ADMINISTRATOR MANUAL FOR JOB START
Thank you for choosing Job Start.
For the latest information on Job Start please visit www.hotute.com
Purpose of Job Start
This application has been designed to allow users to start & run SQL Server jobs. Although database jobs are generally run on a schedule or run by an SQL Server administrator on an ad-hoc basis, there is a need for business users to run jobs on demand. Using Job Start allows users to start these jobs without having to raise a help desk request for a DBA or other authorised administrator to start the job. This frees up IT time for more important issues and allows users to get their work done in a timely manner.

Version 3.1.11129.1456
Copyright Peter Drynan 2011 

For further information contact enquiries@hotute.com

Contents
3How Job Start works with SQL Server user accounts


3Job Start database


4How to create & setup the Job_Start database


4Overview of what is required to create & setup the database


4SQL Server security


4Steps to take using the SQL scripts


5Step by step guide


7Installing Job Start on users machine


7Using the load data template


8Appendix A


10Appendix B




How Job Start works with SQL Server user accounts TC " How Job Start works with SQL Server user accounts " \f C \l "1" 
Job Start allows any number of users to access any number of databases and jobs. Users are given access to the Job_Start database. Access to other databases, jobs & etc is via the SQL Server authenticated user account that is defined in table ‘DBUserAccounts’ column ‘DBAccountName’. When a user starts a job, the job is invoked by the ‘DBAccountName’. The diagram below shows how Job Start connects to SQL Server. The ‘DBAccountName’ is associated with a proxy. Job steps that require access to resources outside of SQL Server use the domain account associated with the proxy account. For job steps that don’t require external access the job steps run under the security context of the SQL Server agent service account.

[image: image1]
Job Start database TC " Job Start database " \f C \l "1" 
Job Start has its own SQL Server database (database name is ‘Job_Start’) and is the source of the data that is shown on the Job Start screens. In addition, the database also contains all the information needed to kick off jobs on the database by users who have been expressly authorised to do so. To use this application, the user needs to be defined in the Job_Start database. This database specifies which applications, servers, databases & jobs that the users can have access to. This data is required to be entered by an IT person or someone who has the access and knowledge to modify the Job_Start database. 

To allow users to start jobs, they need to be defined in the Job_Start database. This is easy to do with the supplied template. Version 3.1.11129.1456 does not have a fully functioning GUI facility to allow data to be entered via screens. Most data in version 3.1.11129.1456 has to be entered via SQL script files or via the Microsoft SQL Server Management Studio. There are two database tables that are able to be modified within the Job Start application. These 2 tables have user account and associated password information. The passwords are encrypted for better security and require Job Start to encrypt/decrypt these passwords as it is impossible to enter these values via an SQL script. A future release of Job Start will incorporate a fully functional GUI for data management.
How to create & setup the Job_Start database TC "How to create & setup the Job_Start database" \f C \l "1" 
Overview of what is required to create & setup the database TC " Overview of what is required to create & setup the database " \f C \l "2" 
1. Create & load a new database

2. Create one SQL Server authenticated database login account (all Job Start jobs are invoked by this account.

3. Create one Windows authenticated database login account (for proxy use)

4. Grant various permissions to users and proxy account

5. Install Job Start application on an administrators PC

6. Run Job Start to encrypt passwords stored in the Job_Start database

SQL Server security TC " SQL Server security " \f C \l "2" 
The author of Job Start is not an authority on the security workings of SQL Server, hence this section of the manual will not cover this area except for the requirement to setup two SQL Server user accounts and associated proxy account. Due to the nature of SQL Server security & depending on your own requirements, there are a number of ways in which user accounts, permissions, roles & etc can be setup. Security is of prime importance and you should configure security settings to suit your own security requirements.

Jobs or more precisely job steps, can access internal SQL Server resources or they can access system resources (e.g. access a file, run an SSIS or DTS package). For job steps that have not specified a proxy and only access internal SQL Server resources, the step runs in the security context of the SQL Server Agent service account.

