invoked does not return content but only a result code. If content is returned
by a function choose an appropriate non-global field instead to store results in a database
record.

 Set Field command in ScriptMaker

If you are working with FileMaker 8 or later you will prefer using script variables over global
fields to store non-content plug-in results. Thus, use the script step Set Variable instead of
Set Field for plug-in functions that do not return content.

Click the Specify button (the second Specify button when using Set Field) to open the cal-
culation editor.

In the top right corner of the calculation editor dialog you find a drop-down menu called
View. Switch to the section External functions. All FileFire functions are listed in the section
FileFire Express or FileFire Advanced depending of the edition of FileFire you are using. If
the FileFire functions do not appear in the list, the plug-in is not installed correctly or it is
disabled in the FileMaker application preferences. In this case leave the calculation editor
and check that FileFire is installed as described earlier and that it is enabled in the FileMak-
er application preferences.

FileFire functions in the Calculation Editor

Double-click on the FileFire function in the list which you would like to use. The function is
copied to your calculation including a Quick Reference text that describes the meaning of
the selected function and its parameters. To use the function, parameter values have to be
specified.

Function parameters

Most FileFire functions provide parameters that specify details of a function call. Many of
these functions have several parameters. After copying a function to the text box of the cal-
culation editor, FileMaker shows the name of the plug-in function that has been selected
and a text label for each parameter of the function.

The following example shows the FileFire function FFire_GetIcon that has been added
to the calculation editor. This function returns the icon of a specified file.

FFire_GetIcon (path {; size })

After copying the function to your calculation, you need to define a value for each parame-
ter. This can be hard-coded values (i.e. a specific file path for the path parameter) en-
closed in quotation marks. As in every calculation you may also specify dynamic values rep-
resented by database field names or script variables that hold the information to be passed
to the plug-in as parameter value.

Required and optional parameters

Most functions have some parameters that are required and some that are optional. When
invoking a FileFire function you have to pass a value for all required parameters. Optional
parameters can be skipped. If no value is passed to the plug-in for an optional parameter
the default value for this parameter will be used.

Required parameters are listed in the beginning and optional parameters are listed at the
end of a function call. This allows you to omit optional parameters that you would not like to
use in your function call.

After copying a function to the calculation editor you will see optional parameters enclosed
in curly braces {}. To skip an optional parameter use an empty text value represented by
two quotation marks in the text editor "". Optional parameters at the end of a function call
can be skipped completely. After specifying parameter values you need to remove any curly
braces from the function call.

In the following example the function FFire_GetIcon is invoked. A file path must be spec-
ified because the parameter path is required. However, the size of the icon to be returned
is not specified. Since the parameter size is optional and there is no further parameter val-
ue required for this function call, it can be omitted completely:

FFire_GetIcon ("filewin:/C:/Test/MyDocument.doc")

The plug-in will choose the default value for the parameter size (32 x 32 pixels).

A full explanation of path formats will be provided later in this chapter (p. 15).

Result codes

As mentioned earlier, FileFire functions can be separated into two groups. Content func-
tions return values that are stored in database fields (using Set Field script step). If a con-
tent function fails, an empty result is returned. To find out why a content function failed in-
voke the function FFire_GetLastResultCode. It returns a result code and a short de-
scription of the error. The second group of FileFire functions is called non-content functions.
Non-content functions return a result code directly. However, you may also invoke
FFire_GetLastResultCode to check the result code of non-content functions.

You can evaluate result codes in your script and perform certain activities (e.g. show an er-
ror message to the user). To check in ScriptMaker if the last FileFire operation failed, use
the following calculation in an if condition:

Left (FFire_GetLastResultCode ; 1) = "-"

The following conditions checks for a specific error:

Left (FFire_GetLastResultCode ; 4) = "-052"

A list of all result codes and their meanings follows on the next page.

Result Code Description

000 (OK) Function completed successfully, no errors occurred

-007 (Registration failed) Name or registration code incorrect

-008 (Incorrect parameters) Incorrect parameters in function call

-018 (Incorrect encoding) Error applying the encoding specified

-015 (Not supported) The operation is not supported the way it has been configured

-022 (Log file not opened) Error occurred when trying to open the log file

-023 (Log file corrupted) The log file is corrupted

-050 (Incorrect path) The patch specified by the user (file dialog) is invalid

-052 (Failed to open file) The specified file or application could not be launched

-053 (Item not found) The specified file or folder could not be found

-055 (File input/output error) An error occurred while trying to read or write a file

-057 (File or folder is in use) File sharing violation

-058 (Access denied) The accesses to a file or folder has been denied

-066 (Invalid disk drive) Invalid drive has been specified

-067 (Device not ready) The device to be accessed is not ready

-068 (Invalid filter) The specified file type filter is invalid

-071 (Internal error) Contact the Dacons Support at http://www.dacons.net/support

-072 (Dialog cancelled) User has cancelled a dialog

-074 (Loading icon failed) The icon could not be imported

Result Code Description

-075 (File already exists) File, folder or alias already exists

-080 (Destination inside source) The destination is located inside the source specified

-099 (Unknown error) Contact the Dacons Support at http://www.dacons.net/support

Path formats

FileFire requires paths of files and folder to be specified in a certain format. To make life
easier, FileFire uses the same path format as FileMaker script steps that operate with files.
However, unlike FileMaker the plug-in does not support relative paths.

On Windows, paths to be used with FileFire functions must be formatted according to one
of the following patterns:

filewin:/driveletter:/directoryName/fileName.extension
filewin://computerName/shareName/fileName.extension

On Mac, please use the following pattern to specify a path:

filemac:/volumeName/directoryName/fileName.extension

When specifying a file path in FileMaker (File Location dialog) you can define alternative
files. Paths of alternative files are separated by carriage return. Please note that FileFire
does not support alternative path this way. It allows you to specify exactly one path at a
time only to avoid ambiguities.

Some FileFire functions allow you to specify a folder path instead of a file path. Please en-
sure that folder paths always end with a final slash (“/”). The following patterns refer to fold-
er paths on Windows:

filewin:/driveletter:/directoryName/
filewin://computerName/shareName/folderName/

On Mac a folder paths has to be formatted as follows:

filemac:/volumeName/directoryName/

FileFire uses the FileMaker path format not only when the location of files and folder are
specified. The FileMaker path format is also used when paths are returned by the plug-in
(e.g. using the function FFire_GetFolderItems). Since FileMaker 8 and later support
script variables you can use retrieved paths for further processing with FileMaker script
steps such as Insert File. The script steps Insert Picture and Insert QuickTime require dif-

ferent path formats. Use the function FFire_ConvertPath to prepare retrieved paths for
these functions. Please review Chapter 5 (Work with Paths, p. 27) for further information.

CHAPTER 2
Retrieve Item Paths

FileFire enables you to list the paths of all items that are located in a specific folder. Moreo-
ver, FileFire lets you retrieve the paths of all volumes currently mounted. This chapter ex-
plains how to retrieve the paths of files, folders and volumes.

List folder items

The function FFire_GetFolderItems returns the items of a specific folder including files
and sub folders.

