iv
MSDN 2.0

Template User Instructions
iii

[image: image1.png]
Microsoft® Operations Framework
Version 4.0
Stabilize Service Management Function
[image: image2.jpg]
Published: April 2008

For the latest information, please see
microsoft.com/technet/solutionaccelerators
Copyright © 2008 Microsoft Corporation. This documentation is licensed to you under the Creative Commons Attribution License. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/us/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA. When using this documentation, provide the following attribution: The Microsoft Operations Framework 4.0 is provided with permission from Microsoft Corporation.

This documentation is provided to you for informational purposes only, and is provided to you entirely "AS IS". Your use of the documentation cannot be understood as substituting for customized service and information that might be developed by Microsoft Corporation for a particular user based upon that user’s particular environment. To the extent permitted by law, MICROSOFT MAKES NO WARRANTY OF ANY KIND, DISCLAIMS ALL EXPRESS, IMPLIED AND STATUTORY WARRANTIES, AND ASSUMES NO LIABILITY TO YOU FOR ANY DAMAGES OF ANY TYPE IN CONNECTION WITH THESE MATERIALS OR ANY INTELLECTUAL PROPERTY IN THEM.

Microsoft may have patents, patent applications, trademarks, or other intellectual property rights covering subject matter within this documentation. Except as provided in a separate agreement from Microsoft, your use of this document does not give you any license to these patents, trademarks or other intellectual property.

Information in this document, including URL and other Internet Web site references, is subject to change without notice. Unless otherwise noted, the example companies, organizations, products, domain names, e-mail addresses, logos, people, places and events depicted herein are fictitious.

Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

You have no obligation to give Microsoft any suggestions, comments or other feedback ("Feedback") relating to the documentation. However, if you do provide any Feedback to Microsoft then you provide to Microsoft, without charge, the right to use, share and commercialize your Feedback in any way and for any purpose. You also give to third parties, without charge, any patent rights needed for their products, technologies and services to use or interface with any specific parts of a Microsoft software or service that includes the Feedback. You will not give Feedback that is subject to a license that requires Microsoft to license its software or documentation to third parties because we include your Feedback in them.

Contents

1Position of the Stabilize SMF Within the MOF IT Service Lifecycle

2Why Use the Stabilize SMF?

2Stabilize Service Management Function Overview

3Stabilize SMF Role Types

4Goals of Stabilizing

5Key Terms

6Stabilize Process Flow

8Process 1: Stabilize a Release Candidate

10Activities: Stabilize a Release Candidate

12Process 2: Conduct a Pilot Test

15Activities: Conduct a Pilot Test

16Process 3: Review the Release Readiness Milestone

17Activities: Review the Release Readiness Milestone

18Conclusion

18Feedback

Position of the Stabilize SMF Within the MOF IT Service Lifecycle

The MOF IT service lifecycle encompasses all of the activities and processes involved in managing an IT service: its conception, development, operation, maintenance, and—ultimately—its retirement. MOF organizes these activities and processes into Service Management Functions (SMFs), which are grouped together in lifecycle phases. Each SMF is anchored within a lifecycle phase and contains a unique set of goals and outcomes supporting the objectives of that phase. The SMFs can be used as stand-alone sets of processes, but it is when SMFs are used together that they are most effective in ensuring service delivery at the desired quality and risk levels.
The Stabilize SMF belongs to the Deliver Phase of the MOF IT service lifecycle. The following figure shows the place of the Stabilize SMF within the Deliver Phase, as well as the location of the Deliver Phase within the IT service lifecycle.

[image: image3.png]
Figure 1. Position of the Stabilize SMF within the IT service lifecycle

Before you use this SMF, you may want to read the following MOF 4.0 guidance to learn more about the MOF IT service lifecycle and the Deliver Phase:

· MOF Overview
· Deliver Phase Overview
Why Use the Stabilize SMF?

This SMF should be useful to anyone who is tasked with ensuring the release of the highest-quality IT service solution possible at the Release Readiness Milestone. It includes guidance for how to test a feature-complete solution, prepare release candidate versions, deal with feedback, and fix reported issues.

The SMF specifically addresses the following processes for stabilization:

· Stabilize a release candidate.

· Conduct a pilot test.

· Review the Release Readiness Management Review.

Stabilize Service Management Function Overview
Stabilizing begins after the Scope Complete Milestone, which finalizes developing. The guidance provided by the Stabilize SMF is designed to assist the project team in the following activities:

· Test the feature-complete solution.

· Prepare release candidate versions of the solution.