To gain access to external system resources requires a domain account. Job steps that access these external resources will run under the security context of that domain account. This accomplished by the use of a proxy account.
It is envisaged that most jobs defined in Job Start will involve accessing resources outside of the DBMS and thus will need proxy account/s setup. If the jobs that you intend to run are on an SQL Server 2000 DBMS than you are restricted to just one proxy account. SQL Server 2005 & 2008 allow a number of proxy accounts. Appendix A has example SQL code to setup a proxy account on the various versions of SQL Server.
If jobs run successfully within SQL Server Management Studio but fail to run via Job Start it is more than likely that it is due to a security/proxy issue.
Steps to take to setup the Job_Start database
Due to the nature of SQL Server security & depending on your own requirements, there are a number of ways in which user accounts, permissions, roles & etc can be setup. Below are just 2 methods you may use. Note that should these not meet you own security requirements you should amend to suit yourself.

There are 2 ways that you can take to setup the database:-

1 run SQL scripts to perform some of the setup tasks automatically

2 perform each task manually

Option number 1 has been specifically written for versions 2005 & 2008 of SQL Server. It will not work for SQL Server 2000.
Option 2 is for those that prefer to take control of performing the setup. Should option 1 fail to run successfully this option can also be used to complete the setup. This option can also be used for SQL Server 2000 sites but please note that these have not been tested against SQL Server 2000.
Steps to take using the SQL scripts
 TC " Steps to take using the SQL scripts " \f C \l "2" 
1 Jobs that require a proxy account will run under the security context of a domain account. Create or ensure a domain account is active. Do not add this account as a new login within SQL Server, as the next step will create the login.
2 Edit file ‘Setup 2005.sql’. Modify the data between lines 19 and 29 to suit your environment, naming standards & etc and then save it.
3 run the SQL script ‘Setup 2005.sql’
4 edit file ‘Load Job_Start data.sql’. Populate with data appropriate to your situation & then save it. See section “using load data template” below for more details on this.

5 run the SQL script ‘Load Job_Start data.sql’
6 for each user of the Job Start application:-
a. Create new login within SQL Server

b. give connect, execute, select access to Job_Start database
7 For every database that jobs access:-
a. give connect access to user assigned to @SqlServerAuthName in step 2

b. give the appropriate access to the user assigned to @DomainLoginName in step 2. At a minimum it would require ‘connect’, ‘execute’ and ‘insert’ or ‘select’.

8 install Job Start on Job Start administrators PC. See section ‘Installing Job Start on users machine’ below for some settings that need to be completed to successfully install the software.
9 modify the connection string in the ‘Job Start.exe.config’ file located in the folder where Job Start was installed. Default location is c:\program files\HotUte\Job Start. Change the data source from ‘MyDataSource’ to the appropriate database server for your site.

10 start Job Start

11 select ‘admin’ then ‘DB User account’ from the menu. ^

12 select & modify user ‘JobStartUser’. This is the user that was created in step 2 & assigned to @SqlServerAuthName. Ensure password is the same as defined in the database.

13 save and exit Job Start
14 When setting up job steps ensure you set it to ‘run as’ the proxy assigned to @JobStartProxy in step 2. This only applies to types:-

a. Operating system (cmdExec)

b. SQL Server integration services package
Step by step guide TC " Step by step guide " \f C \l "2" 
A step by step guide is given below on setting up Job Start. Please note that these steps are quite detailed. A knowledgeable DBA may choose to perform these tasks in an order of their own preference and may setup security in a way that best suits their environment.
Follow these steps to create and enable the Job_Start database for user access:-

1. create the ‘Job_Start’ database on an SQL Server database server of your choice (ensure name is correct ‘Job_Start’)

2. run the SQL script ‘create_JobStart_DB_Tables.sql’ (creates tables, stored procedures &  etc)
3. edit file ‘Load Job_Start data.sql’. Populate with data appropriate to your situation & then save it. See section “using load data template” below for more details on this.
4. run the SQL script ‘Load Job_Start data.sql’

5. create a new SQL Server login user with ‘SQL Server authentication’. Note login name & password as this is needed below & after Job Start has been installed on an administrators machine. Unless your site has special naming standards you can use Job Start’s default of ‘JobStartUser’
6. create a new Windows/network login account and add it as a new SQL Server login with Windows authentication. Note login name & password as this is needed in the next step.
7. Depending of which version of SQL Server jobs are to be run on, create a proxy account. For SQL Server 2000 run ‘Create_Proxy_2000.sql’ or ‘Create_Proxy_2005.sql’ for SQL Server 2005 and 2008. If your site has naming standards then modify the file to suit your requirements. Note that where reference is made to account ‘JobStartUser’ this should be made the same as that created in step 5 above. Also note that where reference is made to account ‘your domain\JSU’ this should be made the same as that created in step 6 above.
8. add login created in step 5 as a new user in msdb system database. (not for SQL Server 2000)
9. goto system DB msdb and give user created in step 5, database role membership of ‘SQLAgentOperatorRole’. (not for SQL Server 2000)
10. for each user of the Job Start application:-
a. Create new login within SQL Server
b. give connect, execute, select access to Job_Start database
11. For every database that jobs access:-