Syntax:
FFire_GetFolderItems (folderPath {; includeSubfolders; control })

Parameters:
folderPath – The path of any local or network folder in FileMaker path format (filewin
or filemac). A file path is not accepted by this function.

includeSubfolders – This parameter is optional. It specifies whether items from sub-
folders will be considered or if the scope of this function will be restricted to the specified
path. By default, the value "includeSubfolders" is set which includes items of all sub-
folders recursively. To exclude items of subfolders set this parameter to the value
"excludeSubfolders".

control – This parameter is optional. It can be used to specify which kind of items are to
be returned. Leave this parameter empty (default) to return visible files and folders only –
neither aliases/shortcuts nor hidden files are returned. The following options can be com-
bined using commas: "noFolders", does not return folders (only files); "noFiles", re-
turns no files (only folders); "aliases", includes aliases/shortcuts and "hidden", returns
visible and invisible (hidden) items.

Use the function FFire_ShowFolderDialog to let the user specify a folder.

Result:
All items of the specified folder are returned according to the settings provided. Items are

separated by carriage return. If errors occur, an empty result is returned. Invoke the function
FFire_GetLastResultCode for details in such a case.

Example:
In the following example the function is invoked on a Mac. FileFire is set to list all items of
the folder “Letters” which is located on the volume “Hard drive”. According to the parame-
ters specified, the plug-in is to return all items, including aliases/shortcuts and hidden files
and folders.

FFire_GetFolderItems ("filemac:/Hard drive/Letters/" ; "" ;
"aliases,hidden" })

For this example, the following result is returned:

filemac:/Hard drive/Letters/Sandy.doc
filemac:/Hard drive/Letters/Peter.rtf
filemac:/Hard drive/Letters/Pam & George.txt

List volumes

Invoke the function FFire_GetVolumes to retrieve the paths of all volumes currently
mounted. This includes local and network volumes shown in “My Computer” (Windows) or
on the Desktop (Mac OS X).

Syntax:
FFire_GetVolumes

Parameters:
This function does not require any parameters.

Result:
The paths of all volumes currently mounted are returned separated by carriage return. If er-
rors occur, an empty result is returned. Invoke the function FFire_GetLastResultCode
for details in such a case.

Example:
The following example function call is invoked on a Windows system with three volumes (A,
C and D drive):

FFire_GetVolumes

For this example, the following result is returned:

filewin:/a:/
filewin:/c:/
filewin:/d:/

Hint:
For further processing of the returned result check the FileMaker functions MiddleValues
(FileMaker 7 and later) and GetValue (FileMaker 8 and later). These functions let you ex-
tract values from the result listing.

Retrieve system and user folders

The function FFire_GetSystemFolder returns the paths of certain system and user fold-
ers such as the desktop or the documents folder.

Syntax:
FFire_GetSystemFolder (folderType)

Parameters:
folderType – This parameter specifies the folder path is to be returned by the plug-in.

On both Windows and Mac OS X this can be one of the following: "desktop" returns the
desktop folder path. "applications" returns the folder which is used as default location
when installing applications. "system" returns the path of the operating system folder;
"temp" returns the temp folder path. "root" returns the root path of the start-up disk.
"documents" returns the path of the user’s documents folder. "fonts" returns the fonts
folder. "userRoot" returns the path of the user’s root folder and "preferences" returns
the path of the preferences folder.

On Windows the following values can be specified in addition: "startupItems" returns
the folder for start-up items. "startMenuSystem" returns the start menu folder that is
shared by all users of a system. "startMenuUser" returns the start menu folder of the
current system user. This start menu folder is different for each system users. "startPro-
gramsSystem" returns the folder for application aliases in the start menu that is shared by
all users of a system. "startProgramsUser" returns the folder for application aliases in
the start menu that is different for each system users.

Result:
The path of the specified system or user folder is returned. If errors occur, an empty result
is returned. Invoke the function FFire_GetLastResultCode for details in such a case.

Example:
In the following example the path of the fonts folder is returned on a Windows system.

FFire_GetSystemFolder ("fonts")

For this example, the following result is returned:

filewin:/c:/Windows/Fonts

CHAPTER 3
Retrieve Attributes and Icons

FileFire provides functions that enable you to retrieve attributes such as the name and the
size of files stored in FileMaker container fields or files stored on disk. You can also retrieve
attributes of folders and store the icon of any external file or folder in a container field.
Moreover, FileFire enables you to check the existence of a specific file or folder.

Retrieve attributes

The function FFire_GetAttribute returns a specified attribute of a file, folder or volume.

Syntax:
FFire_GetAttribute (path ; attribute)

Parameters:
path – External file or folder referenced by path in FileMaker format (filewin or filemac) or a
file stored in a container field.

attribute – This parameter indicates which attribute is to be returned by the plug-in. It
can be used for files, folders and volume (exceptions apply). "name" returns the name of
an item. "parentFolder" returns the path of the parent folder. For files the extension is
included in the name. "size" returns the size of an item in bytes. This attribute is support-
ed for files and folder but not for volumes. "kind" returns a description of an item (e.g.
“Microsoft Word Document” for .doc files). "readOnly" returns the value 1 if an item is
read-only (Windows) or locked (Mac OS). If an item is not read-only the value 0 is returned.
Please note that even though this attribute might not be set for an item it may still be write-
protected by privileges or physical restrictions. Therefore, the value "writable" returns 1
if an item can be modified or 0 if they cannot be modified . (Please note that items which
are exclusively opened by an application are not writable even though user rights may allow
modifying them). "hidden" returns 1 if an item is hidden and 0 if it is not hidden. "ar-
chive" (Windows only) returns the value 1 if the archive attribute of an item is set or 0 if it
is not set. "created" returns the point in time when the item has been created (as Fi-
leMaker timestamp). "modified" returns the point in time when the item has been modi-
fied last time (as FileMaker timestamp, support for file items only). "accessed" returns the
point in time when the item has been accessed last time (as FileMaker timestamp, support

for file items only). "fmType" (“FileMaker type”) returns “image” if a file is an image in a
format supported by FileMaker, “quicktime” if an item is a QuickTime media file in a format
supported by FileMaker, “file” if an item is a file (or alias/shortcut) but not an image nor a
QuickTime media file, “folder” if an item is a folder, “volume” if an item is a volume or “com-
puter” if the item is a computer. The type can be used to check whether an item can be pro-
cessed using the script steps Inset Picture, Insert QuickTime or Insert File. Using these
script steps with variable paths requires FileMaker 8 or later. The function
FFire_ConvertPath can be used to convert a path into the required path format.

For files that are stored in a FileMaker container field only the attributes "name", "size",
"kind" and "fmType" are supported.

The following attributes are supported for folders and volumes only. "fileCount" returns
the number of files (including files in sub folders). "folderCount" returns the number of
all sub folders. "itemCount" returns the number of all files and folders. These attributes
need to be computed by the plug-in. Thus it may take some time before the result is re-
turned. The following folder/volume attribute is available immediately, instead.
"isNetwork" returns 1 if the path points to a network resource and 0 if it points to a local
resource.

If the path points to a volume the attribute parameter also supports the following values.
"volumeCapacity" returns the capacity of a volume in, "volumeFreeSpace" returns
the space available on a volume and "volumeUsedSpace" returns the space used (all in
bytes). "volumeFileSystem" returns the name of the file system (e.g. “NTFS” or “FAT32”
on Windows or “HFS” on Mac OS). Volume attributes are supported for local volumes only.

Instead of using the value "name" for this function the function FFire_GetItemName can
be invoked for paths. To retrieve the parent folder the function FFire_GetParentFolder
can be invoked instead of using the value "parentFolder".

Please note that the plug-in recognizes folder items by a closing slash (“/”). When pro-
cessing folder paths, ensure that they contain a closing slash. Otherwise the plug-in may
treat them as file items when trying to retrieve attributes.

In order to retrieve different attributes of an item the function FFire_GetAttribute has
to be invoked several times for the same item with different attribute parameter values.