· Deal with feedback.

· Fix reported bugs.

During testing, the emphasis is on using and operating the solution in realistic environmental conditions. The project team focuses on resolving and triaging (prioritizing) bugs and preparing the solution for deployment.
There are a number of types of testing that can be used at this stage, including the following:

· Unit/functional testing

· Integrated testing

· Operational testing
Test often reports bugs at a faster rate than Development can resolve them. Although there is no way to know how many bugs Test will find or how long it will take Development to fix them, there are statistical signposts known as bug convergence and zero bug bounce that help teams predict when solutions will reach stability. This guide describes both signposts.

Once the project team decides that a build is stable enough to be a release candidate, it deploys the solution to a pilot group. Stabilizing culminates in the Release Readiness MR. This milestone occurs when all outstanding issues have been addressed and the team has released the solution or deployed it to the production environment.

Stabilize SMF Role Types

The primary team accountability that applies to the Stabilize SMF is the Solution Accountability. The role types within that accountability and their primary activities within this SMF are displayed in the following table.

Table 1. Solutions Accountability and Its Attendant Role Types

	Role Type
	Responsibilities
	Role in this SMF

	Solution Manager
	· Accountable role

· Owns all SMFs in this accountability

· Acts as project director for all projects

· Resolves conflicts between projects
	· Ongoing oversight

	Program Manager
	· Drives design, schedule, and resources at the project level
	· Sets design goals

· Describes the solution concept

· Creates the project structure
· Documents requirements to test against

	Developer
	· Builds the agreed-to solution
	· Creates solution

· Fixes bugs

	Tester
	· Tests to accurately determine the status of solution development
	· Tests strategies

· Tests acceptance criteria
· Tests solution
· Documents project implications

	Product Manager
	· Acts as the customer advocate

· Helps drive shared project vision

· Manages customer expectations
	· Participates in overall testing
· Brings organization’s needs to testing process

	User Experience
	· Acts as the user advocate on project teams

· Helps define user requirements

· Helps design to meet user requirements
	· Documents user performance requirements

· Documents project test implications
· Participates in bug triage

	Release Management
	· Evaluates the solution design

· Documents operations requirements to ensure they’re met by the design

· Creates a pilot, deployment plan, and schedule

· Manages site deployment
	· Documents deployment implications

· Documents operations management and supportability

· Documents operations acceptance criteria
· Prepares for release

	Operations Experience
	· Advocates for operations on the project team

· Brings in operations experts as needed for detailed information

· Coordinates with release management
	· Documents operations performance requirements
· Participates in bug triage

· Prepares for release

	Test Manager
	· Owns all testing across all project teams

· Develops testing strategy and plans

· Ensures that best practice test methods are used
	· Ongoing oversight

Goals of Stabilizing
The goal of stabilizing is to release the highest-quality solution possible at the Release Readiness Milestone. The project team achieves this goal by identifying bugs and issues through thorough testing and release-candidate piloting. Then, the team triages and resolves all known bugs. Resolving a bug doesn’t necessarily mean fixing it—it can be deferred to a later version or declared not serious enough to fix.

The goals of stabilizing include:

· Testing the feature-complete solution.

· Deploying one or more release candidates to a pilot group.

· Addressing the pilot-test feedback and bugs.

Table 2 shows the desired outcomes of the Stabilize SMF goals and lists measures you can use to gauge how successfully you have achieved these goals after completing this SMF.

Table 2. Outcomes and Measures of the Stabilize SMF Goals

	Outcomes
	Measures

	A high-quality, stable solution
	· Bug convergence and zero bug bounce achieved

· No unresolved bugs in the issue-tracking database

	All issues found by testing and through pilot feedback are resolved
	· The number of unresolved bugs in the issue-tracking database

· Signoff on the Release Readiness Milestone

	A high-quality solution that meets the customer’s expectations and specifications as defined in the functional specification
	· Signoff on the Release Readiness Milestone

Key Terms
The following table contains definitions of key terms found in this guide.

Table 3. Key Terms
	Term
	Definition

	Bug convergence
	The point at which the number of bugs fixed exceeds the number of bugs reported. Bug convergence is the first indication that the solution is becoming stable.

	Functional testing
	Testing a completed solution against the functional specification.

	Integration testing
	Testing individual, united tested components integrated with other components.

	Pilot test
	Testing conducted by a subset of users in a production environment. The pilot group uses the solution, providing feedback and reporting any bugs the group finds.