a. give connect access to user created in step 5

b. give the appropriate access to the user created in step 6. At a minimum it would require ‘connect’, ‘execute’ and ‘insert’ or ‘select’.
12. install Job Start on Job Start administrators PC. See section ‘Installing Job Start on users machine’ below for some settings that need to be completed to successfully install the software.
13. modify the connection string in the ‘Job Start.exe.config’ file located in the folder where Job Start was installed. Default location is c:\program files\HotUte\Job Start. Change the data source from ‘MyDataSource’ to the appropriate database server for your site.
14. start Job Start

15. select ‘admin’ then ‘DB User account’ from the menu. ^
16. select & modify user ‘JobStartUser’ to that created in step 5. Ensure password is the same as defined in the database.

17. save and exit Job Start
18. When setting up job steps ensure you set it to ‘run as’ the proxy assigned to @JobStartProxy in step 2. This only applies to types:-

a. Operating system (cmdExec)

b. SQL Server integration services package
The database is now set up so that all the users created in step 10 can now access that database after they have Job Start installed on their machine.
 Anyone using Job Start will only see ‘applications’, ‘databases’, ‘servers’, ‘jobs’ & etc that they are authorised to see. This is determined in table ‘UserAccess’ for running of jobs and in table ‘UserAccessFiles’ for copying of files via FTP.
^ Note that to see the ‘admin’ menu, you need to be defined as a Job Start administrator. Column ‘AccessLevel’ in table ‘UserAccess’ needs to be set to 1 for administrator rights. As administrators can see the passwords associated with user names you should limit administrator rights to those who have an absolute need.
Installing Job Start on users machine TC "Installing Job Start on users machine" \f C \l "1" 
Every user will require Job Start to be installed on their machine. They will require administrator rights on that machine as information will be written to the registry. These administrator rights are required to install only.
Before starting the install you will need to have the name of the server that the Job_Start database is located on. This is required to be entered during the install process.

When the ‘Select Installation Folder’ screen is displayed, ensure you select the ‘run by any user on the local machine’.
Using the load data template TC "Using the load data template" \f C \l "1" 
During the setup of the Job_Start database the file ‘LoadJobStartData.sql’  is run which populates the database with data. This data sets up the jobs that can be run and authorises specific users to be able to run specific jobs.The DML in appendix B is a copy of the contents of the ‘LoadJobStartData.sql’ file. 
Until Job Start has a full GUI to maintain the data in the database, there will be times when parts of this DML will be needed to be executed. E.G. When new users or jobs are added.
Appendix A TC "Appendix A" \f C \l "1" 
SQL Server 2000

Use master

Go

-- create a new SQL Server authenticated user login

exec sp_addlogin 'JobStartUser', 'JobStartUserPW'

exec sp_grantdbaccess 'JobStartUser'

-- add an existing domain account as the proxy account.  MyDomain\UserName

Exec xp_sqlagent_proxy_account N'SET', N'MyDomain',  N'UserName', N'password'

--Allow non-sysadmin users to run the xp_cmdshell and active scripting in jobs

Exec msdb.sp_set_sqlagent_properties @sysadmin_only = 0

-- grant execute permission for xp_cmdshell to 'JobStartUser'

Grant exec on xp_cmdshell to [JobStartUser]

SQL Server 2005/2008

For SQL Server 2005/2008 multiple proxy accounts can be setup. The example script below shows how ‘JobStartUser’ has been given access to run SSIS packages.