Result:
Depending on the specified attribute values are returned in text, number or timestamp for-
mat. If errors occur, an empty result is returned. Invoke the function
FFire_GetLastResultCode for details in such a case.

Retrieve icons

Using the function FFire_GetIcon you can retrieve icons of external files or files stored in
container fields. This function also returns icons of folders and volumes.

Syntax:
FFire_GetIcon (path {; size })

Parameters:
path – External file or folder referenced by path in FileMaker format (filewin or filemac) or a
file stored in a container field. Ensure that folder or volume path end with a slash (“/”).

size – This parameter is optional. It specifies the size of the icon to be returned. Two val-
ues are supported. The value "32" (default) returns an icon in a 32x32 pixels format. The
value "16" returns an icon in a smaller 16x16 pixels format (e.g. for list views).

Result:
Icons are returned as pictures and can be stored in container fields. If errors occur, an emp-
ty result is returned. Invoke the function FFire_GetLastResultCode for details in such a
case.

Check file and folder existence

The function FFire_GetItemExistence lets you check if a specific file, folder or volume
exists. This can be useful if you have a path stored in FileMaker and you need to ensure
that the item that path refers to still exists.

Syntax:
FFire_GetItemExistence (path)

Parameter:
path – This parameter specifies the path of the file, folder or volume to be checked for ex-
istence. The path is specified in FileMaker path format (filewin or filemac). Ensure that fold-
er or volume path end with a slash (“/”).

Result:
The function returns a result code which indicates whether the specified file exists. In case it
exists, the value “000 (OK)” is returned. If the item cannot be found or other errors occur a
different result code is returned.

Example:
In the following example the existence of a folder is checked on a Windows system:

FFire_GetItemExistence ("filewin:/c:/Work/Reports/")

Assuming that the specified folder exists, the following result is returned: 000(OK)

CHAPTER 4
File and Folder Dialogs

FileFire provides functions that let you show system dialogs for file and folder selection. The
plug-in returns the paths of items selected by the user for further processing.

Show a file dialog

The function FFire_ShowFileDialog shows a file dialog which lets the user specify one
or several files. The function supports an open file and a save file mode. A file type filter can
be created to let the user specify only certain file types.

Syntax:
FFire_ShowFileDialog (mode {; title ; defaultFileName ;
intialFolder ; filter })

Parameters:
mode – This parameter specifies whether an Open File dialog or a Save File dialog will be
shown using the following values: "open" shows an Open File dialog. The name of the de-
fault button will be “Open” depending on the language of the operating system. The user will
be enabled to select one existing file. If the parameter is set to "openMultiple" the user
can select multiple existing files from the same folder. The parameter value "save" makes
this function show a Save File dialog instead. The name of the default button will be “Save”.
The user is asked to specify a single file that does not exist yet. If an existing file is selected
an warning message will be shown that asks the user to confirm that the existing file should
be replaced.

title – This parameter is optional. It specifies the title (text value) to be shown in the file
dialog window. According to the mode which has been set for the dialog (open or save) the
title should indicate why the user is to specify a file.

defaultFileName – This parameter is optional. It specifies a default file name (including
extension) that can be set if the user is to select (for opening or saving) a file with a specific
name. Users will be able to ignore a default file name.

initialFolder – This parameter is optional. It specifies the path of the initial folder which
will be shown in the dialog. If this parameter is empty or if the path indicated can not be
found the folder from the last dialog session is shown.

filter – This parameter is optional. It specifies file type filters for the dialog. The following
example shows the filter syntax:

"[Adobe Photoshop; CompuServe GIF] *.psd; *.gif ¶
 [Microsoft Word; Microsoft Excel] *.doc; *.xls¶
 [Movie Files] *.mov; *.avi"

This will show three file type filters that users can select when working with the file dialog.
Filters are separated by carriage return so use the “¶” character to separate filters in calcu-
lations. In the example above the first filter will be named “Adobe Photoshop; CompuServe
GIF”. This filter will allow users to specify any file with the extension *.psd or *.gif. Since it is
the first filter it will be the default one. The other two filters can be selected by users to show
other file types in the dialog. The filter descriptions (in [] brackets above) are optional for fil-
ters. If they are not used the file extensions will be shown as filter descriptions in the dialog.

If the user is to specify a file of any file type one of the following alternatives can be used:
[All Files] *.* shows “All Files” as filter description; *.* shows *.* as filter descrip-
tion.

Leave the filters parameter empty to let the user specify any file.

Note: If the mode parameter is set to"save" every filter must contain one extension only.
Filters with multiple extensions are accepted for the modes "open" and
"openMultiple" only.

Result:
This function returns the path of the selected or specified item in FileMaker path format
(filewin or filemac). If several items have been specified or selected in the dialog their paths
are separated by carriage return. If the dialog is cancelled by the user or if errors occur, an
empty result is returned. Invoke the function FFire_GetLastResultCode for details in
such a case.

Example:
The following function calls shows an Open File dialog that lets the user select multiple files.
The dialog title indicates that the file selected will be imported. A default file name is not set
and an initial folder is not specified. By default, files of all types are shown in the dialog so
that the user can select any files for importing. However, to improve the overview in for
folders that contain many items various filters are provided.

FFire_ShowFileDialog ("openMultiple" ; "Select Files for Import" ;
"" ; "" ; "[All Files] *.*¶[FileMaker Databases] *.fp7; *.fp5;
*.fp3; *.fmj¶[Office Files] *.doc; *.xls; *.ppt")

Show a folder dialog

The function FFire_ShowFolderDialog shows a system dialog which lets the user se-
lect a single existing folder. The dialog also provides and option to create a new folder first
and then select it.

Syntax:
FFire_ShowFolderDialog ({ title ; initialFolder })

Parameters:
title – This parameter is optional. It sets a title (text value) shown in the Select Folder
dialog window.

intialFolder – This parameter is optional. It specifies the path of a folder in FileMaker
format (filewin or filemac) which will be shown in the dialog when it appears. If this parame-
ter is empty or if the specified path cannot be found the dialog will show the root level in the
folder dialog.

Result:
This function returns the path of the folder selected by the user in the FileMaker path format
(filewin or filemac). If the user cancels the dialog or if errors occur an empty result is re-
turned. Invoke the function FFire_GetLastResultCode for details in such a case.

Example:
The following function call shows a folder dialog with the title “Select a Folder for Export”.
An initial folder is not specified for the dialog. Thus, the root level will be shown. Since the
parameter intialFolder is optional it can be omitted.

FFire_ShowFolderDialog ("Select a Folder for Export")

CHAPTER 5
Work with Paths

Many FileFire functions such as FFire_GetFolderItems, FFire_GetVolumes,
FFire_ShowFileDialog and FFire_ShowFolderDialog return paths of files, folders
or volumes. The plug-in provides functions that support you when processing retrieved
paths. FileFire enables you to convert path formats, extract the parent folder of any given
path or extract the name of an item from a path.

Convert path formats

FileFire returns paths in the FileMaker path format. This means, paths begin with a filewin
or a filemac prefix depending on the current operating system. You may want to convert re-
trieved paths into a different format to either display them to user in a native system format
or to use them for script steps (e.g. Insert Picture and Insert QuickTime) that require differ-
ent path formats. The function FFire_ConvertPath lets you convert path into any sup-
ported format.