	Triage
	The process of prioritizing and rationalizing bugs and issues with the solution. Priorities assigned to the bugs indicate how critical it is to fix them. Rationalizing is the process of determining the severity of the bug and whether the bug must be fixed for the current release.

	Unit testing
	Testing individual solution components.

	Zero bug bounce
	The point at which development has no open bugs to fix. Although it is highly likely that test will report additional bugs in the future, zero bug bounce is the first indication that stabilizing is nearing an end.

Stabilize Process Flow
Figure 2 illustrates the process flow for stabilizing. The flow consists of the following processes:

· Stabilize a release candidate.

· Conduct a pilot test.

· Review the Release Readiness Milestone.

[image: image4.jpg]
Figure 2. Stabilize process flow

Process 1: Stabilize a Release Candidate

The first process in stabilizing is for the team to find and resolve bugs in the solution and to prepare a release candidate.
[image: image5.jpg]
Figure 3. Stabilize a release candidate
Activities: Stabilize a Release Candidate

During the initial parts of stabilizing, Test and Development work together to find and resolve bugs. They hold regularly scheduled bug meetings to triage bugs, and team members report and track the status of each issue by using the issue-tracking procedures developed during planning.

As the project progresses, the team begins to prepare release candidates. Building a release candidate involves ensuring its fitness for release, including whether all of the components are present. Typically, teams will create multiple release candidates with each release candidate being an interim milestone. Testing after each release candidate indicates whether the candidate is fit to deploy to a pilot group.

To complete this process, teams must allow stakeholders to interact with the solution while it is in the development environment. For example, stakeholders can test the solution in a lab or training environment. But test needs a separate environment for testing. Members of the deployment team, operations, support, and users are typical candidates for reviewing pilot readiness.

The following table lists the activities involved in this process. This includes:

· Writing the test specification document.

· Identifying and resolving bugs until the solution stabilizes.
· Testing the release candidate.
· Completing user acceptance testing.

Table 4. Activities and Considerations for Stabilizing a Release Candidate

	Activities
	Considerations

	Write the test specification document
	Key questions:

· What is the typical path through the solution?
· What are the key scenarios?

· Does the solution work as expected?

· How can the solution be tested?

· What requirements must be tested?

· What does success look like?
Inputs:

· Functional specification

· Test scenarios and test cases

Output:

· Test specification document

	Identify and resolve bugs until the solution stabilizes
	Key questions:

· Has the solution achieved bug convergence?

· Has the solution achieved zero bug bounce?

· What are the major responsibilities for Test in this project?

· Do any features or functionality have higher risks or priorities than others?

· Does the solution interact with other infrastructure or organizations?

· Is a daily build process running that gives Test fresh code each day?

· Is the issue-tracking database dynamic enough to allow for agile development? For example, is a notification system available that can alert the project team when new bugs are added to the issue-tracking database or if their status changes?

· Which features or functionalities have the highest risk?

Inputs:

· Test specification document

· Master project plan, including the test plan

· Test scenarios and test cases

· Lab environment

· Interim builds, including:

· Solution deliverables.
· Documentation.
· Issue-tracking database

· Issue-tracking policies and procedures

Output:

· Release candidate

Best practices:

· Use a formal issue-tracking system to track and report status of bugs.

· Document issue-tracking and reporting procedures in planning.

· Create a test matrix to identify testing tasks and assign them to testers.

· Divide the test matrix by functional areas of the solution.

	Test the release candidate
	Key questions:

· Is this solution feature complete or are components still missing?

· Is the release candidate pilot ready or does the team need to build another?

Inputs:

· Release candidate

· Master project plan, including the test plan

· Test scenarios and test cases

· Issue-tracking database

· Issue-tracking policies and procedures

Outputs:

· Pilot-ready release candidate

· Master project plan updated, including:

· Backup and recovery plan.
· Deployment plan.
· Support plan.
· Monitoring plan.
· Operations plan.
· Training plan.
Best practices:

· Focus Test and Development efforts on discovering bugs that represent problems so serious that they have to be fixed.

· Define and agree on success criteria for testing the release candidate.

· Do not release the candidate until the entire team signs off on its suitability.

	Complete user acceptance testing
	Key questions:

· Who will do the user acceptance testing?
· What scenarios are most critical to test?

· Who determines whether the test passes?

· Who represents the users?

· Are all user categories represented?
Inputs:

· Pilot-ready release candidate

· Training or lab environment (non-production training environment)

Outputs:

· User acceptance

· Solution archive in the definitive software library (DSL)

Best practices:

· Conduct user acceptance testing to ensure that the solution meets customers needs before moving on to the pilot test.