Use master

Go

-- create a new SQL Server authenticated user login

Create login JobStartUser with password= 'password'

create login [MyDomain\username] from windows

use msdb

go

-- create the credential

Create credential JobStartCred with identity = N'MyDomain\JSU', secret = N'password'

-- create new proxy

Exec msdb..sp_add_proxy @proxy_name = N'JobStartProxy', @credential_name = N'JobStartCred', @enabled = 1

-- grant proxy access to execute DTS packages

Exec msdb.dbo.sp_grant_proxy_to_subsystem @proxy_name = N'JobStartProxy', @subsystem_id = 11

-- add JobStartUser as principal to proxy. Give permission for JobStartUser to use JobStartProxy

Exec msdb..sp_grant_login_to_proxy @login_name = N'JobStartUser', @proxy_name = N'JobStartProxy'

-- grant access to msdb database for user created in step 5 of the 'step by step guide.

Create user JobStartUser for login [JobStartUser]

-- add JobsStartUser to SQLAgentUserRole in msdb database

exec msdb..sp_addrolemember 'SQLAgentUserRole', 'JobStartUser'

Below are the subsystem id numbers that are used as a parameter in procedure 'sp_grant_proxy_to_subsystem' which is used in the above code.

Execute the procedure using one or more of these id's to suit your requirements.

Value
Description

  2
Microsoft ActiveX Script


Important: The activeX scripting subsystem will be removed from SQL Server Agent in a future version of Microsoft SQL Server. Avoid using this feature in new development work and plan to modify applications that currently use this feature.

  3 
    Operating System (CmdExec) 

  4 
    Replication Snapshot Agent

  5 
    Replication Log Reader Agent

  6 
    Replication Distribution Agent

  7 
    Replication Merge Agent
  8 
    Replication Queue Reader Agent

  9 
    Analysis Services Command

 10 
    Analysis Services Query

 11 
    SSIS package execution

 and an additional subsystem for SQL Server 2008:-
 12            PowerShell Script
Appendix B TC "Appendix B" \f C \l "1" 
Appendix B has all the necessary SQL to add new entries into the Job_Start database. You should refer to this when new users, jobs, applications, databases & etc are required. You may also need to add new users to the SQL Server DBMS and set their permissions. If you have added a new DBAccountName in table DBUserAccounts, you will also need to set up this account and appropriate permissions.
Add a new user
The DML shown in green is what is required to be run when a new user is added
The DML shown in blue is what is required to be run to authorise the user to run a job.
Add a new job
The DML shown in red is what is required to be run when a new job that requires an FTP file to be copied is added
The DML shown in blue is what is required to be run to authorise the user to run the job.

INSERT INTO [Job_Start].[dbo].[Users]

-- Every person using Job Start needs an entry in this table.

           ([DomainUserId]


-- *  The network or domain user name

           ,[DomainUserName])


--  A description or the name of the user id

     VALUES

           ('MyNetworkId'

           ,'Ron Bradman')
INSERT INTO [Job_Start].[dbo].[Applications]
-- Insert an entry for any application system that users are to run jobs against.

           ([AppId]



-- A unique number/identifier for each application

           ,[AppName])



-- The name of the application. Generally this would be the common name users refer to for an application system.

     VALUES

           (1

           ,'MyErpApplication')

INSERT INTO [Job_Start].[dbo].[Databases]
-- Insert an entry for every database that jobs are to run against.

           ([DatabaseId]


-- A unique number/identifier for each database

           ,[DatabaseName])


-- *  The name of the database.

     VALUES

           (1

           ,'MyErpDatabase')

INSERT INTO [Job_Start].[dbo].[ApplicationDatabases]
-- Insert an entry for each application database combination.

           ([AppId]




-- Foreign key from applications table 

           ,[DatabaseId])



-- Foreign key from databases table

     VALUES

           (1

           ,1)

INSERT INTO [Job_Start].[dbo].[Servers]
-- Insert an entry for every server that a database is on or an FTP server in on.

           ([ServerId]



-- A unique number/identifier for each server

           ,[ServerName])


-- *  The name of the server

     VALUES

           (1

           ,'MyNetworkServer')

INSERT INTO [Job_Start].[dbo].[DBServers]
-- Insert an entry for each server database combination.

           ([ServerId]



-- Foreign key from servers table

           ,[DatabaseId])


-- Foreign key from databases table

     VALUES

           (1

           ,1)

INSERT INTO [Job_Start].[dbo].[Jobs]

-- Insert an entry for every job that will be run via Job Start

           ([JobId]



-- A unique number/identifier for each job

           ,[ServerId]



-- }Foreign key from DBServers table

           ,[DatabaseId]


-- }

           ,[JobName]



-- *  The name of the job

           ,[StartAtStep])


-- Not supported at present. For future use.