Syntax:
FFire_ConvertPath (path {; targetFormat })

Parameters:
path – This parameter specifies the source path which is to be converted. The source path
must be in filewin, filemac, moviewin, moviemac, imagewin imagemac format or in a native
Windows or Mac path format (depending on the current system).

targetFormat – This parameter is optional. It specifies the format of the output path. The
value "file" (default) returns the path in filewin format (Windows) or filemac format (Mac
OS). The value "image" returns the path in the FileMaker imagewin format (Windows) or
the imagemac format (Mac OS) which is required for the Insert Picture script step. The val-
ue "movie" returns the path in the FileMaker moviewin format (Windows) or in the
moviemac format (Mac OS) which is required for the Insert QuickTime script step. The val-
ue "system" returns the path in the native system format depending on the current operat-
ing system (Windows or Mac OS).

Use the function FFire_GetAttribute to check the fmType (“FileMaker type”) of a file.
Items of the fmType “file” can be processed using the script step Insert File, items of the
fmType “picture” can be processed using the script step Insert Picture after converting their
path into the picturewin or picturemac format and items of the fmType “quicktime” can be
processed using the script step Insert QuickTime after converting their path into the
moviewin or moviemac format.

Please note that processing variable paths with the script steps Insert File, Insert Picture
and Insert QuickTime require script variables and thus FileMaker 8 or later.

For more information about FileMaker path formats please refer to the FileMaker Online
Help available from the FileMaker Help menu.

Result:
This function returns the converted path according to the settings specified. If errors occur
an empty result is returned. Invoke the function FFire_GetLastResultCode for details in
such a case.

Example 1:
In the first example a file path has been retrieved using the function FFire_GetFolderItems.
Since this path points to a picture file, it can be processed with the script step Insert Picture.
This script step requires the path to be converted into the
imagewin or imagemac path format (depending on the current operating system).

FFire_ConvertPath ("filewin:/c:/pictures/Hawaii0001.jpg" ;
"image")

The function call above results in the following image path:

imagewin:/c:/Pictures/Hawaii0001.jpg

Example 2:
In the second example, the path given above should be converted into the native system
path format. The converted path will be displayed to the user.

FFire_ConvertPath ("filewin:/c:/Pictures/Hawaii_0001.jpg" ;
"system")

The function call above results in the following system path:

c:\pictures\hawaii_0001.jpg

Retrieve the parent folder

The function FFire_GetParentFolder returns the parent folder of a specified path. The
specified path can point to a file or another folder. This function can be used to navigate to

a parent folder (e.g. using the function FFire_Launch) or to create a folder navigator in Fi-
leMaker using database relationships as shown in the Quick Start file.

Syntax:
FFire_GetParentFolder (path)

Parameter:
path – This parameter specifies the path of a file or folder in FileMaker format (filewin or fi-
lemac).

Please note that instead of using this function you can also use the function
FFire_GetAttribute ("…" ; "parentFolder").

Result:
This function returns the parent folder of the provided path. If the errors occur an empty re-
sult is returned. Invoke the function FFire_GetLastResultCode for details in such a
case.

Example:
In the following example the function FFire_GetParentFolder is invoked to retrieve the
parent folder of a specific file path.

FFire_GetParentFolder ("filemac:/Hard drive/Letters/Sandy.doc")

The above function call will return the following result:

filemac:/Hard drive/Letters/

Retrieve item name

The function FFire_GetItemName returns the name of an item. This can be the path of
any file, folder or volume.

Syntax:
FFire_GetItemName (path)

Parameter:
path – This parameter specifies the path of a file, folder, or volume in FileMaker format
(filewin or filemac).

Please note that this function does not support files that are stored in FileMaker container
fields. To retrieve the name of such items use:

FFire_GetAttribute ("…" ; "name")

Result:
This function returns the name of the specified item (including the extension of file names).

If the errors occur an empty result is returned. Invoke the function
FFire_GetLastResultCode for details in such a case.

Example:
In the following example the function FFire_GetItemName is invoked to retrieve the name
of a folder.

FFire_GetItemName ("filemac:/Hard drive/Letters/ ")

This function call returns:

Letters

CHAPTER 6
Launch Files and Open Folders

Using FileFire you can launch any file by its path. A file will be opened together with its par-
ent application. Moreover, FileFire lets you open folders.

Launch anything

The plug-in function FFire_Launch opens a specified external file together with its parent
application. If the application is already running FileFire will try to set the application window
to front. If the path of a folder is specified it will be shown in an Explorer window under Win-
dows or in a Finder window under Mac OS X.

Syntax:
FFire_Launch (path {; altAppPath })

Parameters:
path – This parameter specifies the path of a file or folder which is to be launched. The
item to be opened must be specified in the FileMaker path format (filewin or filemac).

altAppPath – This parameter is optional. It is used to open a file with a specific applica-
tion (other than the default application). The path of the application must be specified in the
FileMaker path format (filewin or filemac). When opening a folder instead of a file this pa-
rameter is ignored.

Result:
This function returns a result code to report about success or error reasons.

Example:
In the following example a text file is launched. However, it is not opened with the default
application for text files. Instead, an alternative application is specified.

FFire_Launch ("filewin:/c:/Letters/Peter.txt" ;
"filewin:/c:/Program Files/MyTextApplication/App.exe")

CHAPTER 7
Import and Export Text*

FileFire Advanced lets you import text from text files with a single script step. In addition, it
improves the way you export text from FileMaker to text files

Import text

The function FFire_GetTextFile* returns the contents of a specified text file in Unicode
format so it can be processed in FileMaker and stored in a text field. This function supports
Western, Asian and international text encoding standards.

Syntax:
FFire_GetTextFile (filePath {; encoding })

Parameters:
filePath – This parameter specifies the plain text file to be imported in FileMaker path
format (filewin or filemac).

encoding – This parameter is optional. It specifies the encoding of the text file to be im-
ported. If the parameter is empty the plug-in tries to detect the encoding of the file automati-
cally. However, to ensure correct importing, specify the file’s encoding using this parameter.
The following values are supported: UTF-8, ISO8859-1 through ISO8859-16, KOI-8R,
KOI-8U, Windows1250 through Windows1258, ISO-2022-JP, ISO-2022-JP-1 through
ISO-2022-JP-3, CSISO-2022-JP, EUC-JP, ISO-2022-CN, ISO-2022-CN-EXT, GB2312,
HZ-GB-2312, ISO-2022-KR, KSC5601-1987, EUC-KR and Big5.

Result:
The function returns the text of the specified file in Unicode format (FileMaker text stand-
ard). Invoke the function FFire_GetLastResultCode to retrieve a result code which in-
dicates whether the operation succeeded or failed. If it failed details can be referred from
the error code.

Export text

FileMaker provides the script step Export Field Contents that lets you export text to a file.
However, using the FileFire function FFire_WriteTextFile* introduces advanced text
export features. This function lets you append text to an existing file and works with target
encoding standards not natively supported by FileMaker.

Syntax:
FFire_WriteTextFile (text ; filePath {; appendControl ;
encoding })

Parameters:
text – This parameter specifies the text to be written to the text file. Usually you will speci-
fy the field name or script variable that holds the text to be exported.

filePath – This parameter specifies the path of the target text file in FileMaker path for-
mat (filewin or filemac). This file will store the exported text. If the file does not exist yet it
will be created by the plug-in. You may specify any file type extension that is based on plain
text such as .txt, .xml and .html. However, please note that certain file types require a spe-
cific encoding which is to be set using the encoding parameter.

appendControl – This parameter is optional. It specifies the behavior in case the given
file is not empty. The value "append" (default) makes the plug-in append the text content.
The value "appendLine" adds a carriage return to the existing text file (if necessary) and
then adds the specified content. The value "overwrite" replaces any existing content of
the file.

encoding – This parameter is optional. It specifies the encoding of the target text file. If the
parameter is empty the plug-in chooses the system’s default text encoding. However, to en-
sure correct exporting, specify the file’s encoding using this parameter. The following values
are supported: UTF-8, ISO8859-1 through ISO8859-16, KOI-8R, KOI-8U, Windows1250
through Windows1258, ISO-2022-JP, ISO-2022-JP-1 through ISO-2022-JP-3,
CSISO-2022-JP, EUC-JP, ISO-2022-CN, ISO-2022-CN-EXT, GB2312, HZ-GB-2312,
ISO-2022-KR, KSC5601-1987, EUC-KR and Big5.