· Give support and users the chance to practice the new technology safely.

· Use this opportunity to identify issues that prevent successful deployment.
· Identify success criteria first to keep the focus on the agreed-to requirements and to prevent scope creep.

· Have a way to collect ideas for future users that came up during testing.

Process 2: Conduct a Pilot Test

In this process, the team conducts a pilot test of the solution.

[image: image6.jpg]
Figure 4. Conduct a pilot test
Activities: Conduct a Pilot Test

A pilot test verifies that the solution meets the expectations and specifications of the customer by testing the entire solution in a production environment. Typically, a pilot test is a deployment in a subset of the live production environment. This subset can be a particular group of users, an entire department, or a group of servers in a data center. The pilot testing process helps identify areas where users have trouble understanding, learning, and using the solution. It also gives Release Management the opportunity to identify issues that can prevent successful deployment of the solution.

During the pilot test, the team collects and evaluates pilot data, such as user feedback. Once the team has collected enough data, the team must choose one of the following strategies:

· Stagger forward. Deploy a new release candidate to the pilot group.

· Roll back. Execute the rollback plan to restore the pilot group to its previous configuration state. Try the pilot again later with a more stable release candidate.

· Suspend. Suspend pilot testing.

· Patch and continue. Deploy patches to fix the existing solution.

· Deploy. Proceed to deployment of the solution.

Table 5. Activities and Considerations for Conducting a Pilot Test

	Activity
	Considerations

	Pilot the solution and collect feedback
	Key questions:

· Is the solution viable in a production environment?

· Are all of the solution’s components ready for deployment?

· Have the project team and customers agreed on pilot success criteria?

· Does the project team have a mechanism in place for collecting feedback?

· Which sites and groups have the project team chosen for the pilot? Are there one or more user profiles the team is targeting for the pilot test?

· Are targeted users prepared for the pilot?

· Has the project team documented a transition plan in the pilot plan?

· How will the project team evaluate the results of the pilot test?

· What risks are associated with pilot testing the solution in production?

Inputs:

· Master project plan, including:

· Pilot plan.
· Support plan.
· Pilot-ready release candidate, including:

· Solution deliverables.
· Solution documentation.
Outputs:

· Pilot review document

· Release notes updated

Best practices:

· Do not begin a pilot test until the project team, customers, and users all agree on the criteria for a successful result.

· Pilot the entire deployment process and not just user interaction.

· Communicate to users the length, purpose, and progress of the pilot.

· Ensure that support is trained and prepared to support pilot users.

Process 3: Review the Release Readiness Milestone

In this final process, the project team, customers, and stakeholders review and approve the Release Readiness Milestone.

[image: image7.jpg]
Figure 5. Review the Release Readiness Milestone
Activities: Review the Release Readiness Milestone

Stabilizing culminates in the Release Readiness Milestone. This milestone, which is a MOF Management Review, occurs after a successful pilot has been conducted, all outstanding issues have been addressed, and the solution is released and made available for full deployment in the production environment. This milestone is the opportunity for customers and users, operations and support personnel, and key project stakeholders to evaluate the solution and identify any remaining issues that they must address before deployment.
Table 6. Activities and Considerations for Reviewing the Release Readiness Milestone

	Activities
	Considerations

	Approve the Release Readiness Milestone
	Key questions:

· Was the pilot successful when compared to the success criteria?

· Did the team document workarounds for issues found during the pilot?

· Are all team roles satisfied and prepared to sign off on their work?

· Are the deployment and operations procedures fully documented?

· Were the deployment and options procedures tested during pilot?

Inputs:

· Final release, including:

· Source code.
· Solution deliverables.
· Solution documentation.
· Release notes

· Test results and testing tools

· Master Plan, including:

· Deployment plan.
· Operations plan.
Outputs:

· Release sign-off form document

Conclusion

This SMF has addressed how to ensure release of the highest-quality IT service solution possible at the Release Readiness Milestone. It includes guidance for how to test a feature-complete solution, prepare release candidate versions, deal with feedback, and fix reported issues.

Succeeding at that requires a clear understanding of the following processes for stabilization:

· Stabilize a release candidate.

· Conduct a pilot test.

· Review the Release Readiness Milestone.

Feedback

Please direct questions and comments about this guide to mof@microsoft.com.
FPO

[image: image1.png]
Solution Accelerators
microsoft.com/technet/SolutionAccelerators

Solution Accelerators
microsoft.com/technet/SolutionAccelerators