     VALUES

           (1

           ,1

           ,1

           ,'LoadNewProductPrices'

           ,1)

-- This next table has information about the SQL Server login name that jobs are invoked by. This login is the same as that created

-- in step 5 of Step by step guide of the Administrator manual. Having this table allows the one job to be run under

-- different logins.

INSERT INTO [Job_Start].[dbo].[DBUserAccounts]
-- Insert an entry for every account name that jobs run under. The default is 'JobStartUser'
           ([DBUserAccountId]


-- A unique number/identifier for each database account name

           ,[JobId]



-- }

           ,[ServerId]



-- }Foreign key from jobs table

           ,[DatabaseId]


-- }

           ,[DBAccountName]


-- *  the SQL Server authenticated login name. See @SqlServerAuthName in file ‘setup 2005.sql’
           ,[Security_1]



-- password encryption related

           ,[Security_2]



-- password encryption related

           ,[Security_3]



-- password encryption related

           ,[Security_4]



-- password encryption related



   )

     VALUES

           (1

           ,1

           ,1

           ,1

           ,'JobStartUser'

           ,0xf64a229d3214847bad909962d4cf85c89acc908822589382

          , 0x80e71a42ba60f02e

          , 0x6e34896906325d07

         , 24

        )
-- The following table determines which jobs users are able to run.

INSERT INTO [Job_Start].[dbo].[UserAccess]
-- Insert an entry for every job that a user has authority to run

           ([DomainUserId]


-- foreign key from users table

           ,[DBUserAccountId]


-- }

           ,[JobId]



-- } foreign key from DBUserAccounts table

           ,[ServerId]



-- }

           ,[DatabaseId]


-- }

           ,[AccessLevel])
-- 0 for non administrator. 1 for administrator. Administrator refers to Job Start not to the database

     VALUES

           ('MyNetworkId'

           ,1

           ,1

           ,1

           ,1

           ,0)
-- this table uses an identity field for its primary key

INSERT INTO [Job_Start].[dbo].[FtpServers]
-- Insert an entry for every FTP server

           ( [AppId]



-- foreign key from applications table
           , [ServerId]



-- foreign key from servers table

           , [FTPHostFullName]


-- *  e.g.  yourcompany.com.au

           , [FTPHostCommonName]
-- the name by which users refer to the 'host full name'. This is the name that shows on the Job Start screen.

--        , [FTPHostSuffix]

-- not currently supported. for future use. the top level domain plus country code. e.g. com.au

          , [FTPUserName]


-- *  FTP user account name

          , [FTPSecurity_1]


-- password encryption related

          , [FTPSecurity_2]


-- password encryption related

          , [FTPSecurity_3]


-- password encryption related

          , [FTPSecurity_4]


-- password encryption related

          , [FTPLocationSubDirectory])

-- folder to place file in if not the root FTP folder

     VALUES

           (1

           ,1

           ,'yourcompany.com.au'
           ,'ftpserver01'

           ,'FtpUser'

           , 0xf64a229d3214847bad909962d4cf85c89acc908822589382

           , 0x80e71a42ba60f02e

           , 0x6e34896906325d07

           , 24

           ,'DatabaseUpload')

INSERT INTO [Job_Start].[dbo].[Files]
-- insert a record for every file that can be sent to or received from an FTP server

           ([FileId]


-- unique number/identifier for each file

           ,[FTPServerId]

-- foreign key from FTPServers table

           ,[Get_Put]


-- determines the operation on the file. Must be 'put' or 'get'

           ,[FileName])


-- name of the file on the FTP server

     VALUES

           (1

           ,1

           ,'put'

           ,'myDataFile.txt')
INSERT INTO [Job_Start].[dbo].[JobFiles]
-- insert a record for every job that produces or requires a file

           ([JobId]



-- }

           ,[ServerId]



-- } Foreign key from Jobs table

           ,[DatabaseId]


-- }

           ,[FileId]



-- }} Foreign key from Files table

           ,[FTPServerId])


-- }}

     VALUES

           (1

           ,1

           ,1

           ,1

           ,1)
INSERT INTO [Job_Start].[dbo].[UserAccessFiles]

-- insert a record for every file a user can access

           ([DomainUserId]



-- foreign key from Users table

           ,[FileId]




-- } foreign key from Files table

           ,[FTPServerId])



-- }

     VALUES

           ('MyNetworkId'

           ,1

           ,1)
Adding a new user
INSERT INTO [Job_Start].[dbo].[Users]

-- Every person using Job Start needs an entry in this table.