Result:
This function returns a result code to report about success or error reasons.

Example:
This example assumes that the log file filewin:/c:/Examples/MyTextFile.txt
contains the following lines:

Green Grass
Blue Sky

Now, the following function is invoked:

FFire_WriteTextFile ("Clean Water" ;
"filewin:/c:/Examples/MyTextFile.txt" ; "appendLine" ;
"ISO8859-1")

This results in the following contents of the text file:

Green Grass
Blue Sky
Clean Water

CHAPTER 8
Change Attributes*

FileFire Advanced lets you import text from text files with a single script step. In addition, it
improves the way you export text from FileMaker to text files

Change file and folder attributes

The function FFire_SetAttribute* lets you rename files and folder and change other
attributes such as creation and modification timestamps.

Syntax:
FFire_SetAttribute (path ; attribute ; value)

Parameters:
path – External file or folder referenced by a path in FileMaker path format (filewin or fi-
lemac). Please keep in mind that the paths of folders and volumes end with a final slash
(“/”).

attribute – This parameter indicates which file attribute is to be changed by the plug-in:
"name" changes the name an item (can be a file, folder or volume). "created" changes
the creation timestamp of an item. "modified" changes the modification timestamp of an
item. "accessed" changes the access timestamp of an item. "readOnly" changes the
read-only attribute of an item. "hidden" changes the hidden status of an item.
"archive" (Windows only) changes the archive attribute of an item.

value – This parameter specifies the attribute value to be set. To change the "name" at-
tribute of an item set a text value for this parameter. Please note that the file names must
include an extension (such as MyText.txt). The read-only attribute is controlled using the
values 1 (enable read-only) or 0 (disable read-only). To hide an item set the value to 1; to
unhide it set the value to 0. The archive attribute (Windows only) is enabled by the value 1
and disabled by the value 0.

When processing folder items, the value 1 enables a specific attribute only for the folder it-
self but not for enclosed items (even though in many cases the effect will be the same; i.e.
when a folder is hidden all enclosed items will be hidden). The same restrictions apply when

disabling an attribute using the value 0 for a folder. When working with folder items the val-
ue 2 disables an attribute for all enclosed items recursively (if possible). The value 3 ena-
bles an attribute for all enclosed items recursively (if possible).

Result:
This function returns a result code to report about success or error reasons.

Example:
The following function call enables the read-only attributes for all files stored in the folder
Letters:

FFire_SetAttribute ("filemac:/Harddisk/Letters/ ; "readOnly" ; 3)

Show an info dialog for attributes

Depending on the version of the operating system and the file system you cannot change
all attributes using the function FFire_SetAttribute. Therefore, the function
FFire_ShowInfoDialog* is provided. It lets you show an Explorer (Windows) or Finder
(Mac) info dialog for a file, folder or volume. User can view and modify attributes of an item
using that dialog.

Syntax:
FFire_ShowInfoDialog (path)

Parameter:
path – Specifies the path of an item in FileMaker path format (filewin or filemac). The plug-
in will show an info dialog with all attributes of the specified item.

Result:
This function returns a result code to report about success or error reasons.

Please note: Users may change item attributes using the info dialog. To retrieve changed
attribute values in FileMaker, other plug-in function (such as FFire_GetAttribute) have
to be used.

CHAPTER 9
Copy, Move and Delete*

Using FileFire Advanced you can copy, move and delete any external files. The following
functions give great power to your FileMaker solutions and let you implement anything from
simple batch processing scripts that help to organize database backups to sophisticated file
commander tools.

Copy files and folders

Use the function FFire_Copy* to copy file or folders.

Syntax:
FFire_Copy (path ; destinationPath {; replaceControl ;
deleteControl })

Parameters:
path – Specifies the source file or folder to be copied in FileMaker path format (filewin or fi-
lemac).

destinationPath – The target path of the file or folder to be copied. Please note that if
the name of the file or folder does not match the name indicated by the path parameter the
item will be renamed after copying.

replaceControl – This parameter is optional. It specifies the behavior of the plug-in for
situations when the destination file or folder already exists. The value "replaceError"
(default) makes the plug-in return an error code when the destination file or folder already
exists. The specified item is not processed. The value "replaceSkip" skips all existing
destination items automatically and only replaces items that do not exist in the destination
yet. The value "replaceAsk" shows a Replace File or Replace Folder dialog box and lets
the user choose whether to replace conflicting originals. The value "replaceUpdate"
compares conflicting items by their modification timestamp and replaces outdated items.
Items that do not cause a conflict are processed as well. The value "replaceSilently"
replaces all conflicting items without error or warning.

deleteControl – This parameter is optional. It specifies whether to move replaced items
to trash or erase them. By default, this parameter is set to "trash". Set this parameter to
"erase" to delete replaced items without moving them to trash.

Result:
This function returns a result code which indicates if it succeeded or if errors occurred.
When copying a folder that contains several files please note the following: The plug-in cop-
ies all files contained within the folder sequentially. Thus, it may happen that not all files are
copied due to replace errors (depending on the replaceControl parameter value) or
other limitation such as privileges.

The result returned is formatted according to the following pattern. Please not that the
“failed item” may be a source or destination item.

XXX (Description)
(Failed item follows, if any)
…
<start position> <length> (Processed items)
<start position > <length> (Skipped items)
<start position > <length> (Replaced items)
(Items processed follow, if any)
…
(Items skipped before any error follow, if any)
…
(Items replaced before any error follow, if any)
…

Warning:
To prevent unwanted loss of information, be careful with the replaceControl parameter
values "replaceUpdate" and "replaceSilently". Moreover, do NOT set the
deleteControl parameter to the value "erase".

Move files and folders

The function FFire_Move* lets you move files and folders.

Syntax:
FFire_Move (path ; destinationPath {; replaceControl ;
deleteControl})

Parameters:
path – Specifies the source file or folder to be moved in FileMaker path format (filewin or fi-
lemac).

destinationPath – The target path of the file or folder to be moved. Please note that if
the name of the file or folder does not match the name indicated by the path parameter the
item will be renamed.

replaceControl – This parameter is optional. It specifies the behavior of the plug-in for
situations when the destination file or folder already exists. The value "replaceError"
(default) makes the plug-in return an error code when the destination file or folder already
exists. The specified item is not processed. The value "replaceSkip" skips all existing
destination items automatically and only replaces items that do not exist in the destination
yet. The value "replaceAsk" shows a Replace File or Replace Folder dialog box and lets
the user choose whether to replace conflicting originals. The value "replaceUpdate"
compares conflicting items by their modification timestamp and replaces outdated items.
Items that do not cause a conflict are processed as well. The value "replaceSilently"
replaces all conflicting items without error or warning.

deleteControl – This parameter is optional. It specifies whether to move replaced items
to trash or erase them. By default, this parameter is set to "trash". Set this parameter to
"erase" to delete replaced items without moving them to trash.

Result:
This function returns a result code which indicates if it succeeded or if errors occurred.
When moving a folder that contains several files please note the following: The plug-in
moves all files contained within the folder sequentially. Thus, it may happen that not all files
are moved due to replace errors (depending on the replaceControl parameter value) or
other limitation such as privileges.

The result returned is formatted according to the following pattern. Please note that the
“failed item” may be a source or destination item.

XXX (Description)
(Failed item follows, if any)
…
<start position> <length> (Processed items)
<start position > <length> (Skipped items)
<start position > <length> (Replaced items)
(Items processed follow, if any)
…
(Items skipped before any error follow, if any)
…
(Items replaced before any error follow, if any)
…

Warning:
To prevent unwanted loss of information, be careful with the replaceControl parameter
values "replaceUpdate" and "replaceSilently". Moreover, do NOT set the
deleteControl parameter to the value "erase".

Delete files and folders

The function FFire_Delte* lets you delete files and folders. Before using this function,
please ensure that you read all information in this section including the warning below.

Syntax:
FFire_Delete (path {; deleteControl })

Parameters:
path – Specifies the path of a file or folder to be deleted in FileMaker path format (filewin or
filemac). If a folder is specified all files (including files in sub folders) will be deleted.

deleteControl – This parameter is optional. It specifies protection features to prevent
unwanted loss of information. The value "trashAsk" (default) shows a Delete File or De-
lete Folder dialog box. Specified items are moved to trash if the user confirms this. The val-
ue "trashSilently" moves selected items to trash without showing a warning dialog. The
value "eraseAsk" shows a warning dialog and erases specified items without moving them
to trash if the user confirms this. The value "eraseSilently" erases specified items with-
out moving them to trash and without showing a warning dialog.

Result:
This function returns a result code which indicates if it succeeded or if errors occurred.
When deleting a folder that contains several files please note the following: The plug-in de-
letes all files contained within the folder sequentially. Thus, it may happen that not all files
are deleted due to various reasons (user decides not to delete specific files or user account
does have sufficient privileges).

The result returned is formatted according to the following pattern.

XXX (Description)
(Failed item follows, if any)
…
<start position> <length> (Processed items)
<start position > <length> (Skipped items)
<start position > <length> (Replaced items)
(Items processed follow, if any)
…
(Items skipped before any error follow, if any)
…
(Items replaced before any error follow, if any)
…

Warning:
Please be very careful when using this function. To prevent unwanted loss of information,
do not use this function to delete entire folders. Instead, delete selected files sequentially.
Do not use the deleteControl parameter values "eraseAsk" and "eraseSilently"
unless you are absolutely sure about what you are doing.

CHAPTER 10
Find Items*

FileFire Advanced lets you find files and folders that match specific criteria. Use this feature
to provide file find tools to users or import/reference files that match specific criteria (e.g.
import all new files from a project folder that have been created or modified since last data-
base update).

Find files and folders

The function FFire_GetFindResult* returns all items that match specific find criteria.

Syntax:
FFire_GetFindResult (criteria {; path })

Parameters:
criteria – This parameter specifies find criteria. Find criteria are formatted according to
the following pattern: Criterion = Value. Several find criteria can be concatenated us-
ing AND/OR operators.

Pattern example 1: (Criterion1 = Value1) OR (Criterion2 = Value2)
Pattern example 2: (Criterion1 = Value1) AND (Criterion2 = Value2)
Pattern example 3: ((Criterion1 = Value1) AND (Criterion2 = Value2)) OR
 ((Criterion3 = Value3) AND (Criterion 4 = Value4))

In addition, this function supports a NOT operator (!=).

Pattern example 4: (Criterion1 != Value1)

The value string supports the following wildcards: ? is used to specify any single character
whereas * is used to specify any sequence of characters. For expressions, all of the follow-
ing comparators are supported: =, ≠, !=, <>, >, >=, ≥, <, ≤ and <=.

The following listing provides all supported criterion/value pairs.

• Criterion: "type", values: "file" or "folder" (includes volumes).
• Criterion: "fmType", values: "image", "quicktime", "file", "alias", "fold-

er" or “volume”.
• Criterion: "name", value: item name, wildcards ? and * are supported.
• Criterion: "size" (files only), value: file size in bytes.
• Criterion: "kind", value: file kind description (e.g. "Microsoft Word Document").
• Criterion: "readOnly", values: 1 (read-only enabled) or 0 (read-only disabled).
• Criterion: "hidden", values: 1 (hidden) or 0 (not hidden).
• Criterion: "archive" (Windows only), values: 1 (archive enabled) or 0 (archive disa-

bled).
• Criterion: "created", value: creation date or timestamp.
• Criterion: "modified", value: modification date or timestamp.
• Criterion: "accessed", value: access date or timestamp.

Dates and timestamps can be passed to the plug-in in the operating system format or in the
default format of the database file. Value strings should be quoted properly using the Fi-
leMaker function Quote. Example:
FFire_GetFindResult ("name = " & Quote(*Dacons*) ; "")

path – This parameter is optional. It is used to restrict the find operation to a certain folder
or volume. Leave this parameter empty to search for files on all volumes currently mounted
(default). Please note that finding files by criteria my take some time. Thus, restricting the
find operation to certain folders is highly recommended. The find operation will include all
sub folder of the specified path.

Result:
The function returns paths of all files that match the specified find criteria separated by car-
riage return. Invoke the function FFire_GetLastResultCode to retrieve a result code
which indicates whether the operation succeeded or failed. If it failed details can be referred
from the error code.

Example:
The following function call finds all files that contain the word Memo in their name, have
been created on or after January 1st, 2007 and are located in the folder Business or a sub
folder of it:

FFire_GetFindResult ("(type = " & Quote(file) & ") AND (name = " &
Quote(*Memo*) & ") AND (created ≥ 01.01.2007)" ;
"filemac:/Harddisk/Business/")

CHAPTER 11
Create Folders and Aliases*

Using FileFire Advanced you can create folders. Moreover, FileFire Advanced lets you cre-
ate aliases (Mac OS) and shortcuts (Windows) to files and folders.

Create folders

The FileFire Advanced function FFire_CreateFolder* creates a new folder in a specific
location.

Syntax:
FFire_CreateFolder (folderPath)

Parameters:
folderPath – This parameter specifies the path of the folder to be created in the FileMak-
er path format (filewin or filemac). If necessary, the plug-in creates all folders of the speci-
fied path. Please ensure that the folder path specified ends with a slash (“/”).

Result:
This function returns a result code which indicates if it succeeded or if errors occurred.
Please note that this function fails if a folder at the specified location already exists. In such
cases the specified folder is present. However, you cannot be sure that it is empty. Invoke
the function FFire_GetFolderItems to check this.

Example:
In this example the following folder exists on a system:

filemac:/Harddisk/Business/

The following function call results in two folders being created. The folder Letters will be
created in the folder Business. The folder Q107 will be created in the folder Letters.

FFire_CreateFolder ("filemac:/Harddisk/Business/Letters/Q107/")

Create aliases

An alias (Mac OS) or shortcut (Windows) is a link to file or folder stored elsewhere on a disk
or network volume. The FileFire Advanced function FFire_CreateAlias* crates such an
alias/shortcut.