           ([DomainUserId]


-- *  The network or domain user name

           ,[DomainUserName])


--  A description or the name of the user id

     VALUES

           ('MyNetworkId'

           ,'Ron Bradman')
Authorising a user to run a job

-- The following table determines which jobs users are able to run.

INSERT INTO [Job_Start].[dbo].[UserAccess]
-- Insert an entry for every job that a user has authority to run

           ([DomainUserId]


-- foreign key from users table

           ,[DBUserAccountId]


-- }

           ,[JobId]



-- } foreign key from DBUserAccounts table

           ,[ServerId]



-- }

           ,[DatabaseId]


-- }

           ,[AccessLevel])
-- 0 for non administrator. 1 for administrator. Administrator refers to Job Start not to the database

     VALUES

           ('MyNetworkId'

           ,1

           ,1

           ,1

           ,1

           ,0)
Add a new job
While Job Start can be used to run any type of job on SQL Server, it is anticipated that jobs that users wish to run will involve either loading data into or extracting data from databases with the use of files. The following DML will cater for new jobs that require files to be FTP’ed to or from an FTP server.
INSERT INTO [Job_Start].[dbo].[Jobs]

-- Insert an entry for every job that will be run via Job Start

           ([JobId]



-- A unique number/identifier for each job

           ,[ServerId]



-- }Foreign key from DBServers table

           ,[DatabaseId]


-- }

           ,[JobName]



-- *  The name of the job

           ,[StartAtStep])


-- Not supported at present. For future use.

     VALUES

           (1

           ,1

           ,1

           ,'LoadNewProductPrices'

           ,1)

-- This next table has information about the SQL Server login name that jobs run under. This login is the same as that created

-- in step 5 of Step by step guide of the Administrator manual. Having this table allows the one job to be run under

-- different logins.

INSERT INTO [Job_Start].[dbo].[DBUserAccounts]
-- Insert an entry for every account name that jobs run under. The default is 'JobStartUser'
           ([DBUserAccountId]


-- A unique number/identifier for each database account name

           ,[JobId]



-- }

           ,[ServerId]



-- }Foreign key from jobs table

           ,[DatabaseId]


-- }

           ,[DBAccountName]


-- *  the SQL Server authenticated login name

           ,[Security_1]



-- password encryption related

           ,[Security_2]



-- password encryption related

           ,[Security_3]



-- password encryption related

           ,[Security_4]



-- password encryption related



   )

     VALUES

           (1

           ,1

           ,1

           ,1

           ,'JobStartUser'

           ,0xf64a229d3214847bad909962d4cf85c89acc908822589382

          , 0x80e71a42ba60f02e

          , 0x6e34896906325d07

         , 24

        )
INSERT INTO [Job_Start].[dbo].[Files]
-- insert a record for every file that can be sent to or received from an FTP server

           ([FileId]


-- unique number/identifier for each file

           ,[FTPServerId]

-- foreign key from FTPServers table

           ,[Get_Put]


-- determines the operation on the file. Must be 'put' or 'get'

           ,[FileName])


-- name of the file on the FTP server

     VALUES

           (1

           ,1

           ,'put'

           ,'myDataFile.txt')
INSERT INTO [Job_Start].[dbo].[JobFiles]
-- insert a record for every job that produces or requires a file

           ([JobId]



-- }

           ,[ServerId]



-- } Foreign key from Jobs table

           ,[DatabaseId]


-- }

           ,[FileId]



-- }} Foreign key from Files table

           ,[FTPServerId])


-- }}

     VALUES

           (1

           ,1

           ,1

           ,1

           ,1)
INSERT INTO [Job_Start].[dbo].[UserAccessFiles]

-- insert a record for every file a user can access

           ([DomainUserId]



-- foreign key from Users table

           ,[FileId]




-- } foreign key from Files table

           ,[FTPServerId])



-- }

     VALUES

           ('MyNetworkId'

           ,1

           ,1)
SQL Server DBMS











Connection via DBUserAccount


(an SQL Server authenticated account)





Connection via users domain account





System databases


User databases


jobs





Job_Start


database








Job Start


application








PAGE  
4
Administrator manual Job Start 3.1.11129.1456.doc