Syntax:
FFire_CreateAlias (sourcePath {; aliasPath })

Parameters:
sourcePath – This parameter specifies the path of the file or folder the alias points to in
FileMaker path format (filewin or filemac).

aliasPath – This parameter is optional. It specifies the path of the alias/shortcut including
its name. By default, the alias is named by the operating system (in most cases it will be
named like the source) and placed in the same folder as its source. Please note that de-
pending on user settings the operating system may or may not keep track of aliases when
sources are moved or renamed.

Result:
This function returns the path of the alias created. Invoke the function
FFire_GetLastResultCode to retrieve a result code which indicates whether the opera-
tion succeeded or failed. Please note that the function will fail if an alias with at the specified
location (parameter aliasPath) already exists.

Example:
This example assumes that a source folder with the following path is available:

filewin:/C:/Holiday Photos/Cancun06/

The following function call places an alias/shortcut to this folder on the Desktop and names
it Recent Holiday Photos:

FFire_CreateAlias ("filewin:/C:/Holiday Photos/Cancun 06/" ;
FFire_GetSystemFolder ("desktop") & "Recent Holiday Photos")

CHAPTER 12
Work with ZIP Archives*

FileFire Advanced lets you compress any files and folders to ZIP archives. Moreover, you
can decompress any ZIP archive to a specified location from within FileMaker. ZIP is a
cross-platform compression format. You can deploy ZIP archives to Mac OS X, Windows
XP and Windows Vista users.

Archive files and folders

The function FFire_Zip* compresses a specified file or folder and creates a ZIP archive.

Syntax:
FFire_Zip (path {; archivePath ; compressionRate ;
replaceControl })

Parameters:
path – This parameter specifies the path of the file or folder to be archived in FileMaker
path format (filewin or filemac).

archivePath – This parameter is optional. It specifies the destination path of the archive
to be created. By default, the zip archive will be located in the same folder as the item (file
or folder) that has been archived and it will be named like the archived item (extension will
be .zip).

compressionRate – This parameter is optional. It specifies the compression rate of the
ZIP archive. The compression rate can be "maxCompression" (default), "normalCom-
pression" or "lowCompression". Decrease the default compression rate to increase
the compression speed.

replaceControl – This parameter is optional. It specifies the behavior of the plug-in in
situations when an archive with the specified name already exists at the specified location.
The value "replaceError" (default) makes the plug-in return an error code in such cas-
es. The archive is not created. The value "replaceAsk" shows a Replace File or Replace
Folder dialog box and lets the user choose whether to replace the existing archive. The re-

sult returned by the plug-in function indicates whether the archive has been created or not.
The value "replaceSilently" replaces all an existing archive without error or warning.

Result:
This function returns the path of the archive that has been created. Invoke the function
FFire_GetLastResultCode to retrieve a result code which indicates whether the opera-
tion succeeded or failed.

Warning:
When replacing an archive please note that the existing archive is erased and NOT moved
to trash! To prevent unwanted loss of information, do not use the replaceControl pa-
rameter value "replaceSilently".

Example:
In the following example the folder Letters is archived. The archive will be named like the
folder and located in the same folder. If an archive with the same name already exists in
this location the user will be asked whether to replace the existing archive.

FFire_Zip ("filemac:/Harddisk/Letters/ ; "" ; "maxCompression" ;
"replaceAsk")

Decompress archives

The FileFire Advanced function FFire_Unzip* decompresses the contents of a ZIP ar-
chive to a specified location.

Syntax:
FFire_Unzip (archivePath {; destinationPath ; replaceControl })

Parameters:
archivePath – This parameter specifies the path of the archive to be decompressed in Fi-
leMaker path format (filewin or filemac).

destinationPath – This parameter is optional. It specifies the destination path for the
archive content. If no destination path is indicated the plug-in acts according to the following
default rules: Archives that contain only one file (without any relative path information stored
for that file in the archive) are decompressed to the same folder that stores the archive. Ar-
chives that store several files (or contain relative path information for a single stored file) are
decompressed to a new sub folder that is created in the folder that stores the archive. This
folder is named like the archive. Specifying a destination path is recommended.

replaceControl – This parameter is optional. It specifies the behavior of the plug-in in
situations when destination files already exist. The value "replaceError" (default)
makes the plug-in return an error upon the first existing destination file that is detected. The
value “replaceSkip" skips all existing destination items automatically and only decom-
presses items that do not exist in the destination yet. The result returned by the plug-in

function indicates which items have not been decompressed. The value "replaceAsk"
shows a Replace File or Replace Folder dialog box and lets the user choose whether to re-
place the destination file. The result returned by the plug-in function indicates which files
have been replaced. The value "replaceUpdate" compares conflicting files by their mod-
ification timestamp and replaces outdated files only. The value "replaceSilently" re-
places all items without error or warning.

Result:
This function returns a result code that indicates whether the operation succeeded or failed.
When decompressing archives with several files please note the following: The plug-in de-
compresses all files contained within the archive sequentially and then copies the files to
their destination. Thus, it may happen that not all files are copied due to replace errors (de-
pending on the replaceControl parameter value or restrictions). If not all items could be
copied, the result contains a list of items that have not been copied. If files have been re-
placed they are provided as a separate result listing.

Warning:
When replacing files please note that they are deleted and NOT moved to trash! To prevent
unwanted loss of information, do not use the replaceControl parameter values
"replaceUpdate" and "replaceSilently".

Example:
In the following example the archive Tools.zip is decompressed to a folder Tools on the
desktop. To prevent unwanted loss of information the user is asked in case of file name
conflicts.

FFire_Unzip ("filewin:/C:/Downloads/Tools.zip" ;
FFire_GetSystemFolder ("desktop") & "Tools/" ; "replaceAsk")

CHAPTER 13
Status Dialog*

File operations may require a couple of seconds or even minutes to complete depending on
the type of operation and the system performance. FileFire Advance lets you show a status
dialog during file operations. This status dialog contains a text label (English) and a pro-
gress bar.

The status dialog can be used for the following FileFire functions: FFire_Copy,
FFire_Move, FFire_Delete, FFire_Zip and FFire_Unzip. The following functions
support an “intermediate” progress bar that keeps moving during the operation but does not
indicate the progress: FFire_GetFindResult, FFire_GetFolderItems,
FFire_GetTextFile and FFire_WriteTextFile.

Setup the status dialog

Prior to showing the status dialog using the function FFire_ShowStatusDialog it is con-
figured by FFire_SetupStatusDialog*. You can also change the settings of the status
dialog with this function while it is shown. Therefore, set a non-text (e.g. 0) value for every
parameter that should not be updated.

Syntax:
FFire_SetupStatusDialog ({ dialogTitle ; allowCancel ;
cancelButtonLabel ; textMode ; customText ; progressUnits })

Parameters:
dialogTitle – This parameter is optional. It specifies the title of the dialog. By default,
there is no text in the title bar of the dialog.

allowCancel – This parameter is optional. It specifies whether users are allowed to cancel
the current plug-in operation using a Cancel button. By default, this parameter is set to
"allowCancelOn" so that a Cancel button is shown. Please note that certain plug-in op-
erations cannot be cancelled. The Cancel button will be disabled in such situations auto-
matically. If you allow users to cancel operations plug-in function may not complete and re-
turn an error code accordingly. Set this parameter to "allowCancelOff" to hide the Can-
cel button.

cancelButtonLabel – This parameter is optional. By default, the Cancel button shows
the label “Cancel”. Use this parameter to rename the button. However, please note that the
button’s behavior does not change. Use this parameter to translate the label into a lan-
guage other than English.

textMode – This parameter is optional. The status dialog supports three different text
modes. By default, this parameter is set to "autoText". In this text mode, an automatic
status text is shown in the dialog providing information about the current plug-in operation.
Set this parameter to "customText" and use the customText parameter to show a cus-
tom status text in the dialog. The default status text can also be combined with a custom
text. Therefore, set the parameter textMode to "combinedText".

customText – This parameter is optional. Use it to specify a custom status text that is
shown in the dialog. Set the textMode parameter to "customText" or "combinedText"
when using this parameter.

progressUnits – This parameter is optional. Plug-in functions that support the progress
bar of the status dialog window manage the progress bar automatically. However, to group
several plug-in function calls into one operation use this parameter to specify the number
total progress bar units (e.g. total number of files to be copied or moved from different
sources). This parameter is also used to reset the progress bar of the dialog from earlier di-
alog sessions and specify the number of progress bar units for the following dialog session.
After dialog setup, the plug-in will manage the progress bar automatically.

Result:
This function returns a result code which indicates if it succeeded or if errors occurred.

Show the status dialog

The function FFire_ShowStatusDialog* shows the status dialog.

Syntax:
FFire_ShowStatusDialog

Result:
This function returns a result code which indicates if it succeeded or if errors occurred.

Hide the status dialog

To hide the status dialog invoke the function FFire_HideStatusDialog*.

Syntax:
FFire_HideStatusDialog

Result:
This function returns a result code which indicates if it succeeded or if errors occurred.

CHAPTER 14
Additional Functions

FileFire provides additional plug-in functions that are described in this chapter. These func-
tions enable you to retrieve result codes and configure the log engine of the plug-in that
writes errors or activities to a log file. Moreover, FileFire enables you to check the exact
version number of the plug-in installed and unlock the trial version using with a registration
name and a registration code from script so that no end-user interaction is required to un-
lock a trial version. In addition, FileFire Advanced provides a debug mode that assists you
with debugging complex file management solutions.

Retrieve last result code

The function FFire_GetLastResultCode returns the result code of the last FileFire func-
tion that has been invoked. Please refer to p. 14 for a table of all result codes.

Syntax:
FFire_GetLastResultCode

Parameter:
No parameter needed.

Parameter:
This function returns the result code of the last plug-in function that has been invoked prior
to FFire_GetLastResultCode.

Result:
The result code for the last plug-in operation is returned together with a short description. If
the result returned is empty no plug-in function been invoked prior to
FFire_GetLastResultCode.

Example:
The function FFire_GetAttribute returns content (attribute value). It does not return er-
ror codes. If an error occurs, this function returns an empty result. In the following example,
the specified file cannot be found.

FFire_GetAttribute ("filewin:/c:/Letters/Mary.doc" ; "size")

Since the file cannot be found an empty result is returned. To find out why the function
FFire_GetAttribute failed the function FFire_GetLastResultCode is invoked.

FFire_GetLastResultCode

In this example case it returns:

-053 (Item not found)

Configure the log engine

FileFire provides a log engine that can be configured using this function. Using the function
FFire_SetupLog the log engine can be disabled or enabled. Moreover, it can be config-
ured to log all plug-in activities or errors only. Use the log engine to debug FileMaker solu-
tions that use the FileFire plug-in. When contacting the Dacons Support with a technical re-
quest, please include the log file.

Syntax:
FFire_SetupLog (control {; mode ; maxSize })

Parameters:
control – This parameter is required. It switches logging on or off using one of the follow-
ing commands: "off" disables the log engine completely. "overwrite" switches logging
on and replaces the log file for every FileMaker session. "append" switches logging on as
well, and appends content to the log file for every session.

mode – This parameter is optional. It specifies the log level. To log plug-in errors only set
this parameter to "errors" (default). To log all activities of the plug-in, set the value
"activities".

maxSize – This parameter is optional. It specifies the maximum size of the log file in KB.
By default (empty parameter), the value 256 is used. During a session, the maximum size
of the log file may be greater than specified maximum (up to 1.5 times) to avoid speed deg-
radation. On shutdown the plug-in adjusts the log file size according to specified maximum.

Result:
This function returns a result code which tells you if the operation succeeded or if errors oc-
curred.

Example:
The following function call makes the log engine start a new log file for every FileMaker
session. It specifies that not only errors but all plug-in activities should be logged and that
the maximum size of the log file should not be more than 1 MB.

FFire_SetupLog ("overwrite" ; "activities" ; 1024 })

Retrieve plug-in version

The function FFire_GetVersion returns the version of the installed FileFire plug-in. Use
this function to check if the plug-in is installed when your database solution starts (start-up
script). The version information provided by this function can also be used for the
AutoUpdate plug-in which pushes updated versions of other plug-ins to all FileMaker net-
work clients automatically. Review the FileMaker documentation for more information about
the AutoUpdate plug-in.

Syntax:
FFire_GetVersion ({ control })

Parameters:
control – This parameter is optional. It can be used to customize the content returned by
the plug-in function. Leave this parameter empty to retrieve all of the following items. To re-
trieve only a specific version information item, set this parameter to one of the following val-
ues: "version" returns the exact version of the plug-in installed. In most cases you will
pass this value to the plug-in to retrieve the version number. "product" returns the name
of the product which is “FileFire Express” or “FileFire Advanced” depending on the edition of
the plug-in currently installed. "platform" returns the operating system the plug-in is run-
ning on and "copyright" returns copyright information of the plug-in.

Result:
This function returns the plug-in version description including all items specified by the
control parameter.

Register the plug-in

To remove all trial limitations from the plug-in it has to be registered using the registration
data you receive from Dacons after purchasing a FileFire license. The plug-in can be regis-
tered manually using the preferences dialog (Go to: FileMaker Application Preferences ►
Plug-Ins ► FileFire Express or FileFire Advanced).

To avoid manual plug-in registration when shipping your database solution to a client or dis-
tribute a FileMaker Runtime application with FileFire you can also register the plug-in from
the start-up script of your solution by invoking the function FFire_RegisterSession with
your registration data. This function has to be invoked prior to any other function. Note
that registration data from script will not be stored so registration from script has to be in-
voked every time a solution starts.

Syntax:
FFire_RegisterSession (username ; userCode)

Parameters:
userName – Sets the user name you receive from Dacons after purchasing a FileFire li-
cense.

userCode – Use this parameter to pass the registration code to the plug-in which you re-
ceive from Dacons after purchasing a FileFire license.

Please note that you cannot use a FileFire Express license with FileFire Advanced and vice
versa. You can upgrade from FileFire Express to FileFire Advanced anytime.

Result:
This function returns a result code which tells you if the operation succeeded or if errors oc-
curred. Please contact the Dacons Support at http://www.dacons.net/support if you registra-
tion code is rejected for any reason.

For permanent plug-in registration on the FileMaker Server side FFire_RegisterServer
function should be used. This function has to be invoked on the FileMaker Server side only,
using the FileMaker Server Console script scheduler. Function syntax and result codes are
identical to FFire_RegisterSession.

Syntax:
FFire_RegisterSever (username ; userCode)

Configure debug mode*

The FileFire Advanced function FFire_SetupDebugMode* lets you specify whether the
plug-in will show a message box whenever an error code is generated. Enable this feature
to debug complex file management solutions.

Syntax:
FFire_SetupDebugMode (control)

Parameter:
control – This parameter controls the debug behavior of the plug-in. Set this parameter to
"on" to enable debugging. This means that a message box is shown whenever an error
code is generated. The plug-in will not continue before the message is confirmed. Set this
parameter to "off" to disable debugging. By default, the debug mode is disabled.

Result:
This function returns a result code which indicates if it succeeded or if errors occurred.

